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Abstract. This paper presents a unique method to control the speed of a separately excited DC motor by 

leveraging Reinforcement Learning (RL). An RL agent, educated using an Actor-Critic (AC) approach is capable 

to make effective real-time decisions and evaluations. The agent is trained in the Simulink environment, enriched 

with Simscape components to enhance the performance. By processing four continuous inputs, i.e. the speed 

error, its integral, its derivative, and the motor armature current, the agent outputs a PWM signal to control the 

four H-bridge switches that drive the DC motor. The reward function encourages the agent to learn an optimal 

control policy that minimizes both the tracking error and the armature current. The simulation results show that 

the RL-based speed controller outperforms the traditional controllers using cascade PI controllers. 
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Spodbujevalno učenje regulatorja hitrosti ločeno 

vzbujenega enosmernega motorja 

V prispevku predstavljamo metodo za regulacijo hitrosti 

ločeno vzbujenega enosmernega motorja, ki izkorišča 

spodbujevalno učenje. Agent spodbujevalnega učenja lahko 

samostojno sprejema odločitve in ocene v realnem času. 

Učenje smo izvajali v okolju Simulink s komponentami 

Simscape za izboljšanje zmogljivosti. Agent kontinuirano 

spremlja štiri vhode: napako hitrosti, njen integral in odvod ter 

tok motorja. Na izhodu je pulzno-širinsko moduliran signal za 

upravljanje štirih stikal H-mosta, ki krmilijo enosmerni motor. 

Funkcija nagrajevanja spodbuja agenta, da se nauči optimalne 

strategije vodenja, ki minimizira napako sledenja in tok. 

Rezultati simulacije potrjujejo, da predlagani regulator prekaša 

tradicionalne, ki uporabljajo kaskadne regulatorje PI. 

 

1 INTRODUCTION 

The Direct Current (DC) motors are prominent 

electromechanical devices that convert the electrical 

energy into a mechanical work by exploiting the 

interactions of the magnetic fields. The interactions are 

based on the fundamental laws of electromagnetism and 

the Lorentz force. The DC motors have been widely 

adopted in various domains due to their low cost, high 

flexibility, remarkable versatility, and inherent 

durability [1]. Their speed control is important for 

ensuring their efficiency and dependability in different 

operational settings. The primary goal of the DC motor 

speed controllers is to swiftly reach a desired speed 

within a predefined reference interval and to robustly 

cope with external perturbations, such as load variations 

and parameter changes [2]. However, attaining an 

optimal performance, especially in the presence of 

environmental disturbances and system nonlinearities, 

requires a level of control robustness that surpasses the 

abilities of the conventional PID controllers, despite 

their generally satisfactory performance [3]. Therefore, 

alternative control strategies need to be investigated to 

tackle the subtle challenges posed by certain operational 

constraints. Some of the alternative control strategies 

that have been proposed in the literature include a 

multiple voltage control [4], Ward Leonard method [5], 

commutation error compensation strategy [6], and linear 

quadratic controller [7]. 

 Reinforcement Learning (RL), a distinct subfield of 

the Artificial Intelligence (AI), enables agents to 

accomplish specific goals by optimizing a numerical 

reward signal [8]. This discipline has progressed along 

three main paths. The first involves the principle of 

learning via a trial-and-error, a concept rooted in the 

study of animal learning within the realms of 

psychology and neuroscience. The second focuses on 

the problem of an optimal control, conceptualized in the 

1950s using a discrete stochastic version of the 

environment, known as Markovian Decision Processes 

(MDP) [9]. The model introduces the idea of the 

dynamical system state and optimal return function, 

often referred to as the Reward. It also defines the 

“Bellman equation” to optimize the agent behavior over 

time, a process known as dynamic programming [10]. 

The third path pertains to temporal-difference methods 

which are a prevailing approach in RL [8]. The 
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approach has been significantly enhanced by the advent 

of the Actor-Critic (AC) architecture [11]. 

 Given their capabilities, the RL algorithms are used 

to handle complex and dynamic systems, such as the 

DC motors. The intricate task of a precise speed control 

in the DC motors can be effectively learned by an RL 

agent. Moreover, the agent can optimize its policy to 

accommodate external disturbances and system 

nonlinearities. Numerous studies and works reported in 

the literature have explored this topic in depth. The 

studies can be categorized into two main groups: those 

which optimize the classical control schemes using the 

RL techniques, and those which employ RL algorithms 

to supplant them. [12] deploys a fuzzy Q-learning agent 

to adjust the gains of a PID controller to get a controller 

that exhibits commendable performance. [13] applies an 

RL DDPG TD3 actor-critic method to derive adaptive 

PI constants used to implement a speed control 

algorithm for a DC motor. Such controller outperforms 

a PI controller adjusted using conventional methods. 

[14] uses an RL algorithm to tune a PI controller and 

compares the obtained results with a PI controller tuned 

using various optimization methods. [15 employs an 

Integral RL technique to design a DC motor controller 

and juxtaposes their design with a traditional RL-based 

controller. The study underscores the optimality and 

adaptability of the RL algorithms. [16] introduces a 

speed controller for a permanently excited DC motor 

based on a TD3 algorithm. The controller demonstrates 

an excellent speed tracking performance. [17] presents 

an application of the Deep Q-Network (DQN) to the 

speed-tracking control of a DC motor. 

 Despite the satisfactory performance of the above 

controllers, the simulation environments used for their 

development are simplistic control scenarios in 

accurately representing the industrial and real-world DC 

motor control schemes. [18] employs an advanced 

simulation model to train a DDPG agent to learn the 

optimal control of a DC-DC Buck converter-fed DC 

motor. The model simulation results underscore the 

generalization capabilities of the RL agent. [19] presents 

an online training of an RL agent for DC motor control. 

The RL agent learns to execute a complex control task 

based solely on a real-time reward signal, thereby 

eliminating the need for an offline training. 

 We use an AC agent to control the DC motor speed. 

The agent generates a binary discrete action in the form 

of a PWM signal to control the power switchers of a H-

bridge. It is trained in a simulation environment that 

accurately reflects real-world scenarios of DC motor 

control. The RL-based controller outperforms the 

classical controller that employs the PSO fine-tuned 

twin cascaded PI controllers. The used classical 

controller exhibits a greater robustness compared to the 

controller using a single PI controller. 

 The structure of our paper is as follows. Section 2 

provides a concise overview of the RL framework. 

Section 3 presents a mathematical model of a separately 

excited DC motor. Section 4 outlines a classical DC 

motor speed control scheme, employing two PI 

regulators, with parameters fine-tuned using the PSO 

algorithm. Section 5, along with its subsequent 

subsections, delves into the design intricacies of the 

proposed RL-based DC motor controller. Section 6 

presents and analyzes our simulation results. Section 7 

draws conclusions of our work and outlines future 

perspectives for enhancing the presented work. 

  

2 REINFORCEMENT LEARNING  

Reinforcement Learning is a Machine Learning 

approach that is based on a set of fundamental 

principles, distinguishing itself from other Machine 

Learning approaches. It is typically performed within a 

framework of interaction between a learning agent and 

an initially unknown environment (Fig. 1), modeled as a 

Markov Decision Process (MDP). 

 At each time step, the environment produces a state. 

Upon receiving the current state, the agent responds 

with an action, computed based on a policy, and 

subsequently executes it. The action leads to a transition 

of the environment to a new state. The environment then 

provides the new state as well as a reward, indicating 

the quality of the new state. The agent receives the new 

state representation and the corresponding reward, and 

the entire process repeats. 

 The agent consists of two components: a policy and a 

learning algorithm. The policy is a mapping between the 

current observation of the environment and a probability 

distribution of actions to take. Within the agent, the 

policy is implemented by a function approximator. It 

has adjustable parameters and uses a specific 

approximation model, such as a deep neural network 

(DNN). 

 The learning algorithm continuously updates the 

policy parameters based on actions, observations, and 

rewards. The goal of the learning algorithm is to find an 

optimal policy that maximizes the long-term expected 

cumulative discounted reward. RL seamlessly integrates 

Neural Networks (NNs) and Machine Learning 

techniques into a problem-solving process, empowering 

agents to make informed decisions based on 

unstructured input data. It eliminates the need for a 

labor-intensive manual engineering of the state space, as 

agents autonomously determine optimal actions to 

achieve their objectives. 

 The RL methodologies frequently leverage NNs to 

approximate both the policy (actor) and value function 

(critic). Such use of NNs enables the agent to effectively 

handle the intricate, high-dimensional input data, which 

may include images or sensor readings. Consequently, 

these networks proficiently represent complex policies 

and value functions, enhancing the agent ability to 

tackle intricate tasks and decision-making processes. 
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3 SEPARATELY EXCITED DC MOTOR MODEL 

DC motors are widely used as actuators due to their 

straightforward construction and the comparatively 

uncomplicated integration of the speed control 

algorithms. This accounts for their ubiquity in the field 

of mobile robotics and various industrial sectors, such 

as manufacturing and transportation. Some of the speed 

control algorithms that are easy to integrate with the DC 

motors include Pulse-Width Modulation (PWM), 

Proportional-Integral-Derivative (PID) control, and 

Fuzzy Logic Control (FLC). 

A separately excited DC motor can be conceptualized 

as a linear Single Input Single Output (SISO) plant 

model of the third order. The DC motors have earned a 

reputation for their exceptional control over the speed 

and position [20]. There is a simple yet profound 

mathematical relationship between the angular velocity 

(ω) of the motor shaft and the input voltage (Va) applied 

to the armature. Their relationship can be derived from 

the fundamental physical laws. This understanding 

provides a solid basis for a further exploration and 

application of the DC motor control systems. 

The schematic diagram of the DC Motor is shown in 

Fig. 2. 

 The following equations describe the dynamic 

behavior of a DC motor controlled by the armature 

current. The motor air gap flux (ϕ) is directly 

proportional to the field current. 

 ( )
f fK i t =  (1) 

The torque produced by the motor is assumed to have a 

linear relationship with both the air gap flux and the 

armature current,  

 ( )
1m aT K i t=  (2) 

 ( ) ( )
1m f f aT K K i t i t=  (3) 

where K1 and Kf are constants.  

When a steady field current is set up in a field coil, the 

motor torque is: 

 ( )m m aT K i t=  (4) 

The Laplace transformation of Equation 4 is: 

 ( )m m aT K I s=  (5) 

The input voltage, when applied to the armature, is 

linked to the armature current: 

 ( ) ( ) ( ) ( )a a a a a bV s R I s L sI s V s= +  (6) 

where Vb(s) is the Back EMF voltage which is 

proportional to the motor speed. Therefore: 

 ( ) ( )b bV s K s=  (7) 

where ( ) ( )s s s =  is the transform of the angular 

velocity and the armature current is: 

 ( )
( ) ( )a b

a

a a

V s K s
I s

R L s

+
=

+
 (8) 

The torque produced by the motor is the same as the 

torque transferred to the load. This can be expressed as: 

 ( ) ( ) ( )m l dT s T s T s= +  (9) 

In this context, Tl is the load torque and Td is the 

disturbance torque, which is typically considered 

negligible. Therefore: 

 ( ) ( ) ( )lT s Js s b s = +  (10) 

Hence, when Td equals zero, the transfer function of the 

motor is as: 

( )
( )

( ) ( ) ( )2

m

a a a a a m b

s K
G s

V s L Js L b R J s R b K K


= =

+ + + +
(11) 

In this context, the angular velocity (ω(s)) is the output 

and the armature voltage (Va(s)) is the input.  

 Table. 1 shows the parameters of the DC motor used 

in our study. 

Table 1. DC motor parameters. 

Parameter Value 

Ra: Armature resistance (Ω) 2.581 

La: Armature inductance (H) 0.025 

Rf: Field resistance (Ω) 281.2 

Lf: Field inductance (H) 156 

Laf: Field armature inductance (H) 0.9483 

J: Total inertia (Kg.m2) 0.02215  

Bm: Viscous friction coefficient (N.m.s) 0.002953  

Tf: Coulomb friction torque (N.m) 0.5161  

 

 

Figure 2. Separately excited DC motor. 

 

 

Figure 1. Reinforcement Learning framework. 
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4 CASCADE PI DC MOTOR SPEED CONTROL  

Fig. 3 depicts the architecture of a DC motor speed 

controller. It consists of two PI controllers as inspired 

by [21]. The PI1 controller controls the motor speed by 

taking the speed error as the input and producing the 

reference armature current. The PI2 controller controls 

the current that empowers the motor armature. PI2 

compares the actual current generated by the H-bridge 

with the reference value and produces a direct voltage 

signal. 

The PWM block plays a pivotal role in this setup by 

converting the DC voltage into a binary switching 

signal. The signal is subsequently used to control the 

switches within the H-bridge. To be noted, the H-bridge 

is a vital component in the power electronics, 

engineered to enable the voltage to be applied across a 

load in both directions. Its name originates from its 

distinctive ‘H’ configuration. The structure consists of 

four switches. They can be either transistors or Metal-

Oxide-Semiconductor Field-Effect Transistors 

(MOSFETs). The innovative design of the H-bridge 

allows the polarity of the voltage applied to the load to 

be switched, offering a versatile solution for controlling 

the direction of the current flow. This feature is 

especially beneficial in applications such as motor 

driving, where altering the direction can reverse the 

motor rotation. 

 The parameters of the two PI controllers are 

optimized using the Particle Swarm Optimization (PSO) 

algorithm. The PSO algorithm, proposed by Kennedy 

and Eberhart [22], draws its inspiration from the 

principles of the swarm intelligence (SI). Modelled after 

the collective behavior observed in flocking birds and 

schooling fish, PSO stands as a potent meta-heuristic 

global optimization technique. Its robust computational 

efficiency renders it a versatile tool applicable to a wide 

array of technical and engineering challenges. 

 PSO is a population-based, self-adaptive, stochastic 

optimization technique that operates as follows. The 

algorithm initiates by generating the initial particles and 

assigning them initial velocities. It evaluates the 

objective function at each particle location, determining 

the best function value and the optimal location. 

Subsequently, it iteratively updates the particle locations 

(the new location is the sum of the old location and the 

velocity, adjusted to keep the particles within bounds), 

velocities, and neighbors. The iterations continue until 

the algorithm meets a stopping criterion. 

In specific case, the cost function is defined as follows: 

 ( )
0

t

ref aC i dt = − +  (12) 

The cost function in Eq. 12 is designed to minimize the 

tracking error (∣ωref - ω∣) and the control effort. It is 

expressed by the armature current (∣ia∣). Executing the 

algorithm for 10,000 iterations (which is the stopping 

criterion) yields the following parameters: 
 Kp1 = 1.4261 

 Ki1 = 195.7448 

 Kaw1 = 196.4208 

 Kp2 = 199.8750 

 Ki2 = 94.5907 

 Kaw2 = 48.8651 
Where Kp is the proportional gains, Ki is the integral 

gains, and Kaw is the anti-windup gains. 

 

5  RL CONTROLLER DESIGN 

The Simulink model, (see Fig. 4), provides a 

comprehensive representation of the presented control 

system, incorporating a broad range of constituent 

elements. Central to this framework is the RL agent 

which controls the DC motor velocity. The control is 

accomplished by interpreting the three key inputs: 

observations, rewards, and a Boolean indicator that 

signals the end of an episode. Using this information, 

the RL agent generates a control signal. In this context, 

it is represented by the PWM signal which guides the 

operational dynamics of the DC motor. 

 

 

 

Figure 3. DC motor speed controller. 

 

 

Figure 4. RL speed control system. 
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The centerpiece of the model is the DC motor block. It 

is meticulously engineered to encapsulate the electrical 

and torque dynamics inherent to the separately excited 

DC motor. The interaction between the RL agent and 

the DC motor is facilitated by the H-bridge interface, 

distinguished by its quartet of switching devices, 

designed to convert a fixed DC input into a variable DC 

output. 

 The model also incorporates sensors which are 

thoughtfully placed to measure critical parameters, such 

as the motor armature current, torque, and rotational 

speed. such comprehensive depiction not only 

highlights the intricate dynamics of the proposed control 

system, but also delineates the synergistic interaction 

among the RL agent, DC motor, and ancillary 

components. This enriched description offers a more 

detailed understanding of the system’s operation and the 

interplay of its components. 

 

5.1 The AC Agent  

The Actor-Critic algorithm is a sophisticated RL 

methodology that combines the strengths of the policy-

based strategies (represented by the Actor) and the 

value-based strategies (represented by the Critic). This 

integrated approach is designed to circumvent the 

inherent limitations observed when these strategies are 

implemented independently by incorporating the 

principles of the Policy Gradient and Q-Learning [23]. 

In this architecture, the Actor determines the course of 

the action based on the current policy. Simultaneously, 

the Critic evaluates the quality of the chosen action and 

provides feedback on the potential adjustments to 

optimize the future decisions. 

 This dual role provides a harmonious balance 

between exploration (probing the unknown areas of the 

environment) and exploitation (utilizing known 

information to make decisions), thereby capitalizing on 

the robustness of both the policy and the value 

functions. The fundamental principle of the Actor-Critic 

method is outlined in Algorithm 1. 

 

Algorithm 1: Actor-Critic algorithm [23] 

Initialize θ and ϕ; 
While not done do 

Sample  ,i is a  from ( )a s  (run the policy to 

sample trajectories); 

Fit ( )V s


 to sampled reward sums; 

( ) ( ) ( ) ( ), ,i i i i i iA s a r s a V s V s  

  = + −  

( ) ( ) ( )
1

log ,
N

i i i ii
J a s A s a

N



       

Update ( )J    −  ; 

End while 

5.2 The Inputs and Outputs of the Agent  

The RL agent has four inputs: the error, its integral, its 

derivative, and the armature current. These observations 

play a pivotal role in specifying and defining the state of 

the system. The RL agent produces a binary signal as 

the output, which represents the PWM signal used to 

control the four switching devices of the H-bridge. The 

H-bridge, in turn, modulates the DC voltage applied to 

the armature of the DC motor (Fig. 4). The reference 

speed follows a constant pattern that varies randomly in 

the amplitude for each episode. The initial speed of the 

motor is set to 0 rpm at the start of each episode. 

5.3 The Agent Neural Networks 

The Neural Networks can be utilized for the nonlinear 

approximation of the both value and the policy 

functions in RL. Our network architecture of the AC 

agent is shown in Fig. 5. It consists of two distinct 

networks: a value function network (known as the Critic 

network) and a policy function network (known as the 

Actor network). 

 Each layer within the networks is characterized by its 

connection type (fully connected: FC), the number of 

the neurons, and the activation function, with the 

exception of the input layer. In the Actor network, the 

hyperbolic tangent (Tanh) activation function is used, 

while the Rectified Linear Unit (ReLU) function is 

employed in the Critic network. The configuration 

ensures the optimal performance of the AC algorithm in 

our scenario. 

5.4 The Reward Function 

A reward function is a mapping from the state-action 

pairs to real numbers, signifying the immediate reward 

the agent receives upon executing a specific action in a 

given state. The instantaneous reward is calculated 

using the following equation: 

 ( ) ( ) ( )( )ar t e t i t= − +  (13) 

where e(t) is the instantaneous error, and ia(t) is the 

armature current. The cumulative reward is then 

determined by summing up the instantaneous rewards 

across the entire episode duration. Maximizing the 

cumulative reward leads to the simultaneous 

minimization of both the tracking error and the control 

effort. 

 

Figure 5. The agent NNs. 
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5.5 The Training 

Fig. 6 presents a comprehensive depiction of the 

learning trajectory of the AC agent which has been 

meticulously trained within the simulated environment 

delineated in Fig. 4. The light blue curve is the reward 

acquired from individual episodes and the dark blue 

curve is the rolling average reward computed over a 

window of 50 episodes. 

 

A significant observation drawn from this data pertains 

to the convergence of the AC agent towards the target 

average reward. The remarkable achievement is realized 

following a sequence of 218 episodes, necessitating a 

cumulative duration of 45 minutes and 2 seconds. This 

underscores the efficacy of the AC agent in optimizing 

its performance within the provided simulated 

environment. 

 During training, the reference speed is varied 

randomly in the range [−1500,1500] rpm at no 

disturbance applied. 

The parameters of the training process are shown in 

Table. 2. 

Table 2. Training process parameters. 

Parameter Value 

Sampling time 0.00008 s 

Episode time 1 s 

Learning rate 0.0001 

Discount factor 0.997 

Stopping average reward -500000 

Averaging window length 50 

Maximum number of the episodes 2000 

 

6 SIMULATION RESULTS 

To assess the performance of the designed RL 

controller, an initial simulation test of the control 

system is conducted. The simulation takes one second at 

a constant reference speed of 1200 rpm. At the 0.25 s 

simulation, an additional input disturbance in the form 

of a step waveform of a magnitude of -100 N.m is 

introduced. The effectiveness of the RL control strategy 

is then evaluated by comparing its performance with 

that of the cascaded PSO fine-tuned PI-based controller. 

Fig. 7 shows the step response of the RL controller 

juxtaposed with that of the PI controller. The 

comparison sheds light on the proficiency of both 

controllers in tracking the reference setpoint and 

mitigating the disturbances. Moreover, Fig. 8 provides 

an insight into the variation of the armature currents 

during the control simulation. 

One of the important advantages of the RL controller is 

its adaptability in navigating diverse simulation 

environments which include randomized setpoints. 

Notably, despite the absence of explicitly applied 

disturbances during the RL agent training phase, its 

experience-based learning enables it to develop robust 

responses to input disturbances. 

 In this context, it should be noted that the PI 

controller demonstrates comparable performance to the 

RL controller. 

Figs. 9 and 10 depict two additional simulation tests 

aimed at tracking different input signals. In Fig. 9, there 

is no overshoot observed with the RL controller. 

Conversely, Fig. 10 highlights the advantageous 

capability of the RL controller in effectively tracking a 

rapidly changing input signal. 

 

 

Figure 6. Learning curves. 

 
 

Figure 7. Simulation test 1. 

 

 

Figure 8. Armature current variations. 
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7 CONCLUSION 

In our study, an RL algorithm is employed to design a 

speed controller for a separately excited DC motor. To 

ensure a superior control performance, a simulation 

environment is meticulously designed in Simulink. This 

environment allows for a precise system modeling, 

incorporating a complete DC motor control scheme and 

the H-bridge. An AC agent is trained focusing on two 

control performance objectives as defined by the reward 

function. The AC agent learns to map the input items to 

the output binary PWM signal, driving the DC motor 

towards the desired reference speed. The learning agent 

replaces the control and the PWM generator of the 

classical control scheme. The training process is 

efficient, with a satisfactory performance achieved in 

just 45 minutes, without the need for numerous 

episodes. 

 Our simulation results show that the performance of 

the RL controller is either comparable or superior to the 

classical speed controller which uses cascade PI 

controllers whose parameters are optimized using the 

PSO algorithm. 

 In our future work, we shall investigate the real-time 

implementation of the presented control scheme.  
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