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Abstract. The paper provides an online estimation of state variables in a bioreactor using a fast and straightforward 

nonlinear observer with an unknown specific growth rate. The fixed time observer is based on a known biomass 

concentration instead of a known substrate concentration. The observer design is based on the sliding mode 

approach. A Fixed-time stability of the resulting error system is proven. Computer simulations show the 

performance and robustness of the proposed nonlinear observer, which ensures a robust performance in the presence 

of a model uncertainty and measurement noise. 
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Opazovanje stanja s stalnim časovnim korakom v 

bioreaktorju na osnovi koncentracije biomase 

 

V prispevku obravnavamo oceno spremenljivk stanja v 

bioreaktorju z uporabo hitrega in enostavnega nelinearnega 

opazovanja z neznano specifično hitrostjo rasti. Opazovanje s 

fiksnim časom temelji na znani koncentraciji biomase namesto 

na znani koncentraciji substrata. Zasnova opazovanja temelji na 

pristopu drsnega načina. Razvili smo programe za računalniško 

simulacijo, ki prikazujejo zmogljivost in robustnost 

predlaganega pristopa ob prisotnosti merilnega šuma. 

 

 

1 INTRODUCTION 

Among the most frequent and important challenges in the 

control of bioprocesses is finding adequate and reliable 

sensors to measure all the important state variables of the 

plant. Even if a number of online sensors providing the 

state information are available today on an industrial 

scale, they are still very expensive, and their maintenance 

usually consumes significant time.  Moreover, the 

reaction rate functions are unknown, and complex 

experimental procedures must be engaged to estimate 

these functions. The specific growth rate is an important 

parameter in bioreactors as it indicates the rate at which 

microorganisms are growing, and is used to optimize the 

bioprocess. The substrate concentration is also a critical 

parameter in bioreactors, as it affects the growth rate of 

microorganisms and is used to control the feeding rate of 

the bioreactor. Therefore, to estimate the states and 

parameters of a system, it is necessary to use observers, 

also called software sensors. The estimated states and 

parameters can then be used only for supervising the 

process [1], or they can be incorporated into a control 

loop [2]. 

 In recent years, observation has been extensively 

studied [3], and various design methods for nonlinear 

observer strategies have been proposed. The design of 

robust observers occurs in many practical applications, 

such as systems with unknown parameters, fault and 

identification problems, cryptography [4, 5], Asymptotic 

observers [6,7], observers based on the extended Kalman 

filter (EKF) [8], high gain observers [9], adaptive 

observers [10], H∞ hybrid observers [11]. Different 

kinds of sliding mode observers [12,13, 14, 15], first-

order [16, 17], and second-order [18, 19] have been 

successfully tested on this class of the bioprocess model. 

Two nonlinear observers-based sliding mode controllers 

are proposed in [20] to perform an accurate tracking of 

the temperature and concentration in the reactor. The 

sliding mode strategy has been widely used in the design 

of controllers and observers for nonlinear systems. This 

approach is well known for its stability in finite time and 

its excellent robustness properties with respect to 

parametric uncertainties and external disturbances [21]. 

 The problem of both the state observation and 

parameter identification has already been extensively 

investigated in the literature [22, 23]. An adaptive 

observer to simultaneously estimate the state and the 

unknown parameters is proposed in [24]. 

 The majority of these observers are asymptotic or 

exponential, which means that the estimation error 

converges to zero and reaches zero towards an infinite 

time. A Finite-time control and finite-time observation of 

uncertain non-linear systems have been intensively 
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studied for many years [25, 26, 27, 28, 29]. An observer 

that achieves both the state and parameter estimation in a 

finite time is designed in [30]. The terminal time admits 

a uniform upper bound regardless of the initial conditions 

[31]. 

 [32] addresses the problem of determining the input 

excitation for a data-driven model identification 

appropriate for cell culture bio-processes in general and 

for an industrial bioreactor used for the production of 

monoclonal antibodies in particular. 

 [33] presents the design of a high-gain nonlinear 

observer for bilinear systems in the block form. We also 

study and simulate two examples of observers for 

bioreactor systems in two and three dimensions. 

  Anaerobic digestion processes are proposed to be 

monitored using an observer for estimating the status and 

unknown inputs [34]. The three sub-observers that make 

up this estimator are (a) a gramian-based fixed-time 

convergent observer for the inlet chemical oxygen 

demand (COD) and the acidogenic bacteria population, 

(b) an asymptotic observer for the methanogenic bacteria 

population, and (c) a super-twisting observer for systems 

with time-varying parameters to estimate the inlet 

volatile fatty acid (VFA) concentration [34]. The 

estimator is based on a dynamic model that takes 

acidogenesis and methanogenesis into account. The 

unknown influent concentration is estimated using a 

sliding mode observer, but the unknown states and 

kinetics are also estimated using state observers and 

parameter estimators [35]. In [36], the Sonnleitner 

bottleneck model is used to solve the observer design 

problem for state estimation in a continuous (or semi-

continuous) yeast fermentation and a methane 

bioconversion process using an observer and controller 

structure [37]. 

 [38] investigates the challenge of fixed-time 

observation for nonlinear dynamic systems with 

unknown parameters and inputs. 

 Few studies deal with the problem of fixed-time 

estimation for bioreactors with unknown specific growth 

rates. The problem is challenging due to the non-linear 

and complex dynamics of the system, uncertainties in 

measurements, and time-varying parameters. Therefore, 

developing accurate and robust estimation techniques is 

important for an efficient and reliable bioprocess control 

and optimization. 

 For example, in [39], a specific growth rate and 

substrate concentration of microorganisms in a fed-batch 

bioreactor used to produce monoclonal antibodies are 

estimated using a fixed-time observer. [40] investigates a 

fixed-time distributed estimate issue for a class of 

second-order nonlinear systems with an uncertain input, 

unknown nonlinearity, and matching perturbations. To 

provide stable and limited estimates of the respiration 

rate, the problem of the respiration rate estimation 

employing two new non-linear observers for a 

wastewater treatment plant, namely a non-linear adaptive 

Luenberger-like observer and a super twisted sliding 

mode observer, are derived [41].  [42] provides a unique 

extended super-twisting technique for a class of 

nonlinear systems that converges on the estimate of 

uncertain parameters, unknown internal dynamics, and 

external disturbances in a finite period or a 

neighbourhood around their nominal values.  [43] 

combines the study of non-asymptotic convergence rates 

(finite and fixed-time) with the input-to-state stability 

condition. 

 In most approaches, the substrate concentration is the 

measured variable. However, many practical and 

economical reasons render the measurement with a good 

precision of the substrate concentration very difficult, 

particularly when they are in low concentrations. In our 

case, we address a mathematically challenging 

estimation issue when only a biomass concentration is 

available for an online measurement and propose a 

sliding mode observer to estimate the substrate 

concentration and the unknown specific growth rate 

parameters. The fixed-time observer is found to be 

effective in estimating these parameters and maintaining 

stable operating conditions. 

 The main contribution of the paper is the design of a 

fixed-time observer based on a sliding mode technique to 

estimate states and the unknown specific growth rate of 

the bioreactor. The estimation is based on online 

measurements of a biomass concentration. The fixed-

time convergence of the observer is proven using the 

Lyapunov technique. 

 This paper is structured as follows. Section 2 presents 

the bioreactor model and the formulation of the necessary 

assumptions. The construction of the fixed-time observer 

to estimate the concentrations and the unknown specific 

growth rate is the subject of Section 3.  Section 4 is 

reserved for the development of computer simulations to 

illustrate the effectiveness of the proposed approach. The 

paper is concluded with some remarks. 

 

2 EXPLANATION OF PROCESSES IN A 

BIOREACTOR FROM A CHEMICAL, 

BIOLOGICAL/PHYSICAL POINT OF 

VIEW 

A bioreactor is an engineered system or device that 

supports a biologically active environment [44]. It serves 

as a vessel in which chemical processes involving 

organisms or their bioactive substances occur, which can 

be either aerobic or anaerobic. Bioreactors come in 

various sizes, from a few litters to several cubic meters, 

and are usually made of stainless steel. They are also used 

to grow cells or tissues in cell culture systems. The 

technology of bioreactors is continually evolving, 

particularly for the use in tissue engineering and 

biochemical engineering processes.  

 Bioreactors operate in distinct modes, namely batch, 

fed-batch, or continuous, exemplified by a continuous 

stirred-tank reactor model. The chemostat stands out as a 

type of a continuous bioreactor. Within these bioreactors, 

organisms or biochemically active substances can thrive 
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either submerged in a liquid medium or anchored to the 

surface of a solid medium. The submerged cultures may 

be free-floating or immobilized. The suspension 

bioreactors are versatile, supporting a wide variety of 

organisms without special attachment surfaces and 

offering a greater scalability compared to immobilized 

cultures. However, in continuous operations, organisms 

exit the system with the outflow. Immobilization 

encompasses techniques for securing cells or particles 

[45] and is integral to all biocatalysis forms, including 

enzymes, cellular organelles, cells and organs from 

animals and plants [46], [47]. While immobilization 

enhances continuous processes by keeping organisms 

inside the reactor, it faces limitations in the scale due to 

the confinement of microbes to the reactor internal 

surfaces.  

 The main function of a bioreactor is to enhance the 

interaction between contaminants within the target 

matrix and the microorganisms that break them down. 

Essentially, a bioreactor is a vessel or apparatus where 

cells or microbes are cultivated in a controlled setting to 

create particular compounds. It ensures a consistent 

physicochemical milieu for the cells and supports the cell 

attachment when needed. 

 
Figure 1. Operation of the bioreactor. 

 

3 MATHEMATICAL MODEL OF THE 

BIOREACTOR  

Let us consider the following two-dimensional system 

that describes the dynamical behavior of a Continuous 

Stirred Tank Bioreactor [48], 

{
�̇� = 𝜇(𝑆)𝑋 − 𝐷𝑋

�̇� = −𝑘1𝜇(𝑆)𝑋 + 𝐷(𝑆𝑖 − 𝑆)
                    (1) 

where the state variables S and X are the substrate and 

biomass concentrations respectively, D=q/V is the 

dilution rate with V the volume of the bioreactor and q 

the volumetric flow rate, 𝑘1 the yield coefficient, 𝑆𝑖 is the 

inlet substrate concentration and μ(S) is the specific 

growth rate.  

The formulation of a precise model for the specific 

growth rate  μ(S) is the most critical problem in solving 

Eq.(1). As presented in [49], many analytical expressions 

have been proposed to describe these functions. Here, we 

assume that function μ(S)  is unknown and is considered 

as a function of the substrate concentration. 

We make the following Theorem and assumptions: 

Assumption 1 : Let 𝜉 = [𝑋, 𝑆]𝑇 is the state 

vector of the system (1), 

∀𝜉 ∈ 𝑅2, 0 < 𝑋 < 𝑋𝑚𝑎𝑥 and 0 < 𝑆 < 𝑆𝑖 

Assumption 2 : Function 𝜇(𝑆) is non-negative 

and bound such that ∃𝑆∗ ∈]0  𝑆𝑖[, 𝜇(𝑆) ⩽ 𝜇(𝑆
∗) = �̅� 

where �̅� is the upper bound of 𝜇(𝑆). 

Assumption 3 : Let’s define the time-derivative 

of 𝜇(𝑆) as:  

                �̇� =
𝑑𝜇(𝑆)

𝑑𝑡
= 𝜌(𝑆) (2) 

 𝜌(𝑆) is an unknown non-negative function and bound as: 

𝜌(𝑆) ≤ �̅�, (�̅� is positive known constant) 

Assumption 4 : Dilution rate 𝐷 is known and 

uniformly bound. 

Theorem 1 [50] Suppose that Lyapunov 

function 𝑉(𝑥) defines the neighborhood at the origin in 

𝑈 ∈ 𝑅𝑛, if the time derivative of 𝑉(𝑥) satisfies : 

 �̇� ≤ −𝑎𝑉𝑝 − 𝑏𝑉𝑞 − 𝑐𝑉 

 where 𝑎, 𝑏, 𝑐 > 0, 0 < 𝑝 < 1 and 𝑞 > 1. It can 

be said that 𝑉(𝑥) can reach 𝑉(𝑥) ≡ 0 in a fixed time 𝑇𝑟, 

where: 

𝑇𝑟𝑚𝑎𝑥 =
1

𝑐(1−𝑝)
𝑙𝑛(1 +

𝑐

𝑎
) +

1

𝑐(𝑞−1)
𝑙𝑛 (1 +

𝑐

𝑏
) (3) 

 

4 FIXED-TIME OBSERVER DESIGN  

An observer to estimate the unknown specific growth rate 

μ(S) and the whole state vector are introduced. For the 

observer design, the system (1) can be rewritten as: 

{
 

 
�̇� = 𝜇(𝑆)𝑋 − 𝐷𝑋

�̇� = −𝑘1𝜇(𝑆)𝑋 + 𝐷(𝑆𝑖 − 𝑆)

�̇� = 𝜌(𝑆)
𝑦 = 𝑋

                  (4) 

 

The following proposition is introduced:   

 

Proposition 1 Under Assumptions 1 to 4 and based on 

Theorem 1, the dynamical system given by: 

{
 
 

 
 �̇̂� = �̂��̂� − 𝐷�̂� + 𝛼1|�̃�| + 𝛼2|�̃�|

1
2 + 𝛽1|�̃�|

3
2𝑡𝑎𝑛ℎ(�̃�)

�̇̂� = −𝑘1�̂��̂� + 𝐷𝑆𝑖 − 𝐷�̂� + 𝛽2|�̃�|
3
2𝑡𝑎𝑛ℎ(�̃�)               

�̇̂� = 𝛼3 + 𝛽3|�̃�|
3
2𝑡𝑎𝑛ℎ(�̃�)                                             

(5) 

(with 𝛼𝑖 , 𝛽𝑖(𝑖 = 1,2,3) to be selected later), is a fixed-

time dynamic observer for the nonlinear system. 
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 The hyperbolic tangent function changes gradually 

from a value of -1 to a value of 1. It can be used to 

represent a phenomenon of a gradual transition, ”soft”, 

between two states. On its domain of definition, “tanh” is 

holomorphic (therefore continuous and even infinitely 

differentiable.) Unlike the “sign” function which 

suddenly changes from the value -1 to the value 1, the 

“tanh” function allows a gradual transition that softens 

and decreases the transient effect of the signals. 

Proof: 

Let : �̃� = 𝑋 − �̂�, �̃� = 𝑆 − �̂�, and �̃� = 𝜇 − �̂�. Then we 

have :  

�̇̃� = �̃�𝑋 + (�̂� − 𝐷)�̃� − 𝜑1(�̃�)                  (6) 

�̇̃� = −𝑘1�̃�𝑋 − 𝑘1�̂��̃� − 𝐷�̃� − 𝜑2(�̃�)      (7) 
�̇̃� = 𝜌(𝑆) − 𝜑3(�̃�)                                     (8) 

with : 

𝜑1(�̃�) = 𝛼1|�̃�| + 𝛼2|�̃�|
1

2 + 𝛽1|�̃�|
3

2𝑡𝑎𝑛ℎ(�̃�)   (9) 

𝜑2(�̃�) = 𝛽2|�̃�|
3

2𝑡𝑎𝑛ℎ(�̃�)                       (10) 

𝜑3(�̃�) = 𝛼3 + 𝛽3|�̃�|
3

2𝑡𝑎𝑛ℎ(�̃�)             (11) 
 

To analyze the closed-loop stability, we introduce the 

Lyapunov function: 

 

𝑉 =
1

2
(�̃�2 + �̃�2 + �̃�2)                          (12) 

 

Differentiating V 

�̇� = �̃��̇̃� + �̃��̇̃� + �̃��̇̃�                               (13) 

�̇� = �̃� (�̃�𝑋 + (�̂� − 𝐷)�̃� − 𝜑1(�̃�)) +

�̃� (𝜌(𝑆) − 𝜑3(�̃�)) + �̃� (−𝑘1�̃�𝑋 −

𝑘1�̂��̃� − 𝐷�̃� − 𝜑2(�̃�))              (14) 

 

�̇� = (�̂� − 𝐷)�̃�2 + �̃��̃�𝑋 − 𝐷�̃�2 − 𝑘1�̃�𝑋�̃� − 𝑘1�̂��̃��̃� +

�̃�𝜌(𝑆) − 𝜑1(�̃�)�̃� − 𝜑2(�̃�)�̃� − 𝜑3(�̃�)�̃�               (15) 

 

By using the assumptions (4), equation (15) becomes 

�̇� ≤ (�̂� − 𝐷)�̃�2 + �̃��̃�𝑋 − 𝐷�̃�2 − 𝑘1�̃�𝑋�̃� −

𝜑1(�̃�)�̃� − (𝑘1�̂��̃� + 𝜑2(�̃�)) �̃� + (�̅� − 𝜑3(�̃�)) �̃� 

(16)  

 �̇� ≤ −𝜉𝑇𝛤𝜉 − 𝜉𝑇𝛷(�̃�)                                    (17) 
with : 

𝜉 = [�̃�    �̃�    �̃�]𝑇                                                  (18) 
 

𝛤 = [

(𝛼1 + 𝐷 − �̂�)    𝑘1�̂�    −𝑋

𝜑2(�̃�)    𝐷    𝑘1𝑋

−�̅� + 𝜑3(�̃�)    0    0

]               (19) 

and 

𝛷(�̃�) = [
𝛼2|�̃�|

1

2

0
0

] + [
𝛽1|�̃�|

3

2𝑡𝑎𝑛ℎ(�̃�)
0
0

]             (20) 

�̇� ≤ −𝜆𝑚𝑖𝑛
𝛤 ∥ 𝜉 ∥2− 𝛼2 ∥ 𝜉 ∥ −𝛽1 ∥ 𝜉 ∥

5

2          (21) 

�̇� ≤ −𝜆𝑚𝑖𝑛
𝛤 𝑉 − 𝛼2𝑉

1

2 − 𝛽1𝑉
3

2                              (22) 

Based on Theorem 1, the estimation error is converged to 

zero in fixed-time 𝑇𝑟 : 

𝑇𝑟𝑚𝑎𝑥 =
2

𝜆𝑚𝑖𝑛
𝛤 𝑙𝑛(1 +

𝜆𝑚𝑖𝑛
𝛤

𝛼2
) +

2

𝜆𝑚𝑖𝑛
𝛤 𝑙𝑛(1 +

𝜆𝑚𝑖𝑛
𝛤

𝛽1
)        (23) 

 

Choosing gains 𝛼1, 𝛼3, 𝛽2, 𝑎𝑛𝑑𝛽3 in the design of the 

observer ensures positive definite matrix Γ. 

 This completes the proof of Proposition. 

 

5 SIMULATION RESULTS  

Numerical simulations for the closed-loop system show 

the effectiveness of the proposed scheme. There are 

many different models for 𝜇(𝑆) proposed in the 

literature. As a matter of example, the Monod model 

𝜇(𝑆) =
𝜇𝑚𝑆

𝑆+𝑘𝑠
 is often used (𝜇𝑚 > 0 is the maximum 

growth rate and 𝑘𝑠 is the kinetic parameter). 

The model and design parameters and the initial states 

used in the simulation are given in Table 1. 

 
Table 1. Model and design parameters, and initial states used 

for the simulation 

 
Model 

parameters  

 value   Initial states 

conditions  

 value 

𝒌𝒔   𝟎. 𝟐𝒈/𝒍   𝑿(𝟎)   𝟒. 𝟕𝟓𝒈/𝒍  
𝑺𝒊   𝟏𝟎𝒈/𝒍   𝑺(𝟎)   𝟎. 𝟓𝒈/𝒍  
𝝁𝒎   𝟏𝒉−𝟏   𝝁(𝟎)   𝟎. 𝟕𝟓𝒉−𝟏  

𝒌𝟏   𝟐   �̂�(𝟎)   𝟏. 𝟓𝒈/𝒍  

   𝑺(𝟎)   𝟎. 𝟔𝒈/𝒍  

    �̂�(𝟎)   𝟎. 𝟏𝒉−𝟏  

 

Figures 1-3 display the transient observer performances. 

It is shown that the observer reconstructs the process state 

variables (biomass and substrate concentration) as well 

as the unknown parameter (specific growth rate (S)) with 

a quick rate of the convergence. Also, the estimated states 

converge well in a limited and fixed amount of time (less 

than the theoretical time ‘‘five hours’’).  

 

 
Figure 2.  Actual and estimated biomass concentration. 
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Figure 3. Actual and estimated substrate concentration. 

 
Figure 4. Actual and estimated specific growth rate μ(S). 

Observation of the robustness of the proposed observer 

in the presence of the model uncertainty shows that the 

major advantage of the variable structure observers and 

controllers is that they can be made considerably more 

robust to reject load disturbances and parametric 

uncertainties. For this purpose, the load disturbance of 

20% in the inlet substrate concentration is considered in 

Figure 4. Simulation results are given in Figures 5-7. The 

performance is not greatly reduced since the controller 

effectively rejects the load disturbance. 

 
Figure 5. Load disturbance in the inlet substrate concentration. 

 

 
Figure 6. Actual and estimated biomass concentration in the 

presence of a load disturbance. 

 
Figure 7. Actual and estimated substrate concentration in the 

presence of a load disturbance.  

 
Figure 8. Actual and estimated specific growth rate μ(S) in the 

presence of a load disturbance. 

 

Figures 1-7 show the three state vectors and their 

estimate. The figures show the ability of the proposed 

observer to estimate the states accurately and to cope 

quite well with a large deviation of the noise. 

 The results show the high performance of the 

proposed observer in the CSTR reaction process. 
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6 CONCLUSION 

The paper presents a fixed-time observer for a continuous 

stirred tank bioreactor with an unknown growth rate. The 

estimation is made on the bases of a fixed-time 

convergence observer-based sliding mode technique that 

robustly guesses the values of the unknown growth rate 

and the whole state vector from biomass concentration 

measurements. It is shown that the Fixed Time Observer 

for a specific growth rate and substrate concentration is 

effective in estimating the parameters even in the 

presence of disturbances in the bioreactor system. The 

observer is robust against the effects of perturbations, and 

the upper bound of the convergence time is fixed and is 

determined by the control parameters regardless of the 

initial conditions. The simulation results show the 

efficiency of the observer in terms of the convergence 

speed and robustness against disturbances and 

uncertainties. The performance does not significantly 

degrade because the controller can well reject the load 

disturbance. The numerical simulations illustrate the 

performance and robustness as well as the feasibility of 

the designed observer system. 
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