
ELEKTROTEHNIŠKI VESTNIK 91(5): 272-283, 2024

ORIGINAL SCIENTIFIC PAPER

Optimization of Management and Processing of Big Data on a

Platform for Distributed Data Storage

Vedrana Nerić1, Nermin Sarajlić2, Đulaga Hadžić3

1 Electrical Engineering and Computer Science, Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina
2 Electrical Engineering and Computer Science, Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina
3 Department of Software Engineering, Polytechnic Faculty, University of Zenica, Bosnia and Herzegovina
E-mail: vedrana.neric@untz.ba

Abstract. Traditional systems for managing relational databases (Relational Database Management Systems, or

RDBMS) use structured data that is organized into tables, rows, and columns with defined relations between the

tables. These systems are suitable for working with moderate to large amounts of structured data but may have

problems dealing with extremely large amounts of data as well as unstructured data. In order to overcome the

problems in the operation of these systems, the big data concept appeared, which implies the application of

various technologies that enable the management of huge amounts of diverse data that are collected at a high

speed. The paper investigates optimization techniques for managing and processing large amounts of data on a

platform for a distributed data storage. An experimental optimization setup is performed to improve the

performance when executing queries on large amounts of data. Experimental results demonstrated on a large

amount of data on a specific platform show that it is possible to efficiently improve the optimization.

Keywords: big data, Hadoop, Hive, Cloudera, optimization

Optimizacija upravljanja in obdelave velikih podatkov na

platformi za porazdeljeno shranjevanje podatkov

Tradicionalni sistemi za upravljanje relacijskih baz podatkov

(Relational Database Management Systems ali RDBMS)

uporabljajo strukturirane podatke, ki so organizirani v tabele,

vrstice in stolpce z definiranimi odnosi med tabelami. Ti

sistemi so primerni za delo z zmernimi do velikimi količinami

strukturiranih podatkov, vendar imajo lahko težave pri

ravnanju z izjemno velikimi količinami podatkov kot tudi z

nestrukturiranimi podatki. Za premostitev težav pri delovanju

teh sistemov se je pojavil koncept velikih podatkov, ki pomeni

uporabo različnih tehnologij, ki omogočajo upravljanje

ogromnih količin raznovrstnih podatkov, ki se zbirajo z veliko

hitrostjo. Prispevek raziskuje optimizacijske tehnike za

upravljanje in obdelavo velikih količin podatkov na platformi

za porazdeljeno shranjevanje podatkov. Izvedena je bila

eksperimentalna postavitev z namenom optimizacije, ki

zagotavlja boljše delovanje pri izvajanju poizvedb pri velikih

količinah podatkov. Eksperimentalni rezultati kažejo, da je

možno učinkovito izboljšati optimizacijo, kar je prikazano na

veliki količini podatkov na določeni platformi.

1 INTRODUCTION

With each increase in the amount of data and with each

improvement of information systems in data collection

from distributed and diverse sources, the amount of

problems related to the quality of data also increases.

The information and data quality are the topics of

extensive and very active research both from the

perspective of information systems and databases. [1]

 Big data refers to large and complex data sets that

traditional systems are unable to process, manage, and

analyze in reasonable time frames. The big data concept

is characterized by three primary attributes known as 3V

[2], [3]:

• Volume: a large amount of data that can come from

different sources,

• Velocity: the high speed at which data is collected

from different devices, social networks, websites,

online transactions,

• Variety: different types of data that can be structured

(databases, spreadsheets), semi-structured (XML,

JSON files), and unstructured (text documents,

images, audio, video).

For the big data description, two more attributes are

added to the three above mentioned [3], [4]:

• Veracity: truthfulness, which refers to the quality

and reliability of data, which may include

incomplete and inconsistent data, which may present

challenges in analysis and decision-making,

• Value: the value of data is in its potential to provide

organizations with a competitive advantage, improve

decision-making, and drive innovation.

With big data technologies, the data also must be

managed and processed intelligently to efficiently

Received 1 April 2024

Accepted 9 October 2024

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 273

execute queries, and optimization needs to be done in

order to process the data quickly. There are many

optimization techniques that can be used, but the

specific configurations and optimizations that are

chosen need to be aligned with the use cases and data

processing requirements to get the best performances.

 The paper is structured into six chapters: Platform

(Chapter 2), Hive optimization techniques (Chapter 3),

Experimental setup (Chapter 4), Results (Chapter 5),

and Conclusion (Chapter 6).

2 PLATFORM

2.1 Hadoop

The technology most often associated with big data is

Hadoop [5]. Hadoop is an open-source framework of

the Apache Foundation that is used to store and process

large amounts of data [6]. Hadoop consists of four basic

components: Hadoop Common (a set of libraries and

configuration files that are required for the operation of

Hadoop itself), HDFS (Hadoop distributed file system

that is responsible for storing data in the cluster),

MapReduce (a data processing model), and YARN

(Hadoop operating system that is in charge of resource

allocation and job management) [7].

2.2 Cloudera

Cloudera Distribution for Hadoop (CDH) [8] is an open-

source distribution of the Cloudera platform that

includes Apache Hadoop. The platform is designed to

help organizations manage and analyze large amounts

of data, including structured and unstructured data, in a

distributed and scalable manner. CDH is a

comprehensive solution for storing, processing, and

analyzing large amounts of data, which extends the

capabilities of the core Hadoop ecosystem by

integrating additional tools and components, providing

management and monitoring tools, improving security,

and providing various services to help organizations

harness the power of big data in their operations.

 CDH includes an Apache Hive [9] data warehouse

designed to simplify querying and analysis of large data

sets stored in distributed storage systems, such as the

Hadoop Distributed File System (HDFS). Hive enables

users to work with large amounts of data using a

familiar SQL-like interface, making it accessible to a

large number of data professionals.

3 HIVE OPTIMIZATION TECHNIQUES

In order to improve the performance of Hive queries

and data processing, Hive optimization techniques are

used. Optimizing Hive queries is essential when dealing

with large data sets to reduce the query execution time

and resource usage. The paper discusses the most

commonly used Hive optimization techniques [10] -

[12]:

• Predicate pushdown [13] is a Hive optimization

technique used to improve the query performance by

having data filtering happen at the data source level

(e.g. HDFS) before the data is sent to Hive for

further processing. In this way, the amount of data

that needs to be read and processed is reduced,

unnecessary data is avoided, and data I/O is reduced,

which results in faster query execution. This

technique is enabled with the parameter

hive.optimize.ppd, which is set to true by

default.

• Vectorization significantly reduces the CPU load

and improves the query performance by processing

data in batches (vectors) rather than row by row.

Vectorization processing allows operators and

functions in Hive queries to operate on entire vectors

of data [14]. For example, instead of processing one

row at a time, a filter or aggregation can be applied

to a set of rows together. Vectorization can be

enabled by setting the
hive.vectorized.execution.enabled

parameters to true.

• Hive allows a table to be organized into multiple

partitions where the same types of data can be

grouped together. Partitioning [15] can improve the

performance and help organize data. When

querying, a specific partition of the table containing

the query value is accessed, thus reducing the I/O

time required to execute the query and increasing

execution speed. With static partitioning, the values

of the partitioned columns need to be manually

passed when loading data into the table. Dynamic

partitioning automatically creates partitions based on

the values in a specified column, allowing for more

flexible and scalable data storage. When creating a

Hive table, it is specified PARTITIONED BY part of

the command.

• Bucketing [15] is a Hive data organization technique

similar to partitioning with the added functionality

of dividing large data sets into smaller chunks. A

Hive table is divided into multiple Hive partitions,

and the Hive partition is further divided into clusters

or buckets that are easier to manage and maintain,

which is called clustering or bucketing. When

creating a Hive table, it is specified CLUSTERED BY

part of the command.

• Parallelism focuses on the parallel execution of tasks

within Hive query and data processing jobs [16].

Hive automatically parallelizes tasks for certain

types of joins (e.g. map join) and aggregation

operations, so it is necessary to ensure that queries

are structured to take advantage of the optimization.

Parallelism can be enabled by setting the

hive.exec.parallel parameters to true.

• Cost-based optimization (CBO) [11] is a technique

used for Hive optimization by evaluating the cost of

different query execution plans and choosing the

most efficient one. This optimization approach takes

274 NERIĆ, SARAJLIĆ, HADŽIĆ

statistics and data information into account and helps

Hive make more informed decisions about how to

execute queries. CBO can be enabled by setting the

parameter hive.cbo.enable to true.

• Statistics allow the query optimizer to make

decisions about query execution plans and reduce

the query execution time [17]. The ANALYZE TABLE

command is used to collect Hive table statistics,

gathering information about data distribution,

number of rows, and column statistics. For query

optimization, it is necessary to periodically update

the statistics of tables and columns to take into

account changes in the distribution and amount of

data.

• Skew join [10] occurs when one or more keys in a

join operation have a disproportionately large

amount of associated data, causing a few tasks to

process most of the data while other tasks are idle,

resulting in an uneven resource usage and slower the

query performance. Skew join can be enabled by

setting the hive.optimize.skewjoin parameters

to true. During execution, skew keys are detected,

and instead of being processed, they are temporarily

stored in the HDFS directory. In the next map-

reduce job, those skew keys are processed, so the

next map-reduce job will be much faster since it will

be a map join.

• In a traditional join operation, data from two or more

tables is mixed and sorted by a common key before

performing the join, which can be resource-intensive

and time-consuming, especially when dealing with

large data sets. With a map join [10], one of the

tables (smaller) is completely loaded into memory as

a hash table, and the other table (larger) is

transferred row by row or block by block through

mapper tasks. As each row from the larger table is

processed, Hive uses the shared join key to find a

match in the hash table that was created from the

smaller table. In this way, the need to mix and sort

data, as with a traditional join, is eliminated. Map

join can be enabled by setting the

hive.auto.convert.join parameters to true.

• Bucket map join [10] combines two optimization

techniques map join and bucketing, which can be

enabled by setting the

hive.optimize.bucketmapjoin parameters to

true. Sort merge bucket (SMB) join [10] is an

extension of sort merge join, which combines the

benefits of bucketing and sorting for even more

efficient merge operations. SMB join can be enabled

by setting the following parameters

hive.auto.convert.sortmerge.join and
hive.optimize.bucketmapjoin.sortedmerge

to true. Sort merge bucket map (SMBM) join [10]

is like an SMB join that only runs a map-side join

and can avoid caching all rows in memory like a

map join. SMBM can be enabled by setting the

parameter

hive.auto.convert.sortmerge.join.to.map

join to true.

• Compression [10] reduces the space required for the

data storage. When data is compressed, the storage

space is reduced, but I/O during query execution is

also reduced, resulting in a faster query

performance. Hive supports various compression

codecs, such as Snappy, Gzip, LZO, and others. The

Snappy codec is known for its balance between the

compression ratio and speed, making it a popular

choice for Hive tables. The compression codec can

be specified using the STORED AS part of the

command when creating or altering Hive tables.

4 EXPERIMENTAL SETUP

4.1 Data Sets

The worldwide recognized Transaction Processing

Performance Council Benchmark H (TPC-H) [18] is

used for the analysis. It enables performance testing for

data warehouse solutions. TPC-H consists of business-

oriented queries and databases selected to have a broad

industry relevance. TPC-H is a decision support system

that enables the analysis of large amounts of data, the

execution of queries with a high degree of complexity,

and the provision of answers to critical business

questions.

 In TPC-H, a scale factor (SF) is used to describe the

amount of data. For the analysis purposes, three

databases are created: TPCH_0_5, TPCH_1 and

TPCH_2. They contain different amounts of data with

scaling factors of 0.5, 1, and 2, respectively. Each

database contains the same tables with different

numbers of records according to the scaling factor

shown in Table 1. Different scaling factors are used for

the analysis in order to perform performance testing and

Hive optimization techniques on different amounts of

data.

Table 1. Amount of data for different scaling factors.

Table SF = 0.5 SF = 1 SF = 2

region 5 5 5

nation 25 25 25

supplier 5000 10000 20000

customer 75000 150000 300000

part 100000 200000 400000

partsupp 400000 800000 1600000

orders 750000 1500000 3000000

lineitem 2999671 6001215 11997996

4.2 Hive Configuration Parameters

For the analysis, in addition to the default combination

of Hive configuration parameters (P1) that have set

values after Cloudera platform installation, various Hive

optimization techniques are used by adjusting additional

parameters through combinations (P2–P10) in order to

perform a comparison and determine their impact on

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 275

execution time prompts versus the default settings. The

Hive configuration parameters begin with "hive." and

define properties of the Hive system. There is a large

number of Hive configuration parameters. After a long

analysis and measurement of the impact of various

configuration parameters, individually and in

combination with others, in addition to the default P1

(Table 2), those cases that stand out according to their

results are presented in Table 3 (P2-P9) and Table 4

(P10).

Table 2. P1 default values of the analyzed Hive configuration

parameters.

Optimization

technique

Parameter Value

P1

Execution

Engine

hive.execution.engine mr

Predicate

Pushdown

hive.optimize.ppd true

 hive.optimize.ppd.storage true

 hive.ppd.remove.duplicatefilters true

 hive.ppd.recognizetransivity true

Vectorization hive.vectorized.execution.enabled true

 hive.vectorized.execution.reduce.
enabled

true

 hive.vectorized.execution.reduce.

groupby.enabled

true

Dynamic
Partitioning

hive.exec.dynamic.partition true

 hive.exec.dynamic.partition.mode strict

 hive.exec.max.dynamic.partitions 1000

 hive.exec.max.dynamic.partitions

.pernode

100

Indexing hive.optimize.index.filter true

 hive.index.compact.binary.search true

Paralelism hive.exec.parallel false

 hive.exec.parallel.thread.number 8

Cost-based
Optimization

hive.cbo.enable false

Statistics hive.stats.autogather true

 hive.compute.query.using.stats false

 hive.stats.fetch.column.stats true

 hive.stats.fetch.partition.stats true

Skew Join hive.optimize.skewjoin false

 hive.skewjoin.key 100000

 hive.skewjoin.mapjoin.map.tasks 10000

 hive.skewjoin.mapjoin.min.split 33554432

Map Join hive.auto.convert.join true

 hive.auto.convert.join.
noconditionaltask

true

 hive.auto.convert.join.

noconditionaltask.size

20971520

 hive.mapjoin.smalltable.filesize 25000000

Bucket Map

Join

hive.optimize.bucketmapjoin false

Sort merge

bucket join

hive.auto.convert.sortmerge.join false

 hive.optimize.bucketmapjoin.

sortedmerge

false

Sort merge
bucket map

join

hive.auto.convert.sortmerge.join.
to.mapjoin

false

Compression mapred.compress.map.output true

 mapred.output.compress false

 hive.exec.compress.output false

 hive.exec.compress.intermediate false

Table 3. P2 – P9 combinations of Hive configuration

parameters.

Optimization

technique

Parameter Value

P2

Paralelism hive.exec.parallel true

 hive.exec.parallel.thread.number 16

P3

Cost-based

Optimization

hive.cbo.enable true

P4

Cost-based

Optimization

hive.cbo.enable true

Statistics hive.stats.autogather true

 hive.compute.query.using.stats true

 hive.stats.fetch.column.stats true

 hive.stats.fetch.partition.stats true

P5

Paralelism hive.exec.parallel true

 hive.exec.parallel.thread.number 16

Cost-based

Optimization

hive.cbo.enable true

Statistics hive.stats.autogather true

 hive.compute.query.using.stats true

 hive.stats.fetch.column.stats true

 hive.stats.fetch.partition.stats true

P6

Cost-based

Optimization

hive.cbo.enable true

Statistics hive.stats.autogather true

 hive.compute.query.using.stats true

 hive.stats.fetch.column.stats true

 hive.stats.fetch.partition.stats true

 ANALYZE TABLE tablename

COMPUTE STATISTICS

P7

Skew Join hive.optimize.skewjoin true

 hive.skewjoin.key 100000

 hive.skewjoin.mapjoin.map.tasks 10000

 hive.skewjoin.mapjoin.min.split 33554432

P8

Map Join hive.auto.convert.join true

 hive.auto.convert.join.

noconditionaltask

true

 hive.auto.convert.join.
noconditionaltask.size

20971520

 hive.mapjoin.smalltable.filesize 25000000

Bucket Map

Join

hive.optimize.bucketmapjoin true

Sort merge

bucket join

hive.auto.convert.sortmerge.join true

 hive.optimize.bucketmapjoin.

sortedmerge

true

Sort merge

bucket map

join

hive.auto.convert.sortmerge.join.

to.mapjoin

true

P9

Compression mapred.compress.map.output true

 mapred.output.compress true

 hive.exec.compress.output true

 hive.exec.compress.intermediate true

276 NERIĆ, SARAJLIĆ, HADŽIĆ

Table 4. P10 combination of Hive configuration parameters.

Optimization

technique

Parameter Value

P10

Multiple

Paralelism hive.exec.parallel true

 hive.exec.parallel.thread.number 16

Cost-based
Optimization

hive.cbo.enable true

Statistics hive.stats.autogather true

 hive.compute.query.using.stats true

 hive.stats.fetch.column.stats true

 hive.stats.fetch.partition.stats true

Skew Join hive.optimize.skewjoin true

 hive.skewjoin.key 100000

 hive.skewjoin.mapjoin.map.tasks 10000

 hive.skewjoin.mapjoin.min.split 33554432

Map Join hive.auto.convert.join true

 hive.auto.convert.join.
noconditionaltask

true

 hive.auto.convert.join.

noconditionaltask.size

20971520

 hive.mapjoin.smalltable.filesize 25000000

Bucket Map

Join

hive.optimize.bucketmapjoin true

Sort merge
bucket join

hive.auto.convert.sortmerge.join true

 hive.optimize.bucketmapjoin.

sortedmerge

true

Sort merge
bucket map

join

hive.auto.convert.sortmerge.join.
to.mapjoin

true

Compression mapred.compress.map.output true

 mapred.output.compress true

 hive.exec.compress.output true

 hive.exec.compress.intermediate true

5 RESULTS

5.1 Experimental results

For the analysis, ten different combinations of the

parameters (P) are used, for which the time, expressed

in seconds, during the execution of the queries (Q) is

measured. The results are presented in tables for

different databases that contain data according to

scaling factors of 0.5, 1, and 2. Table 5 contains the

query execution time for database TPCH_0_5, Table 6

for TPCH_1, and Table 7 for TPCH_2. When creating

the databases, the TEXTFILE format is used for tables.

 The same hardware and configuration are used for all

tests. On a laptop with an Intel Core i5 processor and

32GB of RAM, a VMware Workstation virtual machine

is used, on which the CDH 6.3.2 version of the

Cloudera platform is installed with all the necessary

components for the distributed storage of large amounts

of data, their processing, and their analysis. For the

analysis, the TPC-H queries are used. They are designed

to analyze the functionality of the system and have a

realistic context. A set of ten representative TPC-H [18]

queries (Q1, Q4, Q6, Q11, Q12, Q13, Q15, Q16, Q20,

and Q22) is selected so that combinations of simple and

complex queries are included.

 Before any changes to the platform, all the selected

queries are run with the default Hive configuration

parameters, and the execution time is recorded for all

three databases, i.e., three different amounts of data.

The execution time in seconds for the default

configuration is shown in column P1 (Tables 5, 6, 7).

Experimentation is then performed with various Hive

configuration parameters and the application of some of

the Hive optimization techniques, such as parallelism,

cost-based optimization, statistics, join optimization,

and compression. Hive allows setting hundreds of

different parameters, and some of the most commonly

used ones are used for the analysis purposes.

Configuration changes are made systematically by

changing one set of parameters related to a specific

optimization technique or more, while other parameters

are kept constant. The same set of queries is run with

the parameters changed and the query execution time

recorded in columns P2–P10 (Tables 5, 6, 7).

5.2 Analysis of the result

Based on the measured query execution times in

seconds (Tables 5, 6, 7), which are run on databases

TPCH_0_5, TPCH_1 and TPCH_2 for different

combinations of Hive configuration parameters (Tables

3, 4), Tables 8, 9, 10 are created, in which the

percentage difference in query execution time for

combinations P2–P10 compared to the default setting of

parameters P1 (Table 2) is calculated. The tables

represent an important part of the analysis regarding the

optimization of the Hive performance, and based on

these results, the effect and impact of certain

optimization techniques and the configuration

parameters on the results can be seen.

 Table 5. TPCH_0_5 (sec).

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Q1 184 152 150 143 137 148 134 158 158 160

Q4 194 191 206 212 198 214 192 191 205 243

Q6 65 64 64 62 58 65 59 57 65 63

Q11 268 259 271 285 253 261 259 259 236 252

Q12 213 238 208 206 202 213 208 209 191 230

Q13 186 192 197 189 196 202 188 188 184 205

Q15 373 406 345 369 364 353 355 372 370 423

Q16 289 260 280 282 250 281 257 267 252 399

Q20 397 368 379 361 330 384 376 372 373 348

Q22 248 241 250 249 239 251 231 232 249 263

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 277

 Table 6. TPCH_1 (sec).

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Q1 231 225 207 217 206 211 229 219 225 243

Q4 311 300 327 300 274 319 264 267 270 292

Q6 78 74 75 74 74 75 76 74 81 76

Q11 301 272 280 278 270 280 260 273 262 275

Q12 273 300 298 297 265 295 276 274 278 306

Q13 231 236 221 233 219 224 208 198 221 231

Q15 504 587 480 516 514 479 494 505 520 570

Q16 289 271 283 289 265 301 301 300 267 293

Q20 498 421 470 482 444 460 449 476 456 495

Q22 271 250 263 269 271 263 242 262 274 273

 Table 7. TPCH_2 (sec).

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Q1 368 346 338 354 326 336 340 347 354 364

Q4 447 417 470 483 439 462 478 420 435 474

Q6 119 105 105 111 106 102 119 111 112 111

Q11 312 271 317 312 284 306 300 309 306 315

Q12 448 485 450 456 446 449 468 437 450 483

Q13 249 242 258 241 266 247 251 262 247 274

Q15 807 884 749 771 792 745 743 753 745 917

Q16 354 326 335 333 337 339 338 316 326 613

Q20 672 689 698 732 742 679 642 652 664 835

Q22 315 283 313 305 306 304 294 297 300 335

 Table 8. TPCH_0_5 (%).

 P2% P3% P4% P5% P6% P7% P8% P9% P10%

Q1 -17,39 -18,48 -22,28 -25,54 -19,57 -27,17 -14,13 -14,13 -13,04

Q4 -1,55 6,19 9,28 2,06 10,31 -1,03 -1,55 5,67 25,26

Q6 -1,54 -1,54 -4,62 -10,77 0,00 -9,23 -12,31 0,00 -3,08

Q11 -3,36 1,12 6,34 -5,60 -2,61 -3,36 -3,36 -11,94 -5,97

Q12 11,74 -2,35 -3,29 -5,16 0,00 -2,35 -1,88 -10,33 7,98

Q13 3,23 5,91 1,61 5,38 8,60 1,08 1,08 -1,08 10,22

Q15 8,85 -7,51 -1,07 -2,41 -5,36 -4,83 -0,27 -0,80 13,40

Q16 -10,03 -3,11 -2,42 -13,49 -2,77 -11,07 -7,61 -12,80 38,06

Q20 -7,30 -4,53 -9,07 -16,88 -3,27 -5,29 -6,30 -6,05 -12,34

Q22 -2,82 0,81 0,40 -3,63 1,21 -6,85 -6,45 0,40 6,05

 Table 9. TPCH_1 (%).

 P2% P3% P4% P5% P6% P7% P8% P9% P10%

Q1 -2,60 -10,39 -6,06 -10,82 -8,66 -0,87 -5,19 -2,60 5,19

Q4 -3,54 5,14 -3,54 -11,90 2,57 -15,11 -14,15 -13,18 -6,11

Q6 -5,13 -3,85 -5,13 -5,13 -3,85 -2,56 -5,13 3,85 -2,56

Q11 -9,63 -6,98 -7,64 -10,30 -6,98 -13,62 -9,30 -12,96 -8,64

Q12 9,89 9,16 8,79 -2,93 8,06 1,10 0,37 1,83 12,09

Q13 2,16 -4,33 0,87 -5,19 -3,03 -9,96 -14,29 -4,33 0,00

Q15 16,47 -4,76 2,38 1,98 -4,96 -1,98 0,20 3,17 13,10

Q16 -6,23 -2,08 0,00 -8,30 4,15 4,15 3,81 -7,61 1,38

Q20 -15,46 -5,62 -3,21 -10,84 -7,63 -9,84 -4,42 -8,43 -0,60

Q22 -7,75 -2,95 -0,74 0,00 -2,95 -10,70 -3,32 1,11 0,74

 Table 10. TPCH_2 (%).

 P2% P3% P4% P5% P6% P7% P8% P9% P10%

Q1 -5,98 -8,15 -3,80 -11,41 -8,70 -7,61 -5,71 -3,80 -1,09

Q4 -6,71 5,15 8,05 -1,79 3,36 6,94 -6,04 -2,68 6,04

Q6 -11,76 -11,76 -6,72 -10,92 -14,29 0,00 -6,72 -5,88 -6,72

Q11 -13,14 1,60 0,00 -8,97 -1,92 -3,85 -0,96 -1,92 0,96

Q12 8,26 0,45 1,79 -0,45 0,22 4,46 -2,46 0,45 7,81

Q13 -2,81 3,61 -3,21 6,83 -0,80 0,80 5,22 -0,80 10,04

Q15 9,54 -7,19 -4,46 -1,86 -7,68 -7,93 -6,69 -7,68 13,63

Q16 -7,91 -5,37 -5,93 -4,80 -4,24 -4,52 -10,73 -7,91 73,16

Q20 2,53 3,87 8,93 10,42 1,04 -4,46 -2,98 -1,19 24,26

Q22 -10,16 -0,63 -3,17 -2,86 -3,49 -6,67 -5,71 -4,76 6,35

278 NERIĆ, SARAJLIĆ, HADŽIĆ

 A negative percentage difference indicates a decrease

in the execution time, which means that the optimized

configuration is faster. A positive percentage difference

suggests an increase in the query execution time with

the optimized configuration, which is not desirable. A

percentage difference close to 0% means there is a little

or no change in the run time. A reduction in the Hive

query execution time of 10% or more can be considered

a significant improvement in the query performance.

 The testing is performed with multiple queries on

different amounts of data for different combinations of

configuration parameters, so after displaying the

percentage differences in the tables for three different

databases for all combinations, the percentage

differences are extracted for each combination of the

parameters (P2-P10). For a better presentation and

clarity of the results, their visualization is performed

with a graphic representation in Figures 1 - 9. Based on

the separated results in graphical displays, a more

detailed analysis of the results and a better overview of

the impact of each individual optimized configuration

can be performed for each query and different

databases.

 Figures 1 - 9 provide a graphical representation of the

percentage difference in the query execution time for

the combinations (P2-P10) of configuration parameters

compared to the default settings of P1 parameters for

selected queries and different databases.

Figure 1. Parameters P2 (%).

 The P2 combination (Figure 1) indicates the

application of the optimization technique called

parallelism. In Figure 1 with the P2 results, it can be

noticed that parallelism is more efficient for larger data

sets. For queries Q4, Q6, Q11, and Q22, the bigger

negative percentage difference is presented for larger

amounts of data in the TPCH_2 database in comparison

to smaller amounts of data in the TPCH_0_5 and

TPCH_1 databases. When dealing with a large data set

that cannot fit in the memory, parallel processing can

help by distributing the workload across multiple nodes.

For smaller data sets that can fit in the memory, the

overhead of matching parallel tasks can slow the

execution, so in such cases, sequential processing is

more efficient. The efficiency of parallelism also

depends on the queries themselves. Some queries are

sequential in nature and cannot be easily parallelized,

and for such queries, this optimization technique will

not provide significant improvements. For queries Q12

and Q15, the percentage difference is positive, so for

these queries that contain aggregation, filtering,

grouping, sorting, and joining with the largest table,

parallelism gives worse results in comparison to default

settings. If Hive queries are not optimized or have

inefficient SQL logic, adding parallelism will not help

either. But, for Q1, Q6, Q11, and Q20, significant

improvements are obvious where the percentage

difference is negative and higher than 10%. Queries

involving multiple joins, subqueries, or complex

transformations like Q11, Q16, Q20, and Q22 benefit

from parallelism. Parallel execution allows these

complex operations to be divided into smaller tasks that

can be executed simultaneously.

Figure 2. Parameters P3 (%).

 The P3 combination (Figure 2) indicates the

application of the optimization technique CBO (cost-

based optimization). CBO can analyze alternative query

execution plans and select a plan that minimizes

resource usage and execution time. Based on the P3

results in Figure 2, CBO gives the best improvements

for simple one-table queries without joins like Q1 and

Q6, and it is also useful for complex queries with

multiple joins, subqueries, and aggregations like Q15,

Q16, and Q20. Queries with complex data filtering

conditions can benefit from CBO ability to evaluate the

filter selectivity and choose the most efficient order of

operations.

-20%

-10%

0%

10%

20%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P2

P2% TPCH_0_5 P2% TPCH_1 P2% TPCH_2

-20%

-10%

0%

10%

20%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P3

P3% TPCH_0_5 P3% TPCH_1 P3% TPCH_2

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 279

Figure 3. Parameters P4 (%).

 The P4 combination (Figure 3) means the application

of optimization techniques CBO and statistics. CBO

relies on accurate statistics about tables and columns.

When comprehensive statistics are available and up-to-

date, CBO can make better decisions about query

execution plans. Based on the P4 results in Figure 3, for

some analyzed queries, the percentage difference is

positive, and for some queries, it is negative, and the

improvement also varies with different amounts of data.

A significant improvement that is higher than 20% is

obtained only for simple query Q1 with small amounts

of data in the TPCH_0_5 database. So, the P4

combination can give small improvements that are less

than 10% for some cases, like queries Q1, Q6, where

select from only one table without joins is used.

Figure 4. Parameters P5 (%).

 The P5 combination (Figure 4) means the application

of multiple optimization techniques, including

parallelism, CBO, and statistics. In some cases, custom

optimizations can be more efficient than relying only on

one or two techniques, as shown by the P5 combination

of several techniques, which gives better results

compared to the combinations when parallelism (P2),

CBO (P3), CBO and statistics (P4, P6) are used. This P5

combination enables improvements for almost all the

analyzed queries and all three data sets, with the

obvious negative percentage difference in Figure 4,

which means a faster execution in comparison to default

settings. So, the P5 combination can be recommended

as efficient for different queries and amounts of data,

with a decrease in the execution time and optimization

improvement for most cases.

Figure 5. Parameters P6 (%).

 The P6 combination (Figure 5) indicates the

application of optimization techniques CBO and

statistics with the ANALYZE TABLE commands to

calculate statistics for each table. In order to achieve a

better query performance using the CBO optimization

technique, it is necessary to enable the collection of

statistics for the Hive tables, which can be set at the

database level or at the table level. In addition to the

automatic collection of statistics, which at the database

level is used for combinations of P4 and P5 with the

hive.stats.autogather parameter, statistics can be

manually collected for tables using the ANALYZE

TABLE command. For the combination of configuration

parameters P6, statistics are manually calculated for all

tables from the databases TPCH_0_5, TPCH_1, and

TPCH_2. The P6 combination gives similar results as

the P4 combination. In Figure 5, significant

improvements are visible only for simple one-table

queries without joins Q1 and Q6, so this combination

can be proposed for similar queries and smaller amounts

of data.

Figure 6. Parameters P7 (%).

-30%

-20%

-10%

0%

10%

20%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P4

P4% TPCH_0_5 P4% TPCH_1 P4% TPCH_2

-30%

-20%

-10%

0%

10%

20%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P5

P5% TPCH_0_5 P5% TPCH_1 P5% TPCH_2

-30%

-20%

-10%

0%

10%

20%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P6

P6% TPCH_0_5 P6% TPCH_1 P6% TPCH_2

-30%

-20%

-10%

0%

10%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P7

P7% TPCH_0_5 P7% TPCH_1 P7% TPCH_2

280 NERIĆ, SARAJLIĆ, HADŽIĆ

Figure 7. Parameters P8 (%).

 The P7 combination (Figure 6) indicates the

application of the skew join, and the P8 combination

(Figure 7) indicates the application of the map join

optimization technique. Skew join is designed to handle

situations where there is skew data in the join keys. A

map join is most efficient when one or more tables

involved in the join operation are small enough to fit

entirely in the memory. In such cases, loading a small

table into the memory eliminates the need for expensive

disk I/O operations, resulting in a faster query

execution. The map join can also be useful when

combined with other optimization techniques such as

bucketing and sorting. Within the P8 combination, in

addition to the configuration parameters for the map

join, parameters for the bucket map join, sort merge

bucket join, and sort merge bucket map join are also

used. Unlike the previously mentioned combinations of

optimization techniques that give improvements only in

some cases, the P7 and P8 combinations give excellent

performance improvements in almost all cases. Based

on the P7 and P8 results in Figures 6 and 7, it is obvious

that notable improvements with a negative percentage

difference are obtained for most analyzed queries and

amounts of data.

Figure 8. Parameters P9 (%).

 The P9 combination (Figure 8) indicates the

application of compression optimization technique.

Compression can significantly improve the query

performance by reducing the amount of data that needs

to be read and transferred from the storage to the

memory, especially when I/O is a bottleneck. Based on

the P9 results in Figure 8, it can be seen that

compression is effective for most analyzed queries and

amounts of data. For some queries, like Q1, Q4, Q11,

and Q16, the improvement is above 10% with a

negative percentage difference. If the storage space is an

issue, compression can help reduce the data storage

footprint, potentially lowering the storage costs. For

small data sets that easily fit in the memory, the benefits

of compression may be minimal, and in such cases, the

overhead of compression and decompression may

outweigh the performance gains. For queries Q6, Q15,

and Q22, the results are worse for smaller amounts of

data in the databases TPCH_0_5 and TPCH_1, while

the improvements with a negative percentage difference

are obtained with a larger amount of data in the database

TPCH_2. So, the compression efficiency depends on the

amount of data and also on query complexity.

Figure 9. Parameters P10 (%).

 The P10 combination (Figure 9) means the

application of several optimization techniques:

parallelism, CBO, statistics, skew join, map join, and

compression. Based on this combination, which

includes multiple optimization techniques at the same

time, poor performance can be noticed in Figure 9. It is

obvious that, in most cases, with the analyzed queries

and amounts of data, a positive percentage difference is

obtained, which means a slower execution in

comparison to default settings, which is not desirable. It

can be concluded that using a larger number of

techniques is not a guarantee that the desired

improvement will be obtained because there is a large

number of impacting factors, such as the nature of the

data, the specificity and complexity of the query, the

hardware configuration, and the available resources.

5.3 Correlation

Based on the results in Tables 8, 9, 10, Figures 10, 11,

12 are created. They contain a visual representation of

the calculated vertical correlation coefficients (all

-20%

-15%

-10%

-5%

0%

5%

10%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P8

P8% TPCH_0_5 P8% TPCH_1 P8% TPCH_2

-20%

-15%

-10%

-5%

0%

5%

10%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P9

P9% TPCH_0_5 P9% TPCH_1 P9% TPCH_2

-20%

0%

20%

40%

60%

80%

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

P10

P10% TPCH_0_5 P10% TPCH_1 P10% TPCH_2

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 281

queries per one database) for the considered

combinations of configuration parameters P2-P10 with

the percentage differences in the query execution time

compared to the default settings of P1. The results of the

vertical correlation are obtained by dividing the results

from Tables 8, 9, 10 with the best result for the

observed combination of parameters P vertically for all

queries. These results are shown for all queries by

database: Figure 10 for TPCH_0_5, Figure 11 for

TPCH_1, and Figure 12 for TPCH_2. Based on the

correlation coefficients that are in the interval [-1, -0.5],

it can be noticed that the best improvements are for the

TPCH_0_5 database with combinations P5, P8, and P9;

for the TPCH_1 database with combinations P5, P6, P7,

and P9; and for the TPCH_2 database with

combinations P2, P7, P8, and P9. Based on the

correlation, it is shown that a strong negative correlation

(close to -1.0) and optimization improvements can be

achieved better with larger data sets. In most cases,

combinations P5 (paralelism, CBO, statistics), P7 and

P8 (join optimizations), and P9 (compression) give the

best results in query performance improvements.

Figure 10. Vertical Correlation r(0.5).

Figure 11. Vertical Correlation r(1).

Figure 12. Vertical Correlation r(2).

-1,0

-0,5

0,0

0,5

1,0

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

TPCH_0_5

P2 P3 P4 P5 P6 P7 P8 P9 P10

-1,0

-0,5

0,0

0,5

1,0

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

TPCH_1

P2 P3 P4 P5 P6 P7 P8 P9 P10

-1,0

-0,5

0,0

0,5

1,0

Q1 Q4 Q6 Q11 Q12 Q13 Q15 Q16 Q20 Q22

TPCH_2

P2 P3 P4 P5 P6 P7 P8 P9 P10

282 NERIĆ, SARAJLIĆ, HADŽIĆ

6 CONCLUSION

Based on the experimental setup and testing of various

Hive optimization techniques, it can be observed that

their adequate application and optimization of

configuration parameters can significantly improve the

performance and reduce query execution time.

Generally, a combination of parameters gives some

degree of improvement and reduces the average query

execution time compared to the default Hive

configuration. The actual percent difference in the

improvement may vary depending on various factors,

such as the complexity and specificity of the query,

characteristics and amount of data, adequate application,

and choice of optimization techniques.

 On the basis of the results analysis, it can be

concluded that some optimization techniques used

individually can give improvements only for some

cases, like simple queries or small amounts of data,

while a well-chosen combination of optimization

techniques and configuration parameters can give

improvements for most cases, different queries and

amounts of data, like combinations P5 (parallelism,

CBO, and statistics), P7 and P8 (join optimizations).

But implementing multiple optimization techniques can

introduce complexity into the Hive environment,

leading to resource competition and increased load, as

can be noticed with the P10 combination (parallelism,

CBO, statistics, skew join, map join, and compression)

that gives bad results in most cases.

 Improving the optimization of the management and

processing of large amounts of data on a distributed

storage platform can be achieved through a combination

of best practices, configuration adjustments, and

leveraging the capabilities provided by the platform.

Considering the fact that there is no ideal combination

of the configuration parameters that would give the best

results in terms of the performance for all possible

queries and data, in order to achieve the best effect, it is

necessary to adapt the configuration to specific use

cases. This can be achieved by experimenting with

different settings to arrive at an optimal configuration

for the case at hand. Since the effectiveness of

optimization strategies varies by use case and data set, it

is essential to perform benchmarking, testing, and

profiling to identify areas for improvement and adjust

optimization accordingly.

 On a concrete platform for a distributed data storage,

CDH (Cloudera Distribution for Hadoop), it is shown

how, for different amounts of data and the nature of

queries, analysis, testing, and profiling of configuration

parameters can be performed in order to obtain an

adequate improvement in terms of the management and

processing of large amounts of data. By carefully

configuring the Hive parameters and using appropriate

Hive optimization techniques, the query efficiency and

performance improvement with a reduced query

execution time can be achieved.

REFERENCES

[1] Đ. Hadžić, N. Sarajlić, “Methodology for Fuzzy Duplicate Record

Identification Based on the Semantic-Syntactic Information of

Similarity”, Journal of King Saud University – Computer and

Information Sciences, 2018., doi: 10.1016/j.jksuci.2018.05.001

[2] A. K. Bhadani, D. Jothimani, “Big Data: Challenges,

Opportunities, and Realities”, chapter in an edited volume
Effective Big Data Management and Opportunities for

Implementation, 2016.

[3] R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, R.
Buyya, “The Anatomy of Big Data Computing”, Wiley Online

Library, 2015.

[4] V. Nerić, T. Konjić, N. Sarajlić, N. Hodžić, “A Survey on Big
Data in Medical and Healthcare with a Review of the State in

Bosnia and Herzegovina”, Advanced Technologies, Systems, and

Applications III, Proceedings of the International Symposium on
Innovative and Interdisciplinary Applications of Advanced

Technologies (IAT), vol. 2, Springer, pp. 494-508, 2019.

[5] A. Y. Zomaya, S. Sakr, “Handbook of Big Data Technologies”,

Springer, 2017.

[6] R. Jhajj, “Apache Hadoop Cookbook”, Exelixis Media P. C.,

2016.

[7] T. White, “Hadoop: The Definitive Guide”, O’Reilly, 2015.

[8] Cloudera Inc., “Apache Hive Guide”, 2021.

[9] H. Bansal, S. Chauhan, S. Mehrotra, “Apache Hive Cookbook”,

Packt Publishing, 2016.

[10] V. Nerić, N. Sarajlić, “A Review on Big Data Optimization

Techniques”, B&H Electrical Engineering, vol. 14, pp. 13-18,

2020.

[11] V. Nerić, N. Sarajlić, “Big Data Optimizatization Using Hive”,

Elektrotehniški Vestnik, 88(5), pp. 290-298, 2021.

[12] S. Bagui, K. Devulapalli, “Comparison of Hive’s Query

Optimisation Techniques”, Int. J. Big Data Intelligence, 2018.

[13] Q. Liu, H. Hong, H. Zhu, H. Fan, “Research and Comparison of
SQL Optimization Techniques Based on MapReduce”,

International Conference on Computer Science and Application

Engineering (CSAE), 2017.

[14] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson et

al., “Major Technical Advancements in Apache Hive”, SIGMOD,

2014.

[15] E. Costa, C. Costa, M. Y. Santos, “Evaluating Partitioning and

Bucketing Strategies for Hive-based Big Data Warehousing

Systems”, Journal of Big Data, no. 34, 2019.

[16] A. Barman, D. Paranjpe, “Improving the Performance of Hive by

Parallel Processing of Massive Data”, International Journal of
Recent Development in Engineering and Technology (IJRDT),

vol. 7, issue 4, 2018.

[17] A. Gruenheid, E. Omiecinski, L. Mark, “Query Optimization

Using Column Statistics in Hive”, IDEAS11, 2011.

[18] “TPC Benchmark H Standard Specification Revision 3.0.1.”,

Transaction Processing Performance Council, 1993-2022.

Vedrana Nerić graduated in 2006 and received her M.Sc.

degree in 2013 from the Faculty of Electrical Engineering of

the University of Tuzla, Bosnia and Herzegovina. During her

studies, she was presented three Silver and a Gold Medal by

the same university. Currently, she is a Ph.D. student. She is

employed with Virgin Pulse, Tuzla, as a senior data engineer.

In 2014, she was nominated to a teaching assistant in the field

of Computer and Information Science at the same faculty.

https://doi.org/10.1016/j.jksuci.2018.05.001

OPTIMIZATION OF MANAGEMENT AND PROCESSING OF BIG DATA ON A PLATFORM FOR DISTRIBUTED DATA STORAGE 283

Nermin Sarajlić graduated in 1987 and received his M.Sc.

degree in 1997 from the Faculty of Electrical Engineering and

Faculty of Electrical Engineering and Mechanical

Engineering, respectively, and his Ph.D. degree in 2002 from

the Faculty of Electrical Engineering of the University of

Tuzla, Bosnia and Herzegovina. His field of interest is the

calculation of the coupled electromagnetic-temperature fields,

cryptography, and crypto analysis.

Đulaga Hadžić graduated from the Faculty of Electrical

Engineering of the University of Sarajevo in 1997. He

obtained his M.Sc. degree in technical sciences in 2010 from

the Faculty of Electrical Engineering of the University of

Tuzla, where he received his Ph.D. degree in 2018. He is

currently employed as a professor at the Department of

Software Engineering at the Polytechnic Faculty of the

University of Zenica, Bosnia and Herzegovina. His fields of

interest are: web programming, user interfaces, data quality,

data mining and cloud computing.

