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Abstract. The paper describes an algorithm to optimize fifth-order polynomial interpolation two-parameter
(2P) kernel r in the time-domain. The optimization criterion is the minimization of interpolation error e. The
result of the optimization is kernel rtopt,2P , with the optimal value of kernel parameters (αopt = 98/2707,
βopt = −113/8934). An experiment is made to determinate the interpolation precision when using the rtopt,2P
kernel in relation to fifth-order kernels 1P (rfopt,1P ) and 2P (rfopt,2P ) which are optimized in the spectral-domain.
The mean-square error is used as a measure of the interpolation precision. A comparative analysis of the
results shows that the interpolation precision, when interpolating with the 2P kernel is by 1.0542 and 1.0133
times higher than the interpolation precision when using the 1P and 2P kernels, respectively. The interpolation
execution time with the 2P kernel being texe = 9.2341 · 10−8 s, the optimized 2P fifth-order kernel can be
recommended for the implementation in a real-time system.
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Optimizacija polinomskega jedra interpolacije petega
reda 2P v časovni domeni

Prispevek opisuje algoritem za optimizacijo jedra r polinomske
interpolacije petega reda z dvema parametroma (2P) v časovni
domeni. Optimizacijski kriterij je bila minimizacija interpo-
lacijske napake e. Rezultat optimizacije je jedro rtopt,2P z
optimalno vrednostjo parametrov jedra (αopt = 98/2707,
βopt = −113/8934). Izvedli smo eksperiment, katerega
namen je bil določiti natančnost interpolacije pri uporabi
jedra rtopt,2P glede na jedro petega reda 1P (rfopt,1P ) in 2P
(rfopt,2P ), ki sta optimizirana v spektralni domeni. Kot merilo
natančnosti interpolacije je bila uporabljena srednja kvadratna
napaka (MSE). Primerjalna analiza rezultatov je pokazala,
da je natančnost interpolacije pri interpolaciji z jedrom 2P,
ki je optimizirano v spektralni domeni, večja od natančnosti
interpolacije pri uporabi jeder 1P in 2P, in sicer 1,0542 oziroma
1,0133-krat. Glede na to, da je čas izvajanja interpolacije z
jedrom 2P texe = 9.2341·10−8 s, je optimizirano jedro petega
reda 2P priporočljivo za implementacijo v sistemu realnega
časa.
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1 INTRODUCTION

The interpolation is a very important task in the digital
signal processing [1]. For example, in the digital speech
processing, the resampling and estimation of the funda-
mental frequency and the speaker’s emotional and health
state, etc. are performed [2]. In the field of the musical
signal processing, in addition to the filtering, extraction
and transcription of the solo and bass lines, recognition
of chords and their transcription [3], evaluation of the
parameters of the played tone (intonation, vibrato rate,
vibrato extend), etc. are carried out [4]. In the digital
image processing, spatial transformations (resampling,
image dimension change, rotation, geometric deforma-
tion, etc.) are often performed [5], [6], [7]. To realize
the spatial transformations, it is necessary to determine
the pixels whose location is outside the grid [8], [9],
[10]. These are just some of the examples where it
is necessary to apply the numerical method, known as
interpolation [11], [12].

For the interpolation purposes, it is possible to use
the well-known numerical interpolation formulea (La-
grangian, Newtonian, Gaussian, Stirling, Bessel, Cheby-
shev,...) [13]. However, it is necessary to use in that
case a large number of samples, which leads to a large
order of the interpolation function. As a result, the
numerical complexity increases, which results in a long
interpolation execution time. Algorithms that have a long
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execution time are not suitable for the implementation
in real-time systems.

In order to reduce the interpolation execution time,
the convolution interpolation is intensively applied. In
the convolution interpolation, convolution is performed
between the discrete signal and the interpolation kernel.
The ideal interpolation kernel is function sin(x)/x,
which is symbolically denoted as sinc. The sinc ker-
nel is defined on interval (−∞,+∞), and its spectral
characteristic is rectangular, that is, a box function. The
properties of the box spectral characteristic are: a) in
the pass-band, it is flat and equal to one, b) in the
stop-band, it is flat and equal to zero, and c) with an
ideal slope in the transition area [14]. However, due
to its infinite length (L → ∞), the sinc kernel cannot
be realized [15]. A simple solution is a truncate sinc
kernel, and thus, the length of kernel L becomes finite.
Truncating of the kernel is performed using a rectan-
gular window of length L. This process is known as
a windowization. In this way, an interpolation kernel of
length L is formed. Therefore, the spectral characteristic
of the truncated sincw kernel is distinguished from the
spectral box characteristic (the spectral characteristic has
a ripple in the pass-band and the stop-band, as well as
a finite slope in the transition range). The consequence
of the interpolation with a sincw kernel is a decrease
in the interpolation precision. In order to increase the
interpolation precision, an intensive work is being done
on the creation of interpolation kernel r, length L,
which should have the spectral characteristic that closely
approximates the spectral box function. Interpolation
kernel r should be the simplest, that is, it should be
created from a relatively simple mathematical function,
in order to reduce the interpolation execution time.
Today, the interpolation convolution kernels that are
created from the low degree polynomials (n ≤ 7) are
very current [16].

A large number of the polynomial kernels have been
proposed in the scientific literature [17]. Numerically the
simplest one is the polynomial zeroth-order kernel. The
interpolation is performed by rounding to the nearest-
neighbour sample [15], [18]. Besides, the high execution
speed, the interpolation with this kernel leads to the
appearance of large interpolation error e. A linear, poly-
nomial first-order interpolation kernel is described in
[19], [20]. A cubic polynomial third-order interpolation
kernel is described in [16]. The convolution interpolation
which uses the third-order kernel is more precise than
the former two kernels. The parameterization of the
polynomial third-order kernel is proposed by Robert
Keys in [21]. By inserting parameter α into the coef-
ficients of the kernel, the parameterization is performed.
A very significant fact is that by changing a kernel
parameter α, the kernel can be adapted to a specific
signal, and in this way, the interpolation precision can

be increased. In the scientific literature, this kernel has
been in honour of its author named after him. In order
to further increase the precision of the interpolation,
kernels of the third-order with two parameters (2P Keys,
parameters α and β) are proposed [22]. In [23], the
interpolation precision in estimating the fundamental
frequency of the speech signal, using the 1P and 2P
interpolation kernels, is analyzed. The analysis of the re-
sults shows that interpolation error MSE, when applying
the 2P kernel, is by 2,65 times smaller. A further increase
in the interpolation precision is achieved by constructing
a three-parameter (α, β, γ) 3P Keys kernel [19]. The
analysis of the results shows that interpolation error
MSE, when estimating the fundamental frequency of the
speech signal using 3P kernel (αopt = 0.9, βopt = −0.8,
γopt = −3.1), is by 7,74 times higher than when using
the 1P kernel (αopt = −1.02) and 7,28 times higher
than in using the 2P kernel (αopt = −0.55, βopt = 1.2).

The polynomial fifth-order one-parameter interpola-
tion kernel is described in [24]. Its length is L = 6.
The optimization of kernel parameter α in the spectral-
domain is performed. The optimization criterion is the
reduction of the ripple of the spectral characteristic in the
pass-band and the stop-band. Through the optimization
process, the optimal kernel parameter, αopt = 3/64,
is determined. In [25], the parameterization of a two-
parameter fifth-order interpolation kernel of length L =
8 is described. The analysis of the interpolation error,
when the standard test images (Lena, Barbara, Camer-
man, ...) are interpolated, shows that the error is by 1,07
times smaller when using the 2P kernel (αopt = −0.025,
βopt = −0.0562) than when using of the 1P kernel
(αopt = 0.0313). The spectral characteristics of the
kernel are described in [26]. The optimization of the
kernel is performed in the spectral-domain [27]. The
optimization criterion is the minimization of the ripple
of the amplitude spectral characteristic. In this way, the
optimal values of the kernel parameters of the fifth-
order, αopt = 171/1408 and βopt = 525/7744, are
determined. In [21], the optimization of the polynomial
third-order 1P kernel in both the spectral and time-
domains is presented. A detailed analysis shows that the
optimal values of the kernel parameters in both domains
are equal, that is, αf

opt = αt
opt = -0.5. In the scientific

literature, the optimization of the polynomial fifth-order
2P kernel has not been presented so far.

The paper presents results of an optimization of
the fifth-order 2P kernel in the time-domain. As an
optimization criterion, the minimization of interpolation
error e is applied. The first part presents the optimization
algorithm. First, interpolation function g is determined.
Assuming that function f , which is to be interpolated,
has at least five continuous derivatives in the interval
where the interpolation is performed, the development of
function f in the Taylor series is performed. The Taylor
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series is expanded to the fifth term. Then, interpolation
error e = f−g is made. Finally, the minimization of the
interpolation error is realized, so that f and interpolated
function g agree up to the fifth term in the Taylor series
expansion. The minimization of the interpolation error
is achieved by minimizing the fourteen coefficients in
the Taylor series expansion. In this way, a system of
fourteen equations with two variables is set up. As
this case it is not possible to find a unique solution,
the least-square method (LSM) is applied. As a result,
optimal kernel parameters αopt and βopt are calculated.
To verify the correctness of the choice of the optimal
kernel parameters, an experiment is carried out. First,
for the purposes of the experiment, the test signal base
is created. The database is composed of the test signals
classified into four groups: a) Math test signals (f )
formed by mathematical functions with a complex time
form; b) noise Math test signals (fn) created by super-
imposing the white Gaussian noise (WGN) on the Math
test signals, and, in this way, the signal-to-noise ratio
(SNR) in the range of SNR = 10 - 70 dB is achieved; c)
music test signals (sG), which are obtained by recording
G tones (G1 - G7) that are interpreted on a Steinway B
piano. The music test signals are a part of the RWC
music database created at the University of Iowa [28];
and d) speech test signals (s) are taken from the EMODB
database of the German Emotional Speech created by the
Institute of Communication Science, Technical Univer-
sity, Berlin, Germany [29]. After that, the test signals
are interpolated using the convolution interpolation with
the fifth-order kernels: a) the 1P kernel [24] and b) the
2P kernel [27] whose optimizations are performed in
the spectral-domain, where the optimization criterion is
the minimization of the ripple of the amplitude spectral
characteristic. Then, interpolation errors e and the mean
square errors MSEs are calculated. Finally, a compara-
tive analysis of the interpolation precision of the kernel
that was optimized in the paper, using optimization in
the time-domain, with kernels whose optimizations are
performed in the spectral-domain, is performed. As a
measure of the interpolation precision, MSE is used.
The results of the experiment are presented in graphs
and tables.

The paper is further organized as follows. Section 2
describes the fifth-order 2P interpolation kernel, Section
3 the kernel optimization in the time-domain, Section 4
an experiment with a comparative analysis of its results
and Section 5 Conclusion.

2 FIFTH-ORDER INTERPOLATION
KERNELS

2.1 2P Kernel

Paper [25] describes a polynomial fifth-order two-
parameter kernel. The 2P kernel is defined on interval

(-4, 4) and approximates the ideal sinc interpolation ker-
nel. Outside the interval (-4, 4), the interpolation kernel
is zero. The 2P kernel is composed of the piecewise fifth-
order polynomials which are defined on the subintervals
(-4, -3), (-3, -2), (-2, -1), (-1,0), (0,1), (1, 2), (2, 3) and
(3, 4). Therefore, the length of the kernel is L = 8.
Kernel r is defined by:

r(s) =


a50|s|5 + ...+ a10|s|+ a00, |s| ≤ 1

a51|s|5 + ...+ a11|s|+ a01, 1 < |s| ≤ 2

a52|s|5 + ...+ a12|s|+ a02, 2 < |s| ≤ 3

a53|s|5 + ...+ a13|s|+ a03, 3 < |s| ≤ 4
0, otherwise

,

(1)
where a50 = 10α− 10β− 21/16, a40 = −18α+18β+
45/16, a30 = 0, a20 = 8α−8β−5/2, a10 = 0, a00 = 1,
a51 = 11α− 11β − 5/16, a41 = −88α+ 88β + 45/16,
a31 = 270α−270β−10, a21 = −392α+392β+35/2,
a11 = 265α−265β−15, a01 = −66α+66β+5, a52 =
α, a42 = −14α+3β, a32 = 78α−30β, a22 = −216α+
112β, a12 = 297α − 185β, a02 = −162α + 114β,
a53 = β, a43 = −19β, a33 = 144β, a23 = −544β,
a13 = 1024β, a03 = 0, and α and β are the kernel
parameters. Kernel parameters α and β directly affect
the time-spectral characteristics of the 2P kernel (1).
Changing the value of the kernel parameters affects
the interpolation precision. By minimizing interpolation
error e, the optimal value of the kernel parameter is
determined, and in this way, interpolation kernel r is
optimised. The interpolation kernel can be optimised in:
a) the spectral and b) the time-domain. Optimization
in the time-domain implies the minimization of the
difference between the amplitude spectral characteristics
of ideal kernel sinc, whose characteristic is the box
function, Hsinc, and the analyzed interpolation 2P kernel
r, whose spectral characteristic is H . The paper [27] de-
scribes the optimization of the 2P kernel in the spectral-
domain (αopt = 171/1408 and βopt = 525/7744). The
optimization criterion is the minimization of the ripple
of spectral characteristic H . The interpolation kernel
optimized in the spectral-domain is denoted by rfopt, and
its spectral characteristic by Hf

opt.
The rest of the paper presents the optimization of

the polynomial 2P kernel performed in the time-domain.
The optimization criterion is the minimization of inter-
polation error e.

3 OPTIMIZATION ALGORITHM IN THE
TIME-DOMAIN

The optimization of the fifth-order polynomial 2P
kernel is a process in which the optimal values of
the kernel parameters alpha and beta are determined.
The optimization is performed in the time-domain, by
minimizing the interpolation error. The optimization
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algorithm is implemented in the following steps:

Input: r(α, β) - 2P interpolation kernel, f - signal for
interpolation.
Output: αopt, βopt - the optimal kernel parameters.
Step 1: Determination of interpolation function g
in accordance with the definition of the convolution
interpolation,
Step 2: Determination of the kernel r value for each
segment in which the kernel is defined,
Step 3: When function f has at least five continuous
derivatives in the analyzed interval, the expansion of
function f into the Taylor series is performed,
Step 4: The expansion of interpolation function g into
the Taylor series up to the fifth term is carried out,
Step 5: Determination of interpolation error e,
Step 6: Minimizing of the interpolation error e using
LSM and determination of the optimal values of kernel
parameters alphaopt and betaopt.

A detailed description of each step is given below:
Step 1: Interpolation function g(x) is a special type of

the approximation function. Its basic property is that it is
equal to the sampled data, that is, the values of function
f(x) in the interpolation nodes. Then g(xk) = f(xk),
where 0 ⩽ k ⩽ N −1, and N is the total number of the
interpolation nodes in the segment where the function is
interpolated. Let us assume that x is a point in which
the interpolation of function f(x) should be performed.
Let x be between the two consecutive interpolation
nodes denoted as xj and xj+1. Let s = (x − xj)/h,
where h is the sampling increment. Then (x−xk)/h =
(x − xj + xj − xk)/h = s + j + k. The interpolation,
i.e. the reconstructed function g(x) is determined by
the convolution interpolation [21], [30] of interpolation
function f(x) with the interpolation kernel r:

g (x) =
∑
k

ckr

(
x− xk

h

)
=

∑
k

ckr (s+ j − k) ,

(2)

where ck is the value of the function f(x) in the
interpolation k-th node (k-th sample), and h is the
sampling increment. By developing the sum from (2),
the reconstruction function can be written as:

g (x) = cj−3r (s+ 3) + cj−2r (s+ 2)

+ cj−1r (s+ 1) + cjr (s) + cj+1r (s− 1)

+ cj+2r (s− 2) + cj+3r (s− 3)

+ cj+4r (s− 4) .

(3)

Step 2: The value of kernel r for segment −4 ⩽ s <
−3, is:

r (s+ 3) = βs5 − 4βs4 + 6βs3 − 4βs2 + βs. (4)

By continuing the procedure, the kernel val-
ues in other segments are determined: a) −3 ⩽
s < −2: ⇒ r (s+ 2) = αs5 + (3β − 4α) s4 +
(6α− 6β) s3 + (4β − 4α) s2 + (α− β) s; b) −2 ⩽
s < −1: ⇒ r (s+ 1) = (11α− 11β − 5/16) s5 +
(33β − 33α+ 5/4) s4+(28α− 28β − 15/8) s3+5/4 ·
s2 + (6β − 6α− 5/16) s; c) −1 ⩽ s < 0: ⇒ r (s) =
(10α− 10β − 21/16) s5 + (18β − 18α+ 45/16) s4 +
(8α− 8β − 5/2) s2 + 1; d) 0 ⩽ s < 1: ⇒ r (s− 1) =
(10β − 10α+ 21/16) s5 + (32α− 32β − 15/4) s4 +
(28β − 28α+ 15/8) s3+5/4 ·s2+(6α− 6β + 5/16) s;
e) 1 ⩽ s < 2: ⇒ r (s− 2) =

(
11β − 11α+ 5

16

)
s5 +

(22α− 22β − 5/16) s4+(6β − 6α) s3+(4β − 4α) s2+
(β − α) s; f) 2 ⩽ s < 3: ⇒ r (s− 3) = −αs5 +
(α+ 3β) s4 − 6βs3 +4βs2 − βs; and g) 3 ⩽ s < 4: ⇒
r (s− 4) = −βs5 + βs4.

By substituting it in (2), the interpolation function is
written in the form:

g (x) =
(
βcj−3 + αcj−2 +D5,−1cj−1 +D5,0cj

+D5,1cj+1 +D5,−2cj+2 − αcj+3 − βcj+4

)
s5

+
(
−4βcj−3 +D4,−2cj−2 +D4,−1cj−1

+D4,0cj +D4,1cj+1 +D4,2cj+2

+D4,3cj+3 + βcj+4

)
s4

+
(
6βcj−3 +D3,−2cj−2 +D3,−1cj−1

+D3,1cj+1 +D3,2cj+2 − 6βcj+3

)
s3

+
(
−4βcj−3 + 4D2,−2cj−2 +

5

4
cj−1

+D2,1cj +
5

4
cj+1 + 4D2,2cj+2 + 4βcj+3

)
s2

+
(
+βcj−3 +D1,−2cj−2 +D1,−1cj−1

+D1,1cj+1 +D1,2cj+2 − βcj+3

)
s+ cj .

(5)
where D are the coefficients: D5,−1 = 11α− 11β− 5

16 ,
D5,0 = 10α − 10β − 21

16 , D5,1 = −10α + 10β + 21
16 ,

D5,−2 = −11α+11β+ 5
16 , D4,−2 = −4α+3β, D4,−1 =

−33α + 33β + 5
4 , D4,0 = −18α + 18β + 45

16 , D4,1 =
32α−32β− 15

4 , D4,2 = 22α−22β− 5
16 , D4,3 = α+3β,

D3,−2 = 6α − 6β, D3,−1 = 28α − 28β − 15
8 , D3,1 =

−28α+28β+ 15
8 , D3,2 = −6α+6β, D2,−2 = −α+β,

D2,1 = 8α− 8β − 5
2 , D2,2 = −α+ β, D1,−2 = α− β,

D1,−1 = −6α + 6β − 5
16 , D1,1 = 6α − 6β + 5

16 and
D1,2 = −α+ β.

Step 3: Assuming that function f(x) has at least
five continuous derivatives in interval (xj , xj+1) and by
applying the Taylor theorem, the value of function in
xj+1 is calculated. With the earlier condition on the
equality of interpolation function g with function f in
the k-th interpolation nodes, coefficients c from (2) are
written in the form:
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cj−3 = f (xj−3) =
27

8
h4f (4) (xj)−

9

2
h3f (3) (xj)

+
9

2
h2f (2) (xj)− 3hf (1) (xj) + f (xj) ,

(6)

By continuing the procedure, the following is ob-
tained: cj−2 = f (xj−2) = 2/3 · h4f (4) (xj) − 4/3 ·
h3f (3) (xj)+2h2f (2) (xj)−2hf (1) (xj)+f (xj); cj−1 =
f (xj−1) = 1/24 ·h4f (4) (xj)−1/6 ·h3f (3) (xj)+1/2 ·
h2f (2) (xj)− hf (1) (xj) + f (xj); cj = f (xj); cj+1 =
f (xj+1) = 1/24 · h4f (4) (xj) + 16 · h3f (3) (xj) + 1/2 ·
h2f (2) (xj) + hf (1) (xj) + f (xj); cj+2 = f (xj+2) =
2/3 · h4f (4) (xj) + 4/3 · h3f (3) (xj) + 2h2f (2) (xj) +
2hf (1) (xj) + f (xj); cj+3 = f (xj+3) = 27/8 ·
h4f (4) (xj) + 9/2 · h3f (3) (xj) + 9/2 · h2f (2) (xj) +
3hf (1) (xj) + f (xj) and cj+4 = f (xj+4) = 32/3 ·
h4f (4) (xj) + 32/3 · h3f (3) (xj) + 8h2f (2) (xj) +
4hf (1) (xj) + f (xj).

Step 4: By substituting it in (5), the convolution
interpolation function is written in the form:

g (x) = a5s
5 + a4s

4 + a3s
3 + a2s

2 + a1s

+ a0 +O
(
h5

)
,

(7)

where: a5 = 9/8 · h2f (2) (xj) + 11/16 · h3f (3) (xj) +
1/4 · h4f (4) (xj) + 9/4 · hf (1) (xj) − 48αhf (1) (xj) +
36βhf (1) (xj) − 24αh2f (2) (xj) − 24αh3f (3) (xj) −
10αh4f (4) (xj)+18βh2f (2) (xj)+3βh3f (3) (xj); a4 =
120αhf (1) (xj)−5/4 ·h3f (3) (xj)−5/16 ·h4f (4) (xj)−
45/8 ·hf (1) (xj)−15/8 ·h2f (2) (xj)−90βhf (1) (xj)+
40αh2f (2) (xj)+50αh3f (3) (xj)+46/3·αh4f (4) (xj)−
34βh2f (2) (xj)− 2βh3f (3) (xj)− 16/3 · βh4f (4) (xj);
a3 = 5/8 · h3f (3) (xj) + 15/4 · hf (1) (xj) −
80αhf (1) (xj) + 44βhf (1) (xj)− 76/3 ·αh3f (3) (xj)−
86/3 · βh3f (3) (xj) a2 = 5/4 · h2f (2) (xj) + 5/48 ·
h4f (4) (xj) + 24βhf (1) (xj)− 16αh2f (2) (xj)− 16/3 ·
αh4f (4) (xj)+16βh2f (2) (xj)+36βh3f (3) (xj)+16/3·
βh4f (4) (xj) a1 = 5/48·h3f (3) (xj)+5/8·hf (1) (xj)+
8αhf (1) (xj) − 14βhf (1) (xj) − 2/3 · αh3f (3) (xj) −
25/3 · βh3f (3) (xj); and a0 = f(xj)

The expansion of function f into the Taylor series is
obtained:

f (x) = 1/24 · h4f (4) (xj) s
4

+ 1/6 · h3f (3) (xj) s
3 + 1/2 · h2f (2) (xj) s

2

+ hf (1) (xj) s+ f (xj) + O
(
h5

)
.

(8)
Step 5: The interpolation error is:

e = f − g =

(
1

4
C5,4h

4f (4) (xj) + C5,3h
3f (3) (xj)

+C5,2h
2f (2) (xj) + C5,1hf

(1) (xj)
)
s5

+
(
C4,4h

4f (4) (xj) + C4,3h
3f (3) (xj)

+C4,2h
2f (2) (xj) + C4,1hf

(1) (xj)
)
s4

+
(
C3,3h

3f (3) (xj) + C3,1hf
(1) (xj)

)
s3

+
(
C2,4h

4f (4) (xj) + C2,3h
3f (3) (xj)

+C2,2h
2f (2) (xj) + C2,1hf

(1) (xj)
)
s2

+
(
C1,3h

3f (3) (xj) + C1,1hf
(1) (xj)

)
s,

(9)
where C are the coefficients: C5,4 = 40α − 1, C5,3 =
24α− 3β − 11

16 , C5,2 = 24α− 18β − 9
8 , C5,1 = 48α−

36β− 9
4 , C4,4 = − 46

3 α+ 16
3 β+ 17

48 , C4,3 = −50α+2β+
5
4 , C4,2 = −40α+34β+ 15

8 , C4,1 = −120α+90β+ 45
8 ,

C3,3 = 76
3 α+ 86

3 β− 11
24 , C3,1 = 80α−44β− 15

4 , C2,4 =
16
3 α− 16

3 β− 5
48 , C2,3 = −36β, C2,2 = 16α− 16β− 3

4 ,
C2,1 = −24β, C1,3 = 2

3α + 25
3 β − 5

48 , C1,1 = −8α +
14β + 3

8 .
Step 6: Minimization of the interpolation error e is

done by choosing appropriate kernel parameters α and
β. This means that the coefficients of (9) equals zero. In
this way, a system of 14 equations with two unknowns
is set up. In that case, it is not possible to find a unique
solution, and therefore LSM is applied. By applying it,
the optimal kernel parameters are calculated: αopt =
98/2707 and βopt = −113/8934.

Figure 1.a shows the time forms of: a) ideal interpola-
tion kernel sincw. Its length is L = 8, windowed using
a rectangular window on segment (-4, 4); b) polynomial
fifth-order 2P kernel rfopt optimized in the spectral-
domain [27] with the criterion of minimizing the rip-
ple of the spectral characteristics (αopt = 171/1408,
βopt = 525/7744), and c) polynomial fifth-order 2P
kernel rtopt optimized in the time-domain (Section 3),
(αopt = 98/2707, βopt = −113/8934). Figure 1.b
shows the spectral characteristics: a) ideal interpolation
kernel sinc, Hsinc (L −→ ∞), b) windowized ideal
kernel Hsincw, (L = 8), c) 2P kernel Hf

opt optimized in
the spectral-domain and d) 2P kernel Ht

opt optimized in
the time-domain.

4 ANALYSIS OF EXPERIMENTAL RESULTS

4.1 Experiment
An experiment is performed to enable a comparative

analysis of the precision of the parametric convolution
interpolation using implemented polynomial fifth-order
kernels: a) the 1P kernel optimized is in the spectral-
domain (αopt = 3/64) [24], b) the 2P kernel opti-
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Figure 1. a) Time forms of: ideal interpolation kernel sincw,
polynomial fifth-order 2P kernel rfopt optimized in the spectral-
domain, and polynomial fifth-order 2P kernel rtopt optimized
in the time-domain; and b) Spectral characteristics of: ideal
interpolation kernel Hsinc, windowized ideal kernel Hsincw,
2P kernel Hf

opt optimized in the spectral-domain, and 2P
kernel Ht

opt optimized in the time-domain.

mized is in the spectral-domain (αopt = 171/1408,
βopt = 525/7744) [27], and c) the 2P kernel opti-
mized in the time-domain and described in Section 3
(αopt = 98/2707, βopt = −113/8934 = −0.01264). As
a measure of the interpolation precision, MSE is used.

The experiment is carried out in the following steps:
Step 1: With the interpolation kernel r of length L, the
convolution interpolation of test signal f on segment
(KL,KH) is performed. The test signals are sampled
in the N interpolation nodes with sampling period h,
where N = (KH −KL − L)/h.
Step 2: Test signals interpolated in interpolation points
k with period ∆x. The interpolation is performed in the
K = (KH −KL − L)/∆x points (2).
Step 3: In each interpolation point k, interpolation error
ek = fk − gk (9) is calculated.
Step 4: MSE is defined as MSE = 1

K

∑K
n=1 e

2
k for each

test signal is determined. Step 5: Comparative analysis
of the results is performed.

Steps 1 - 5 are realized with Matlab, and except for
testing, they are not intended for real time systems.
Therefore, the execution time is not of a dominant
importance. However, in Step 2 the convolutional inter-
polation is performed, so it is important to determine the
execution time of interpolation texe. For this purpose, the
interpolation execution times are measured using Matlab
functions tic and toc. The measurement is performed
on the test platform: computer DESKTOP - S2AC43P,
Processor: Intel (R) Pentium (R), CPU: G3220 3 GHZ,
RAM: 8 GB, Windows 10 operating system.

To realize the interpolation within the experiment,
a database of the test signals is created. It consists
of test signals generated on the basis of mathematical
functions, test signals with superimposed WGN, audio
music signals and speech signals.

The experiment is carried out with parameters KL =
0, KH = 35, h = 1, ∆x = 0.01. The results are
presented using graphs and tables.

4.2 Database

The test signal database is created with:
a) Math test signals (f ) formed by functions whose

mathematical forms are: f1(x) = 1.5 · sin(x/(2π)) +
sin(x2/π), f2(x) = 10−3 · (x − 10)(x − 15)(x −
35) sin(x/π), f3(x) = e−x/2π · sin(4x/π) and f4 (x) =
sin (x/3π) · sin (2/πx). Math test signal f1 is shown in
Figure 3.a.

b) noise Math test signals (fn) created by superimpos-
ing WGN with Math test signals: fn = f+k ·WGN. By
changing the value of parameter k, the noise Math test
signals with SNR = 10 - 70 dB are formed. In Figure
4.a, noise Math signal f1n with SNR = 10 dB is shown.

c) Music test signals (sG) are the G tones (G1 f0 =
48.999 Hz, G2 f0 = 97.999 Hz, G3 f0 = 196 Hz, G4 f0
= 392 Hz, G5 f0 = 783.99 Hz, G6 f0 = 1560 Hz, G7
f0 = 3136 Hz) which are interpreted on a Steinway B
piano, the world-renowned piano manufacturer Steinway
& Sons. The recording is made at the University of Iowa
and is part of the RWC Music Database [28]. Music test
signals are sampled with: a) fs = 44.1 kHz, b) fs = 22.05
kHz and c) fs = 8 kHz with 16 bps. Figure 5 shows the
time form of the Music test signal sG3: a) tone duration
T = 3.8 s (Figure 5.a) and b) frame T = 32 ms (Figure
5.b).

d) The speech test signals (s) are taken from the
EMODB database of the German Emotional Speech
which was created by the Institute of Communication
Science, Technical University, Berlin, Germany [29].
For the experiment, the precision of the interpola-
tion is tested with the speech test signals which are
in the EMODB database named: 03a01Fa, 08a01Ab,
09a02Wb, 10b09Ad, 11a02Wc, 12a01Fb, 13a04Ac,
14b02Na, 15b09Ac, 16b10Td. The data is recorded at a
fs = 48 kHz sampling rate and then down-sampled to
fs = 16 kHz and fs = 8 kHz. Figure 6 shows the time
form of speech test signal s08a01Ab: a) duration T = 1.8
s (Figure 6.a) and b) frame T = 32 ms (Figure 6.b).

4.3 Results

The mean-square error, which refers to the estimation
of the interpolation error of Math test function f2(x), for
β = 0, depending on kernel parameter α, is shown in
Figure 2.a, for: a) the theoretical estimation of MSEest

(9), and b) the experimental estimation of MSEexp (by
the convolution interpolation) (2). By locating the min-
imum of MSEs, the optimal values of parameters α are
determined: MSEest min = 2.2765 · 10−7, αest opt =
0.0490, MSEexp min = 4.5567 · 10−7, αexp opt =
0.0490. Figure 2.b shows the theoretical dependence of
MSEest on kernel parameters α and β. By locating the
minimum of MSEest, the optimal values of parameters
α and β are determined: MSEest min = 1.0816 · 10−8,
αest opt = 0.0610 and βest opt = 0.0100. Figure 2.c
shows the experimental dependence of MSEexp on
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Figure 2. a) MSE depending on parameter α, for β = 0 es-
timated theoretically (MSEest) and experimentally (MSEexp);
b) MSE depending on kernel parameters α and β, estimated
theoretically (MSEest); and c) MSE depending on kernel
parameters α and β determined by experiment (MSEexp).

kernel parameters α and β. By locating the minimum
of MSEexp, the optimal values of the parameters α
and β are determined: MSEexp min = 4.0326 · 10−7,
αexp opt = 0.0550 and βexp opt = 0.0050.

The time forms of Math test function f1, interpolation
function g, and interpolation nodes are shown in Figure
3.a. Absolute interpolation error |e| = |f − g|, for
tested optimized kernel parameters (rfopt,1P , rfopt,2P and
rtopt,2P ), on segment (9, 10), for test function f1 is
shown in Figure 3.b.

The mean value (MSEf ) of minimum MSE for all
analyzed optimized kernel parameters (rfopt,1P , rfopt,2P
and rtopt,2P ), for all Math test functions is shown in
Table 1.

Mean value MSEf,SNR of the minimum MSE for all
analyzed optimized kernel parameters, for all noise Math
test signals with SNR = 30 – 70 dB is shown in Table
1. The minimum interpolation error depending on SNR,
when interpolating Math test signal f1n, is shown in
Figure 4.b.

Mean values of minimum MSE for all analyzed opti-
mized kernel parameters, for all tested music test signals
(tones sG1 - sG7), for sampling frequencies: a) fs = 44.1
kHz (MSEG,44kHz), b) fs = 22.05 kHz (MSEG,22kHz) and
c) fs = 8 kHz (MSEG,8kHz), are shown in Table 1.

The Mean values of the minimum MSE for all ana-
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Figure 3. Interpolated signal f , interpolation function g and
interpolation nodes for test function a) f1. Absolute interpo-
lation error e on segment (9, 10) for b) f1.
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Figure 4. a) Interpolated Math test signals f1 and noise Math
test signal f1n with SNR = 10 dB. b) interpolation error
log10(MSE(SNR)) when interpolating noise Math test signal
f1n with SNR = 30 – 70 dB using tested interpolation kernels.

lyzed optimized kernel parameters, for all tested speech
test signals which were sampled with a) fs = 16 kHz
(MSES,16kHz) and b) fs = 8 kHz (MSES,8kHz) are shown
in the Table 1.

Table 1 shows the averaged interpolation errors
MSEsum for: a) MSEf (Math test signals); b) MSEfn ,
(noise Math test signasl); c) MSEG,44kHz , MSEG,22kHz

and MSEG,8kHz (Music test signals sampled with fs
= 44.1 kHz, fs = 22.05 kHz and fs = 8 kHz); and
d) MSEs,16kHz and MSEs,8kHz (the speech test signals
sampled with fs = 16 kHz and fs = 8 kHz).

The execution time of the convolution interpolation
(Step 2) texe = 9.2341 · 10−8 s, as the arithmetic
mean of the execution time for 100000 interpolations
is determined.

4.4 Analysis of the results
Based on the results shown in Table 1, refering to

the interpolation of Math test signals f, it is concluded
that the precision of the convolution interpolation using
polynomial fifth-order 2P kernel rtopt,2P , whose optimal
parameters are determined by optimization in the time-
domain (Section 3), is higher compared to the interpo-
lation which is used:

a) the 1P fifth-order kernel, whose optimal
parameters are determined in the spectral-
domain [24] MSEf , (r

f
opt,1P ) / MSEf , (rtopt,2P ) =

1.5556 · 10−6/8.4974 · 10−7 = 1.8306 times, and
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Table 1. Averaged interpolation errors MSEsum.

M
SE
f
m
in
,1
P

M
SE
f
m
in
,2
P

M
SE
t
m
in
,2
P

(rfopt,1P ) (rfopt,2P ) (rtopt,2P )

(×10−6) (×10−6) (×10−6)

Math Test functions: f1, f2, f3, f4
MSEf 1.5556 8.2445 0.84974

Noise functions: f1n, ..., f4n,
MSEf,SNR 156.02 163.27 143.10

Music signal (G1-G7)
MSEG,44kHz 16.123 15.268 14.810

MSEG,22kHz 242.74 235.89 238.92

MSEG,8kHz 4183.3 4102.4 4042.9

Speech signal
MSES,16kHz 1192.8 1174.2 1164.9

MSES,8kHz 3351.9 3090.4 3068.0

Averaged MSE
MSEsum 1306.3 1255.6 1239.1
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Figure 5. Time form of music test signal sG3: a) tone duration
T = 3.8 s and b) frame T = 32 ms

b) the 2P fifth-order kernel, whose optimal
parameters are determined in the spectral-
domain [27] MSEf , (r

f
opt,2P ) / MSEf , (rtopt,2P ) =

8.2445 · 10−6/8.4974 · 10−7 = 9.7023 times.
In the interpolating of the noise Math signals fn (SNR

= 10 – 70 dB), (Table 1) using the interpolation kernel
rtopt,2P , the precision of the convolution interpolation is
higher compared to the interpolation using:

a) the 1P kernel: MSEf,SNR, (r
f
opt,1P ) /

MSEf,SNR, (rtopt,2P ) = 1.5602 · 10−4 / 1.4310 · 10−4 =
1.0902 times, and

b) the 2P kernel: MSEf,SNR, (r
f
opt,2P ) /

MSEf,SNR, (rtopt,2P ) = 1.6327 · 10−4 / 1.4310 · 10−4 =
1.1409 times.

The interpolation precision when applying kernel
rtopt,2P is higher compared to kernels rfopt,1P and rfopt,2P
used in interpolating Music test signals sG (tones G1 -
G7), which are sampled with:
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Figure 6. Time form of the speech test signal s08a01Ab: a)
duration T = 1.8 s and b) frame T = 32 ms.

a) fs = 44.1 kHz: MSEG,44kHz, (r
f
opt,1P ) /

MSEG,44kHz, (rtopt,2P ) = 1.6123 · 10−5 / 1.4810 · 10−5

= 1.0886 times and MSEG,44kHz, (r
f
opt,2P ) /

MSEG,44kHz, (rtopt,2P ) = 1.5268 · 10−5 / 1.4810 · 10−5

= 1.0309 times;
b) fs = 22.05 kHz: MSEG,22kHz, (r

f
opt,1P ) /

MSEG,22kHz, (rtopt,2P ) = 2.4274 · 10−4 / 2.3892 ·
10−4 = 1.0159 times and MSEG,22kHz, (r

f
opt,2P ) /

MSEG,22kHz, (rtopt,2P ) = 2.3589 · 10−4 / 2.3892 · 10−4

= 0.9873 times; and
c) fs = 8 kHz: MSEG,8kHz, (r

f
opt,1P ) /

MSEG,8kHz, (rtopt,2P ) = 4.1833 · 10−4 / 4.0429 · 10−4

= 1.0347 times and MSEG,8kHz, (r
f
opt,2P ) /

MSEG,8kHz, (rtopt,2P ) = 4.1024 · 10−4 / 4.0429 · 10−4

= 1.0147 times.
The interpolation precision when applying kernel

rtopt,2P is higher compared to kernels rfopt,1P and rfopt,2P
used in interpolating the speech signals s, sampled with:

a) fs = 16 kHz: MSES,16kHz, (r
f
opt,1P ) /

MSES,16kHz, (rtopt,2P ) = 1.1928 · 10−3 / 1.1649 · 10−3

= 1.0239 times and MSES,16kHz, (r
f
opt,2P ) /

MSES,16kHz, (rtopt,2P ) = 1.1742 · 10−3 / 1.1649 · 10−3

= 1.0079 times; and
b) fs = 8 kHz (Table 1): MSES,8kHz, (r

f
opt,1P )

/ MSES,8kHz, (rtopt,2P ) = 3.3519 · 10−4 / 3.0680 ·
10−4 = 1.0925 times and MSES,8kHz, (r

f
opt,2P ) /

MSES,8kHz, (rtopt,2P ) = 3.0963 · 10−4 / 3.0680 · 10−4 =
1.009 times.

Considering the precision of the convolution inter-
polation of each analyzed test signal, by calculating
average MSE, it is concluded that the precision of the
interpolation using fifth-order 2P kernel rtopt,2P , whose
optimization is performed in the time-domain (Section
3), compared to the application of kernels whose opti-
mization is performed in the spectral-domain, is higher:

a) the 1P kernel: MSEsum, (rfopt,1P ) /
MSEsum, (rtopt,2P ) = 1.3063 · 10−3 / 1.2391 · 10−3 =
1.0542 times, and

b) the 2P kernel: MSEsum, (rfopt,2P ) /
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MSEsum, (rtopt,2P ) = 1.2556 · 10−3 / 1.2391 · 10−3 =
1.0133 times.

According to the theoretical analysis of interpolation
error e (9) of 2P kernel rtopt,2P , which is realized in the
time-domain, as well as the experimental results and the
comparative analysis of the results, which refer to the
interpolation precision, in relation to the results obtained
using the 1P and 2P kernels optimized in the spectral-
domain, it is confirmed that the choice of the optimal
parameter values is appropriate.

The execution time of the interpolation with inter-
polation kernel rtopt,2P implemented with Matlab, is
texe = 9.2341 · 10−8 s. However, for the real-time
interpolation, the convolution algorithm must be written
in a programming language (for example, programming
language C) where, in the compilation process, opti-
mizations reduces the program execution time.

Taking into account: a) the previously presented com-
parative analysis of the interpolation precision, and b)
the execution time of the interpolation, the 2P fifth-
order interpolation kernel rtopt,2P with the parameters
αopt = 98/2707 and βopt = −113/8934, can be
recommended for the implementation in the real-time
systems.

5 CONCLUSION

The paper describes optimization process of the polyno-
mial fifth-order two-parameter interpolation kernel. The
optimization of the 2P kernel involves a selection of
the optimal value of kernel parameters αopt and βopt.
The optimization is realized by minimizing interpolation
error e in the time-domain. First, fifth-order 2P kernel r
defined on interval (-4, 4) is described. Then, by apply-
ing the convolution interpolation between interpolated
function f with 2P kernel r, interpolation function g
is determined. Interpolated functions f and g in the
interpolation nodes are equal. Interpolation error e in
interval xj ⩽ x ⩽ xj+1, is then determined. Provided
function f has at least five continuous derivatives in the
interval (xj , xj+1), interpolation error e is developed
in the Taylor series up to the fifth term. According to
the minimization criterion, it is necessary to agree well
functions f and g, up to the fifth term. By minimizing
the first five terms of the Taylor series of interpolation
error e, the optimal value of the kernel parameter can
be calculated. However, the minimization process does
not lead to a unique solution for α and β. Each of
the five terms of the Taylor series has a coefficient. It
depends on several members represented in the form
(a · α + b · β + c). A system of 14 equations with two
unknowns is formed. Such a system of equations has
no unique solution. Using LSM, the optimal values of
the kernel parameters are determined: αopt = 98/2707
and βopt = −113/8934. By using an experiment, the
proposed optimal value of the 2P kernel parameter is

verified. A database of the test signals is created for the
experiment. It is composed of the test signals of four
groups: the Math test signal, noise Math signal, musuc
test signal and speech test signal. Each test function is
interpolated by the convolution interpolation, using the
interpolation kernels of fifth-order 1P and 2P, optimized
in the spectral-domain. For each interpolation, errors
e are calculated, and, based on them, MSEs, which
are used for a comparative analysis, are formed. The
analysis shows that the interpolation precision of the 2P
kernel optimised in the time-domain is the highest. In
this way, the suggested optimal values of the kernels
parameters are verified.
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