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Abstract. Traditional systems for managing relational databases (Relational Database Management Systems, or 

RDBMS) use structured data that is organized into tables, rows, and columns with defined relations between the 

tables. These systems are suitable for working with moderate to large amounts of structured data but may have 

problems dealing with extremely large amounts of data as well as unstructured data. In order to overcome the 

problems in the operation of these systems, the big data concept appeared, which implies the application of 

various technologies that enable the management of huge amounts of diverse data that are collected at a high 

speed. The paper investigates optimization techniques for managing and processing large amounts of data on a 

platform for a distributed data storage. An experimental optimization setup is performed to improve the 

performance when executing queries on large amounts of data. Experimental results demonstrated on a large 

amount of data on a specific platform show that it is possible to efficiently improve the optimization. 
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Optimizacija upravljanja in obdelave velikih podatkov na 

platformi za porazdeljeno shranjevanje podatkov 

Tradicionalni sistemi za upravljanje relacijskih baz podatkov 

(Relational Database Management Systems ali RDBMS) 

uporabljajo strukturirane podatke, ki so organizirani v tabele, 

vrstice in stolpce z definiranimi odnosi med tabelami. Ti 

sistemi so primerni za delo z zmernimi do velikimi količinami 

strukturiranih podatkov, vendar imajo lahko težave pri 

ravnanju z izjemno velikimi količinami podatkov kot tudi z 

nestrukturiranimi podatki. Za premostitev težav pri delovanju 

teh sistemov se je pojavil koncept velikih podatkov, ki pomeni 

uporabo različnih tehnologij, ki omogočajo upravljanje 

ogromnih količin raznovrstnih podatkov, ki se zbirajo z veliko 

hitrostjo. Prispevek raziskuje optimizacijske tehnike za 

upravljanje in obdelavo velikih količin podatkov na platformi 

za porazdeljeno shranjevanje podatkov. Izvedena je bila 

eksperimentalna postavitev z namenom optimizacije, ki 

zagotavlja boljše delovanje pri izvajanju poizvedb pri velikih 

količinah podatkov. Eksperimentalni rezultati kažejo, da je 

možno učinkovito izboljšati optimizacijo, kar je prikazano na 

veliki količini podatkov na določeni platformi. 

 

1 INTRODUCTION 

With each increase in the amount of data and with each 

improvement of information systems in data collection 

from distributed and diverse sources, the amount of 

problems related to the quality of data also increases. 

The information and data quality are the topics of 

extensive and very active research both from the 

perspective of information systems and databases. [1] 

 Big data refers to large and complex data sets that 

traditional systems are unable to process, manage, and 

analyze in reasonable time frames. The big data concept 

is characterized by three primary attributes known as 3V 

[2], [3]: 

• Volume: a large amount of data that can come from 

different sources, 

• Velocity: the high speed at which data is collected 

from different devices, social networks, websites, 

online transactions, 

• Variety: different types of data that can be structured 

(databases, spreadsheets), semi-structured (XML, 

JSON files), and unstructured (text documents, 

images, audio, video). 

For the big data description, two more attributes are 

added to the three above mentioned [3], [4]: 

• Veracity: truthfulness, which refers to the quality 

and reliability of data, which may include 

incomplete and inconsistent data, which may present 

challenges in analysis and decision-making, 

• Value: the value of data is in its potential to provide 

organizations with a competitive advantage, improve 

decision-making, and drive innovation. 

With big data technologies, the data also must be 

managed and processed intelligently to efficiently 

 
Received 1 April 2024 

Accepted 9 October 2024 



OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 273  

execute queries, and optimization needs to be done in 

order to process the data quickly. There are many 

optimization techniques that can be used, but the 

specific configurations and optimizations that are 

chosen need to be aligned with the use cases and data 

processing requirements to get the best performances.  

 The paper is structured into six chapters: Platform 

(Chapter 2), Hive optimization techniques (Chapter 3), 

Experimental setup (Chapter 4), Results (Chapter 5), 

and Conclusion (Chapter 6). 

 

2 PLATFORM  

2.1 Hadoop 

The technology most often associated with big data is 

Hadoop [5]. Hadoop is an open-source framework of 

the Apache Foundation that is used to store and process 

large amounts of data [6]. Hadoop consists of four basic 

components: Hadoop Common (a set of libraries and 

configuration files that are required for the operation of 

Hadoop itself), HDFS (Hadoop distributed file system 

that is responsible for storing data in the cluster), 

MapReduce (a data processing model), and YARN 

(Hadoop operating system that is in charge of resource 

allocation and job management) [7]. 

 

2.2 Cloudera 

Cloudera Distribution for Hadoop (CDH) [8] is an open-

source distribution of the Cloudera platform that 

includes Apache Hadoop. The platform is designed to 

help organizations manage and analyze large amounts 

of data, including structured and unstructured data, in a 

distributed and scalable manner. CDH is a 

comprehensive solution for storing, processing, and 

analyzing large amounts of data, which extends the 

capabilities of the core Hadoop ecosystem by 

integrating additional tools and components, providing 

management and monitoring tools, improving security, 

and providing various services to help organizations 

harness the power of big data in their operations.  

 CDH includes an Apache Hive [9] data warehouse 

designed to simplify querying and analysis of large data 

sets stored in distributed storage systems, such as the 

Hadoop Distributed File System (HDFS). Hive enables 

users to work with large amounts of data using a 

familiar SQL-like interface, making it accessible to a 

large number of data professionals.  

 

3 HIVE OPTIMIZATION TECHNIQUES 

In order to improve the performance of Hive queries 

and data processing, Hive optimization techniques are 

used. Optimizing Hive queries is essential when dealing 

with large data sets to reduce the query execution time 

and resource usage. The paper discusses the most 

commonly used Hive optimization techniques [10] - 

[12]: 

• Predicate pushdown [13] is a Hive optimization 

technique used to improve the query performance by 

having data filtering happen at the data source level 

(e.g. HDFS) before the data is sent to Hive for 

further processing. In this way, the amount of data 

that needs to be read and processed is reduced, 

unnecessary data is avoided, and data I/O is reduced, 

which results in faster query execution. This 

technique is enabled with the parameter 

hive.optimize.ppd, which is set to true by 

default.  

• Vectorization significantly reduces the CPU load 

and improves the query performance by processing 

data in batches (vectors) rather than row by row. 

Vectorization processing allows operators and 

functions in Hive queries to operate on entire vectors 

of data [14]. For example, instead of processing one 

row at a time, a filter or aggregation can be applied 

to a set of rows together. Vectorization can be 

enabled by setting the 
hive.vectorized.execution.enabled 

parameters to true.  

• Hive allows a table to be organized into multiple 

partitions where the same types of data can be 

grouped together. Partitioning [15] can improve the 

performance and help organize data. When 

querying, a specific partition of the table containing 

the query value is accessed, thus reducing the I/O 

time required to execute the query and increasing 

execution speed. With static partitioning, the values 

of the partitioned columns need to be manually 

passed when loading data into the table. Dynamic 

partitioning automatically creates partitions based on 

the values in a specified column, allowing for more 

flexible and scalable data storage. When creating a 

Hive table, it is specified PARTITIONED BY part of 

the command. 

• Bucketing [15] is a Hive data organization technique 

similar to partitioning with the added functionality 

of dividing large data sets into smaller chunks. A 

Hive table is divided into multiple Hive partitions, 

and the Hive partition is further divided into clusters 

or buckets that are easier to manage and maintain, 

which is called clustering or bucketing. When 

creating a Hive table, it is specified CLUSTERED BY 

part of the command. 

• Parallelism focuses on the parallel execution of tasks 

within Hive query and data processing jobs [16]. 

Hive automatically parallelizes tasks for certain 

types of joins (e.g. map join) and aggregation 

operations, so it is necessary to ensure that queries 

are structured to take advantage of the optimization. 

Parallelism can be enabled by setting the 

hive.exec.parallel parameters to true. 

• Cost-based optimization (CBO) [11] is a technique 

used for Hive optimization by evaluating the cost of 

different query execution plans and choosing the 

most efficient one. This optimization approach takes 
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statistics and data information into account and helps 

Hive make more informed decisions about how to 

execute queries. CBO can be enabled by setting the 

parameter hive.cbo.enable to true. 

• Statistics allow the query optimizer to make 

decisions about query execution plans and reduce 

the query execution time [17]. The ANALYZE TABLE 

command is used to collect Hive table statistics, 

gathering information about data distribution, 

number of rows, and column statistics. For query 

optimization, it is necessary to periodically update 

the statistics of tables and columns to take into 

account changes in the distribution and amount of 

data. 

• Skew join [10] occurs when one or more keys in a 

join operation have a disproportionately large 

amount of associated data, causing a few tasks to 

process most of the data while other tasks are idle, 

resulting in an uneven resource usage and slower the 

query performance. Skew join can be enabled by 

setting the hive.optimize.skewjoin parameters 

to true. During execution, skew keys are detected, 

and instead of being processed, they are temporarily 

stored in the HDFS directory. In the next map-

reduce job, those skew keys are processed, so the 

next map-reduce job will be much faster since it will 

be a map join. 

• In a traditional join operation, data from two or more 

tables is mixed and sorted by a common key before 

performing the join, which can be resource-intensive 

and time-consuming, especially when dealing with 

large data sets. With a map join [10], one of the 

tables (smaller) is completely loaded into memory as 

a hash table, and the other table (larger) is 

transferred row by row or block by block through 

mapper tasks. As each row from the larger table is 

processed, Hive uses the shared join key to find a 

match in the hash table that was created from the 

smaller table. In this way, the need to mix and sort 

data, as with a traditional join, is eliminated. Map 

join can be enabled by setting the 

hive.auto.convert.join parameters to true. 

• Bucket map join [10] combines two optimization 

techniques map join and bucketing, which can be 

enabled by setting the 

hive.optimize.bucketmapjoin parameters to 

true. Sort merge bucket (SMB) join [10] is an 

extension of sort merge join, which combines the 

benefits of bucketing and sorting for even more 

efficient merge operations. SMB join can be enabled 

by setting the following parameters 

hive.auto.convert.sortmerge.join and 
hive.optimize.bucketmapjoin.sortedmerge 

to true. Sort merge bucket map (SMBM) join [10] 

is like an SMB join that only runs a map-side join 

and can avoid caching all rows in memory like a 

map join. SMBM can be enabled by setting the 

parameter 

hive.auto.convert.sortmerge.join.to.map

join to true. 

• Compression [10] reduces the space required for the 

data storage. When data is compressed, the storage 

space is reduced, but I/O during query execution is 

also reduced, resulting in a faster query 

performance. Hive supports various compression 

codecs, such as Snappy, Gzip, LZO, and others. The 

Snappy codec is known for its balance between the 

compression ratio and speed, making it a popular 

choice for Hive tables. The compression codec can 

be specified using the STORED AS part of the 

command when creating or altering Hive tables. 

 

4 EXPERIMENTAL SETUP  

4.1 Data Sets 

The worldwide recognized Transaction Processing 

Performance Council Benchmark H (TPC-H) [18] is 

used for the analysis. It enables performance testing for 

data warehouse solutions. TPC-H consists of business-

oriented queries and databases selected to have a broad 

industry relevance. TPC-H is a decision support system 

that enables the analysis of large amounts of data, the 

execution of queries with a high degree of complexity, 

and the provision of answers to critical business 

questions. 

 In TPC-H, a scale factor (SF) is used to describe the 

amount of data. For the analysis purposes, three 

databases are created: TPCH_0_5, TPCH_1 and 

TPCH_2. They contain different amounts of data with 

scaling factors of 0.5, 1, and 2, respectively. Each 

database contains the same tables with different 

numbers of records according to the scaling factor 

shown in Table 1. Different scaling factors are used for 

the analysis in order to perform performance testing and 

Hive optimization techniques on different amounts of 

data. 

 

Table 1. Amount of data for different scaling factors. 

Table SF = 0.5 SF = 1 SF = 2 

region 5 5 5 

nation 25 25 25 

supplier 5000 10000 20000 

customer 75000 150000 300000 

part 100000 200000 400000 

partsupp 400000 800000 1600000 

orders 750000 1500000 3000000 

lineitem 2999671 6001215 11997996 

 

4.2 Hive Configuration Parameters 

For the analysis, in addition to the default combination 

of Hive configuration parameters (P1) that have set 

values after Cloudera platform installation, various Hive 

optimization techniques are used by adjusting additional 

parameters through combinations (P2–P10) in order to 

perform a comparison and determine their impact on 
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execution time prompts versus the default settings. The 

Hive configuration parameters begin with "hive." and 

define properties of the Hive system. There is a large 

number of Hive configuration parameters. After a long 

analysis and measurement of the impact of various 

configuration parameters, individually and in 

combination with others, in addition to the default P1 

(Table 2), those cases that stand out according to their 

results are presented in Table 3 (P2-P9) and Table 4 

(P10). 

 

Table 2. P1 default values of the analyzed Hive configuration 

parameters. 

Optimization 

technique 

Parameter Value 

P1   

Execution 

Engine 

hive.execution.engine mr 

Predicate 

Pushdown 

hive.optimize.ppd true 

 hive.optimize.ppd.storage true 

 hive.ppd.remove.duplicatefilters true 

 hive.ppd.recognizetransivity true 

Vectorization hive.vectorized.execution.enabled true 

 hive.vectorized.execution.reduce. 
enabled 

true 

 hive.vectorized.execution.reduce. 

groupby.enabled 

true 

Dynamic 
Partitioning 

hive.exec.dynamic.partition true 

 hive.exec.dynamic.partition.mode strict 

 hive.exec.max.dynamic.partitions 1000 

 hive.exec.max.dynamic.partitions

.pernode 

100 

Indexing hive.optimize.index.filter true 

 hive.index.compact.binary.search true 

Paralelism hive.exec.parallel false 

 hive.exec.parallel.thread.number 8 

Cost-based 
Optimization 

hive.cbo.enable false 

Statistics hive.stats.autogather true 

 hive.compute.query.using.stats false 

 hive.stats.fetch.column.stats true 

 hive.stats.fetch.partition.stats true 

Skew Join hive.optimize.skewjoin false 

 hive.skewjoin.key 100000 

 hive.skewjoin.mapjoin.map.tasks 10000 

 hive.skewjoin.mapjoin.min.split 33554432 

Map Join hive.auto.convert.join true 

 hive.auto.convert.join. 
noconditionaltask 

true 

 hive.auto.convert.join. 

noconditionaltask.size 

20971520 

 hive.mapjoin.smalltable.filesize 25000000 

Bucket Map 

Join 

hive.optimize.bucketmapjoin false 

Sort merge 

bucket join 

hive.auto.convert.sortmerge.join false 

 hive.optimize.bucketmapjoin. 

sortedmerge 

false 

Sort merge 
bucket map 

join 

hive.auto.convert.sortmerge.join. 
to.mapjoin 

false 

Compression mapred.compress.map.output true 

 mapred.output.compress false 

 hive.exec.compress.output false 

 hive.exec.compress.intermediate false 

Table 3. P2 – P9 combinations of Hive configuration 

parameters. 

Optimization 

technique 

Parameter Value 

P2   

Paralelism hive.exec.parallel true 

 hive.exec.parallel.thread.number 16 

P3   

Cost-based 

Optimization 

hive.cbo.enable true 

P4   

Cost-based 

Optimization 

hive.cbo.enable true 

Statistics hive.stats.autogather true 

 hive.compute.query.using.stats true 

 hive.stats.fetch.column.stats true 

 hive.stats.fetch.partition.stats true 

P5   

Paralelism hive.exec.parallel true 

 hive.exec.parallel.thread.number 16 

Cost-based 

Optimization 

hive.cbo.enable true 

Statistics hive.stats.autogather true 

 hive.compute.query.using.stats true 

 hive.stats.fetch.column.stats true 

 hive.stats.fetch.partition.stats true 

P6   

Cost-based 

Optimization 

hive.cbo.enable true 

Statistics hive.stats.autogather true 

 hive.compute.query.using.stats true 

 hive.stats.fetch.column.stats true 

 hive.stats.fetch.partition.stats true 

 ANALYZE TABLE tablename 

COMPUTE STATISTICS 

 

P7   

Skew Join hive.optimize.skewjoin true 

 hive.skewjoin.key 100000 

 hive.skewjoin.mapjoin.map.tasks 10000 

 hive.skewjoin.mapjoin.min.split 33554432 

P8   

Map Join hive.auto.convert.join true 

 hive.auto.convert.join. 

noconditionaltask 

true 

 hive.auto.convert.join. 
noconditionaltask.size 

20971520 

 hive.mapjoin.smalltable.filesize 25000000 

Bucket Map 

Join 

hive.optimize.bucketmapjoin true 

Sort merge 

bucket join 

hive.auto.convert.sortmerge.join true 

 hive.optimize.bucketmapjoin. 

sortedmerge 

true 

Sort merge 

bucket map 

join 

hive.auto.convert.sortmerge.join. 

to.mapjoin 

true 

P9   

Compression mapred.compress.map.output true 

 mapred.output.compress true 

 hive.exec.compress.output true 

 hive.exec.compress.intermediate true 
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Table 4. P10 combination of Hive configuration parameters. 

Optimization 

technique 

Parameter Value 

P10   

Multiple   

Paralelism hive.exec.parallel true 

 hive.exec.parallel.thread.number 16 

Cost-based 
Optimization 

hive.cbo.enable true 

Statistics hive.stats.autogather true 

 hive.compute.query.using.stats true 

 hive.stats.fetch.column.stats true 

 hive.stats.fetch.partition.stats true 

Skew Join hive.optimize.skewjoin true 

 hive.skewjoin.key 100000 

 hive.skewjoin.mapjoin.map.tasks 10000 

 hive.skewjoin.mapjoin.min.split 33554432 

Map Join hive.auto.convert.join true 

 hive.auto.convert.join. 
noconditionaltask 

true 

 hive.auto.convert.join. 

noconditionaltask.size 

20971520 

 hive.mapjoin.smalltable.filesize 25000000 

Bucket Map 

Join 

hive.optimize.bucketmapjoin true 

Sort merge 
bucket join 

hive.auto.convert.sortmerge.join true 

 hive.optimize.bucketmapjoin. 

sortedmerge 

true 

Sort merge 
bucket map 

join 

hive.auto.convert.sortmerge.join. 
to.mapjoin 

true 

Compression mapred.compress.map.output true 

 mapred.output.compress true 

 hive.exec.compress.output true 

 hive.exec.compress.intermediate true 

5 RESULTS  

5.1 Experimental results 

For the analysis, ten different combinations of the 

parameters (P) are used, for which the time, expressed 

in seconds, during the execution of the queries (Q) is 

measured. The results are presented in tables for 

different databases that contain data according to 

scaling factors of 0.5, 1, and 2. Table 5 contains the 

query execution time for database TPCH_0_5, Table 6 

for TPCH_1, and Table 7 for TPCH_2. When creating 

the databases, the TEXTFILE format is used for tables. 

 The same hardware and configuration are used for all 

tests. On a laptop with an Intel Core i5 processor and 

32GB of RAM, a VMware Workstation virtual machine 

is used, on which the CDH 6.3.2 version of the 

Cloudera platform is installed with all the necessary 

components for the distributed storage of large amounts 

of data, their processing, and their analysis. For the 

analysis, the TPC-H queries are used. They are designed 

to analyze the functionality of the system and have a 

realistic context. A set of ten representative TPC-H [18] 

queries (Q1, Q4, Q6, Q11, Q12, Q13, Q15, Q16, Q20, 

and Q22) is selected so that combinations of simple and 

complex queries are included. 

 Before any changes to the platform, all the selected 

queries are run with the default Hive configuration 

parameters, and the execution time is recorded for all 

three databases, i.e., three different amounts of data. 

The execution time in seconds for the default 

configuration is shown in column P1 (Tables 5, 6, 7). 

Experimentation is then performed with various Hive 

configuration parameters and the application of some of 

the Hive optimization techniques, such as parallelism, 

cost-based optimization, statistics, join optimization, 

and compression. Hive allows setting hundreds of 

different parameters, and some of the most commonly 

used ones are used for the analysis purposes. 

Configuration changes are made systematically by 

changing one set of parameters related to a specific 

optimization technique or more, while other parameters 

are kept constant. The same set of queries is run with 

the parameters changed and the query execution time 

recorded in columns P2–P10 (Tables 5, 6, 7). 

 

5.2 Analysis of the result 

Based on the measured query execution times in 

seconds (Tables 5, 6, 7), which are run on databases 

TPCH_0_5, TPCH_1 and TPCH_2 for different 

combinations of Hive configuration parameters (Tables 

3, 4), Tables 8, 9, 10 are created, in which the 

percentage difference in query execution time for 

combinations P2–P10 compared to the default setting of 

parameters P1 (Table 2) is calculated. The tables 

represent an important part of the analysis regarding the 

optimization of the Hive performance, and based on 

these results, the effect and impact of certain 

optimization techniques and the configuration 

parameters on the results can be seen. 

                    Table 5. TPCH_0_5 (sec). 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Q1 184 152 150 143 137 148 134 158 158 160 

Q4 194 191 206 212 198 214 192 191 205 243 

Q6 65 64 64 62 58 65 59 57 65 63 

Q11 268 259 271 285 253 261 259 259 236 252 

Q12 213 238 208 206 202 213 208 209 191 230 

Q13 186 192 197 189 196 202 188 188 184 205 

Q15 373 406 345 369 364 353 355 372 370 423 

Q16 289 260 280 282 250 281 257 267 252 399 

Q20 397 368 379 361 330 384 376 372 373 348 

Q22 248 241 250 249 239 251 231 232 249 263 
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                    Table 6. TPCH_1 (sec). 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Q1 231 225 207 217 206 211 229 219 225 243 

Q4 311 300 327 300 274 319 264 267 270 292 

Q6 78 74 75 74 74 75 76 74 81 76 

Q11 301 272 280 278 270 280 260 273 262 275 

Q12 273 300 298 297 265 295 276 274 278 306 

Q13 231 236 221 233 219 224 208 198 221 231 

Q15 504 587 480 516 514 479 494 505 520 570 

Q16 289 271 283 289 265 301 301 300 267 293 

Q20 498 421 470 482 444 460 449 476 456 495 

Q22 271 250 263 269 271 263 242 262 274 273 

                  Table 7. TPCH_2 (sec). 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Q1 368 346 338 354 326 336 340 347 354 364 

Q4 447 417 470 483 439 462 478 420 435 474 

Q6 119 105 105 111 106 102 119 111 112 111 

Q11 312 271 317 312 284 306 300 309 306 315 

Q12 448 485 450 456 446 449 468 437 450 483 

Q13 249 242 258 241 266 247 251 262 247 274 

Q15 807 884 749 771 792 745 743 753 745 917 

Q16 354 326 335 333 337 339 338 316 326 613 

Q20 672 689 698 732 742 679 642 652 664 835 

Q22 315 283 313 305 306 304 294 297 300 335 

                     Table 8. TPCH_0_5 (%). 

  P2% P3% P4% P5% P6% P7% P8% P9% P10% 

Q1 -17,39 -18,48 -22,28 -25,54 -19,57 -27,17 -14,13 -14,13 -13,04 

Q4 -1,55 6,19 9,28 2,06 10,31 -1,03 -1,55 5,67 25,26 

Q6 -1,54 -1,54 -4,62 -10,77 0,00 -9,23 -12,31 0,00 -3,08 

Q11 -3,36 1,12 6,34 -5,60 -2,61 -3,36 -3,36 -11,94 -5,97 

Q12 11,74 -2,35 -3,29 -5,16 0,00 -2,35 -1,88 -10,33 7,98 

Q13 3,23 5,91 1,61 5,38 8,60 1,08 1,08 -1,08 10,22 

Q15 8,85 -7,51 -1,07 -2,41 -5,36 -4,83 -0,27 -0,80 13,40 

Q16 -10,03 -3,11 -2,42 -13,49 -2,77 -11,07 -7,61 -12,80 38,06 

Q20 -7,30 -4,53 -9,07 -16,88 -3,27 -5,29 -6,30 -6,05 -12,34 

Q22 -2,82 0,81 0,40 -3,63 1,21 -6,85 -6,45 0,40 6,05 

                   Table 9. TPCH_1 (%). 

  P2% P3% P4% P5% P6% P7% P8% P9% P10% 

Q1 -2,60 -10,39 -6,06 -10,82 -8,66 -0,87 -5,19 -2,60 5,19 

Q4 -3,54 5,14 -3,54 -11,90 2,57 -15,11 -14,15 -13,18 -6,11 

Q6 -5,13 -3,85 -5,13 -5,13 -3,85 -2,56 -5,13 3,85 -2,56 

Q11 -9,63 -6,98 -7,64 -10,30 -6,98 -13,62 -9,30 -12,96 -8,64 

Q12 9,89 9,16 8,79 -2,93 8,06 1,10 0,37 1,83 12,09 

Q13 2,16 -4,33 0,87 -5,19 -3,03 -9,96 -14,29 -4,33 0,00 

Q15 16,47 -4,76 2,38 1,98 -4,96 -1,98 0,20 3,17 13,10 

Q16 -6,23 -2,08 0,00 -8,30 4,15 4,15 3,81 -7,61 1,38 

Q20 -15,46 -5,62 -3,21 -10,84 -7,63 -9,84 -4,42 -8,43 -0,60 

Q22 -7,75 -2,95 -0,74 0,00 -2,95 -10,70 -3,32 1,11 0,74 

                    Table 10. TPCH_2 (%). 

  P2% P3% P4% P5% P6% P7% P8% P9% P10% 

Q1 -5,98 -8,15 -3,80 -11,41 -8,70 -7,61 -5,71 -3,80 -1,09 

Q4 -6,71 5,15 8,05 -1,79 3,36 6,94 -6,04 -2,68 6,04 

Q6 -11,76 -11,76 -6,72 -10,92 -14,29 0,00 -6,72 -5,88 -6,72 

Q11 -13,14 1,60 0,00 -8,97 -1,92 -3,85 -0,96 -1,92 0,96 

Q12 8,26 0,45 1,79 -0,45 0,22 4,46 -2,46 0,45 7,81 

Q13 -2,81 3,61 -3,21 6,83 -0,80 0,80 5,22 -0,80 10,04 

Q15 9,54 -7,19 -4,46 -1,86 -7,68 -7,93 -6,69 -7,68 13,63 

Q16 -7,91 -5,37 -5,93 -4,80 -4,24 -4,52 -10,73 -7,91 73,16 

Q20 2,53 3,87 8,93 10,42 1,04 -4,46 -2,98 -1,19 24,26 

Q22 -10,16 -0,63 -3,17 -2,86 -3,49 -6,67 -5,71 -4,76 6,35 
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 A negative percentage difference indicates a decrease 

in the execution time, which means that the optimized 

configuration is faster. A positive percentage difference 

suggests an increase in the query execution time with 

the optimized configuration, which is not desirable. A 

percentage difference close to 0% means there is a little 

or no change in the run time. A reduction in the Hive 

query execution time of 10% or more can be considered 

a significant improvement in the query performance. 

 The testing is performed with multiple queries on 

different amounts of data for different combinations of 

configuration parameters, so after displaying the 

percentage differences in the tables for three different 

databases for all combinations, the percentage 

differences are extracted for each combination of the 

parameters (P2-P10). For a better presentation and 

clarity of the results, their visualization is performed 

with a graphic representation in Figures 1 - 9. Based on 

the separated results in graphical displays, a more 

detailed analysis of the results and a better overview of 

the impact of each individual optimized configuration 

can be performed for each query and different 

databases. 

 Figures 1 - 9 provide a graphical representation of the 

percentage difference in the query execution time for 

the combinations (P2-P10) of configuration parameters 

compared to the default settings of P1 parameters for 

selected queries and different databases. 

 

 

 

Figure 1. Parameters P2 (%). 

 

 The P2 combination (Figure 1) indicates the 

application of the optimization technique called 

parallelism. In Figure 1 with the P2 results, it can be 

noticed that parallelism is more efficient for larger data 

sets. For queries Q4, Q6, Q11, and Q22, the bigger 

negative percentage difference is presented for larger 

amounts of data in the TPCH_2 database in comparison 

to smaller amounts of data in the TPCH_0_5 and 

TPCH_1 databases. When dealing with a large data set 

that cannot fit in the memory, parallel processing can 

help by distributing the workload across multiple nodes. 

For smaller data sets that can fit in the memory, the 

overhead of matching parallel tasks can slow the 

execution, so in such cases, sequential processing is 

more efficient. The efficiency of parallelism also 

depends on the queries themselves. Some queries are 

sequential in nature and cannot be easily parallelized, 

and for such queries, this optimization technique will 

not provide significant improvements. For queries Q12 

and Q15, the percentage difference is positive, so for 

these queries that contain aggregation, filtering, 

grouping, sorting, and joining with the largest table, 

parallelism gives worse results in comparison to default 

settings. If Hive queries are not optimized or have 

inefficient SQL logic, adding parallelism will not help 

either. But, for Q1, Q6, Q11, and Q20, significant 

improvements are obvious where the percentage 

difference is negative and higher than 10%. Queries 

involving multiple joins, subqueries, or complex 

transformations like Q11, Q16, Q20, and Q22 benefit 

from parallelism. Parallel execution allows these 

complex operations to be divided into smaller tasks that 

can be executed simultaneously.  

 

 

 

Figure 2. Parameters P3 (%). 

 

 The P3 combination (Figure 2) indicates the 

application of the optimization technique CBO (cost-

based optimization). CBO can analyze alternative query 

execution plans and select a plan that minimizes 

resource usage and execution time. Based on the P3 

results in Figure 2, CBO gives the best improvements 

for simple one-table queries without joins like Q1 and 

Q6, and it is also useful for complex queries with 

multiple joins, subqueries, and aggregations like Q15, 

Q16, and Q20. Queries with complex data filtering 

conditions can benefit from CBO ability to evaluate the 

filter selectivity and choose the most efficient order of 

operations. 
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Figure 3. Parameters P4 (%). 

 

 The P4 combination (Figure 3) means the application 

of optimization techniques CBO and statistics. CBO 

relies on accurate statistics about tables and columns. 

When comprehensive statistics are available and up-to-

date, CBO can make better decisions about query 

execution plans. Based on the P4 results in Figure 3, for 

some analyzed queries, the percentage difference is 

positive, and for some queries, it is negative, and the 

improvement also varies with different amounts of data. 

A significant improvement that is higher than 20% is 

obtained only for simple query Q1 with small amounts 

of data in the TPCH_0_5 database. So, the P4 

combination can give small improvements that are less 

than 10% for some cases, like queries Q1, Q6, where 

select from only one table without joins is used. 

 

 

Figure 4. Parameters P5 (%). 

 

 The P5 combination (Figure 4) means the application 

of multiple optimization techniques, including 

parallelism, CBO, and statistics. In some cases, custom 

optimizations can be more efficient than relying only on 

one or two techniques, as shown by the P5 combination 

of several techniques, which gives better results 

compared to the combinations when parallelism (P2), 

CBO (P3), CBO and statistics (P4, P6) are used. This P5 

combination enables improvements for almost all the 

analyzed queries and all three data sets, with the 

obvious negative percentage difference in Figure 4, 

which means a faster execution in comparison to default 

settings. So, the P5 combination can be recommended 

as efficient for different queries and amounts of data, 

with a decrease in the execution time and optimization 

improvement for most cases. 

 

 

Figure 5. Parameters P6 (%). 

 

 The P6 combination (Figure 5) indicates the 

application of optimization techniques CBO and 

statistics with the ANALYZE TABLE commands to 

calculate statistics for each table. In order to achieve a 

better query performance using the CBO optimization 

technique, it is necessary to enable the collection of 

statistics for the Hive tables, which can be set at the 

database level or at the table level. In addition to the 

automatic collection of statistics, which at the database 

level is used for combinations of P4 and P5 with the 

hive.stats.autogather parameter, statistics can be 

manually collected for tables using the ANALYZE 

TABLE command. For the combination of configuration 

parameters P6, statistics are manually calculated for all 

tables from the databases TPCH_0_5, TPCH_1, and 

TPCH_2. The P6 combination gives similar results as 

the P4 combination. In Figure 5, significant 

improvements are visible only for simple one-table 

queries without joins Q1 and Q6, so this combination 

can be proposed for similar queries and smaller amounts 

of data. 

 

 

 

Figure 6. Parameters P7 (%). 
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Figure 7. Parameters P8 (%). 

 

 The P7 combination (Figure 6) indicates the 

application of the skew join, and the P8 combination 

(Figure 7) indicates the application of the map join 

optimization technique. Skew join is designed to handle 

situations where there is skew data in the join keys. A 

map join is most efficient when one or more tables 

involved in the join operation are small enough to fit 

entirely in the memory. In such cases, loading a small 

table into the memory eliminates the need for expensive 

disk I/O operations, resulting in a faster query 

execution. The map join can also be useful when 

combined with other optimization techniques such as 

bucketing and sorting. Within the P8 combination, in 

addition to the configuration parameters for the map 

join, parameters for the bucket map join, sort merge 

bucket join, and sort merge bucket map join are also 

used. Unlike the previously mentioned combinations of 

optimization techniques that give improvements only in 

some cases, the P7 and P8 combinations give excellent 

performance improvements in almost all cases. Based 

on the P7 and P8 results in Figures 6 and 7, it is obvious 

that notable improvements with a negative percentage 

difference are obtained for most analyzed queries and 

amounts of data. 

 

 

Figure 8. Parameters P9 (%). 

 

 The P9 combination (Figure 8) indicates the 

application of compression optimization technique. 

Compression can significantly improve the query 

performance by reducing the amount of data that needs 

to be read and transferred from the storage to the 

memory, especially when I/O is a bottleneck. Based on 

the P9 results in Figure 8, it can be seen that 

compression is effective for most analyzed queries and 

amounts of data. For some queries, like Q1, Q4, Q11, 

and Q16, the improvement is above 10% with a 

negative percentage difference. If the storage space is an 

issue, compression can help reduce the data storage 

footprint, potentially lowering the storage costs. For 

small data sets that easily fit in the memory, the benefits 

of compression may be minimal, and in such cases, the 

overhead of compression and decompression may 

outweigh the performance gains. For queries Q6, Q15, 

and Q22, the results are worse for smaller amounts of 

data in the databases TPCH_0_5 and TPCH_1, while 

the improvements with a negative percentage difference 

are obtained with a larger amount of data in the database 

TPCH_2. So, the compression efficiency depends on the 

amount of data and also on query complexity.  

 

 

Figure 9. Parameters P10 (%). 

 

 The P10 combination (Figure 9) means the 

application of several optimization techniques: 

parallelism, CBO, statistics, skew join, map join, and 

compression. Based on this combination, which 

includes multiple optimization techniques at the same 

time, poor performance can be noticed in Figure 9. It is 

obvious that, in most cases, with the analyzed queries 

and amounts of data, a positive percentage difference is 

obtained, which means a slower execution in 

comparison to default settings, which is not desirable. It 

can be concluded that using a larger number of 

techniques is not a guarantee that the desired 

improvement will be obtained because there is a large 

number of impacting factors, such as the nature of the 

data, the specificity and complexity of the query, the 

hardware configuration, and the available resources. 

 

5.3 Correlation 

Based on the results in Tables 8, 9, 10, Figures 10, 11, 

12 are created. They contain a visual representation of 

the calculated vertical correlation coefficients (all 
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queries per one database) for the considered 

combinations of configuration parameters P2-P10 with 

the percentage differences in the query execution time 

compared to the default settings of P1. The results of the 

vertical correlation are obtained by dividing the results 

from Tables 8, 9, 10 with the best result for the 

observed combination of parameters P vertically for all 

queries. These results are shown for all queries by 

database: Figure 10 for TPCH_0_5, Figure 11 for 

TPCH_1, and Figure 12 for TPCH_2. Based on the 

correlation coefficients that are in the interval [-1, -0.5], 

it can be noticed that the best improvements are for the 

TPCH_0_5 database with combinations P5, P8, and P9; 

for the TPCH_1 database with combinations P5, P6, P7, 

and P9; and for the TPCH_2 database with 

combinations P2, P7, P8, and P9. Based on the 

correlation, it is shown that a strong negative correlation 

(close to -1.0) and optimization improvements can be 

achieved better with larger data sets. In most cases, 

combinations P5 (paralelism, CBO, statistics), P7 and 

P8 (join optimizations), and P9 (compression) give the 

best results in query performance improvements. 

 

 

 

Figure 10. Vertical Correlation r(0.5). 

 

 

Figure 11. Vertical Correlation r(1). 

 

 

Figure 12. Vertical Correlation r(2). 
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6 CONCLUSION 

Based on the experimental setup and testing of various 

Hive optimization techniques, it can be observed that 

their adequate application and optimization of 

configuration parameters can significantly improve the 

performance and reduce query execution time. 

Generally, a combination of parameters gives some 

degree of improvement and reduces the average query 

execution time compared to the default Hive 

configuration. The actual percent difference in the 

improvement may vary depending on various factors, 

such as the complexity and specificity of the query, 

characteristics and amount of data, adequate application, 

and choice of optimization techniques. 

 On the basis of the results analysis, it can be 

concluded that some optimization techniques used 

individually can give improvements only for some 

cases, like simple queries or small amounts of data, 

while a well-chosen combination of optimization 

techniques and configuration parameters can give 

improvements for most cases, different queries and 

amounts of data, like combinations P5 (parallelism, 

CBO, and statistics), P7 and P8 (join optimizations). 

But implementing multiple optimization techniques can 

introduce complexity into the Hive environment, 

leading to resource competition and increased load, as 

can be noticed with the P10 combination (parallelism, 

CBO, statistics, skew join, map join, and compression) 

that gives bad results in most cases. 

 Improving the optimization of the management and 

processing of large amounts of data on a distributed 

storage platform can be achieved through a combination 

of best practices, configuration adjustments, and 

leveraging the capabilities provided by the platform. 

Considering the fact that there is no ideal combination 

of the configuration parameters that would give the best 

results in terms of the performance for all possible 

queries and data, in order to achieve the best effect, it is 

necessary to adapt the configuration to specific use 

cases. This can be achieved by experimenting with 

different settings to arrive at an optimal configuration 

for the case at hand. Since the effectiveness of 

optimization strategies varies by use case and data set, it 

is essential to perform benchmarking, testing, and 

profiling to identify areas for improvement and adjust 

optimization accordingly. 

 On a concrete platform for a distributed data storage, 

CDH (Cloudera Distribution for Hadoop), it is shown 

how, for different amounts of data and the nature of 

queries, analysis, testing, and profiling of configuration 

parameters can be performed in order to obtain an 

adequate improvement in terms of the management and 

processing of large amounts of data. By carefully 

configuring the Hive parameters and using appropriate 

Hive optimization techniques, the query efficiency and 

performance improvement with a reduced query 

execution time can be achieved. 
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