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Abstract: The paper presents two methods to observe the magnetic flux and rotational speed of the induction motor 

using an inverse T-model. A direct vector control and the sliding-mode control are used. The observer is of an 

exponential order. Its gain is determined the nominal and high-speed operation. The low-speed operation is 

stabilized. The effectiveness of the control and observation algorithm is successfully verified by simulations and 

comparison with experimental results. 

 
Keywords: induction motor, four parameters, field-oriented control, sliding mode control, high gain observer. 

 

 
Metodi za nadzor in opazovanje magnetnega pretoka in 

vrtilne hitrosti indukcijskega motorja z uporabo modela s 

štirimi parametri 

V prispevku predstavljamo dve metodi opazovanja 

magnetnega pretoka in vrtilne hitrosti indukcijskega motorja z 

inverznim T-modelom. Metodi temeljita na neposrednem 

vektorskem krmiljenju in krmiljenju v drsnem načinu. 

Izkoristek smo določili pri nominalni in visoki hitrosti 

delovanja. Delovanje pri nizki hitrosti je stabilizirano. 

Učinkovitost algoritma smo preverili v postopku simulacije in 

z eksperimentalnimi meritvami.. 

 

1 INTRODUCTION 

For the control of the asynchronous machine to be 

efficient a high-order nonlinear model should be used 

and relation coupling between the different magnitudes 

known. The machine parameters generally depend on the 

operating point and vary as a function of the temperature 

machine (resistance) and magnetic state (inductance), 

and load variability can be variable. These variations 

negatively affect the performance of system r when using 

an invariable-parameter controller. New industrial 

applications require position/speed variations of a high-

performance dynamics, good steady-state precision, high 

overload capacity, and robustness to various 

disturbances. Thus, why robust control algorithms is 

desirable both in stabilization and in trajectory following 

[1]. Most induction motor control schemes require 

accurate information the motor state variables and 

parameters. Fluxes are usually estimated based on 

measured stator currents and voltages [2-3], [5-6]. 

However, as they considerably depend on the motor 

model, parameter variations inevitably involve flux 

estimation. A rotor and stator resistance varies mainly as 

a function of the temperature. Thus, the idea of 

combining the theory of a four-parameter model, sliding 

mode technique and flux-oriented control provides a 

good possibility for a robust control for an induction 

motor of variable parameters [2]. 

 In [8], a simple P-type dc-link overvoltage controller 

is proposed for a four-parameter model of the induction 

motor. 

 In [4], the speed-adaptive flux of the sensorless 

induction motor drive using a four-parameter model is 

estimated. 

 In [17], a reduced-order observer is used to estimate 

the rotor flux of the induction motor. It is shown that the 

flux dynamics form a nonlinear closed-loop system when 

estimating the flux field orientation. In [26, 27], use a 

high gain observer for a nonlinear system. [19] proposes 

mathematical models and algorithms to calculate 

processes and characteristics of the induction motor in a 

series compensation of the reactive power. 

 This paper presents a direct vector [3, 4] and a sliding-

mode control both adapted to the four-parameter model 

to control the speed of the induction motor. In [10-12], a 

rotor flux observer for the induction motor is adapted to 

our four-parameter model and an experimental 

evaluation of the direct-vector and sliding mode control 

is presented. The results demonstrate the effectiveness of 

the proposed control model in terms of the system 

stability and robustness against parameter variations. 
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2 MATHEMATICAL Γ INVERSE MODEL OF 

INDUCTION MOTOR 

For the squirrel cage-rotor motor, only four electrical 

parameters can be determined, which leaves a degree of 

freedom in determining the set of parameters [3]. The 

state matrix of the induction motor is of the dimension 

four and has four eigenvalues, there is an infinity of 

solutions with five parameters giving the same 

eigenvalues. To overcome this uncertainty, we use a 

four-parameter model [22] for minimize the leakage 

inductance towards [4] by reducing the coupling flux and 

rotor current. [4]- [14] - [15] - by: 
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R  is the reduced rotor flux. 

Ri is the reduced rotor current, rk is the rotor magnetic 

coupling factor, ML is the reduced magnetizing 

inductance, rrM lkL   and rrR RkR 2  is its reduced 

rotor resistance, 
'

SL  is the stator transient inductance: 
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Figure 1. Flux linkage models, 𝜞 model. 

 

sL is the stator-leakage inductance and rL is the rotor 

leakage inductance. The four parameters become RR , sR  
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Figure 2. Flux-linkage models, inverse-𝜞 model. 

 

Thus, the final four parameters model in a rotating field 

(d, q) is defined by the equations in the state space:  
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2.1 State model in a fixed stator repository 

In the frame of reference (α, β) fixed to the stator, the 

asynchronous motor model defined by the nonlinear 

system with four-parameter is: 
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3 PRINCIPLES OF THE VECTOR CONTROL 

ADAPTED TO THE FOUR-PARAMETER 

MODEL 

For the vector control, a model of the induction motor is 

used in the coordinate system (d, q). It is obtained by 

using a reference frame connected to the rotating field 

whose axis d is aligned with the rotor flux vector: 
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From Equation 6, we get : 
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Therefore, the decoupled system becomes: 
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Depending on how the position rotor flux is evaluated, 

there are two variants of the vector control. In the case of 

a direct control (FOC), the angle S  is measured or 

estimated. In the case of an indirect control (IFOC), the 

angle is calculated from the expression of the slip speed 

(7) where S  . By replacing Equation 10 with 

Equation 7, we get the 𝑈𝑠𝑑
 
and 𝑈𝑠𝑞  commands: 
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Using Equation 8 and 9, the rotor flux and speed are now 

controlled from the magnitudes of stator currents
1( )H s

respectively. The controls are performed by PI 

controllers shown in Figs. 3 and 4 respectively. The rotor 

flux control is ensured by two controllers, PI 
1 H and

3H , such that: 
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Figure 3. Flux control of the four-parameter model. 

 

Where ˆ
sdi  and ref  are the stator current and the 

reference flux in axis d, respectively.  

 The speed is controlled by two controllers Pi 
2H  and

4H , such that: 
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Figure 4. Speed control of the four-parameter model. 

 

Where ˆ
sqi and ref are the stator current in axis q and 

the rotor reference speed. 

 Using the mechanical equation, the desired 

electromechanical torque is: 
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4 SLIDING-MODE CONTROL LAW ADAPTED 

TO THE FOUR-PARAMETER MODEL OF 

THE INDUCTION MOTOR 

 

An induction-motor model is used. It has four parameters 

in the reference (α, β) given by Equation 1, a control law 

based on the sliding-mode theory is: 
T
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It is assumed that all states of the system are measured. 

Our goal is to build control law  Tba uuu  to get 

the motor states, i.e. speed   and the norm of the rotor 

flux squared   to join sliding surface  TSSS 21
.  

 
The states considered for the induction-motor control 

are the speed and the flux modulus.  

 

4.1 Choice of the sliding surface 
 

The sliding surface defined in [4] is; 
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Substituting variables  and  from system (1) in 

Equation 4, we have: 
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After calculating the derivate of 
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By norming, expression Equation 19 becomes: 
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5 SIMULATION RESULTS 

 

5.1 Performance of the direct-field-oriented control 

adapted to the four-parameter system 

 

Simulations are performed on a direct-vector drive of the 

induction motor. The reference speed path is 150 rad/s at 

the startup, with a load torque applied at time t1 = 1.5s 

and t2 = 5.5s.  

 The rotor speed and the load torque are shown in 

Fig.5. The setting parameters are: 

Pmec = 1.1KW, U = 220V, Rr = 4.3047Ω, 

 Rs = 9.65 Ω, Ls = Lr = 0.4718H, M = 0.4475H,  

Jm = 0.0293kg/m², In= 2.6A, fm = 0.0038Nm.sec/rad, 

P= 2, speed 1410 rpm; 

Control loop: Speed (Ω), Choice of poles: Ω0=30, 

ξ=1.25, Parameters of PI controller: Kp=1.1619, 

Ki=12.0059. 
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The rotor speed tested for a variation of + 25% RR, rotor 

flux, speed control and flux estimation are shown in 

Figs 6-10. A satisfactory performance is obtained despite 

a temporal variation of the rotor speed and load torque. 

Despite the state speed error due to the change in the 

rotation direction of the rotor speed and load torque 

(Fig 8), the rotor speed and flux are correctly estimated. 

 

Figure 5. Reference speed and load torque. 

 

Figure 6. Rotor-speed control for a variation of +25% RR. 

Figure 7. Rotor-speed for a variation of +25% RR. 

 
Figure 8. Error-speed control for a variation of +25% RR. 

 
Figure 9. Flux modulus control at a variation of +25% RR. 

 
Figure 10. Rotor-flux estimation error for a variation of 

+25%RR. 

 

5.2 Sliding-mode control in an open loop 
 

The sliding mode controller is adapted to the four 

parameter-model of the induction motor. The flux is 

assumed to be measurable, and the controller is 

simulated for a change in the rotor resistance. The rotor 

speed error and rotor flux error are given in Figs 11-13. 

The variation does not affect the controller because the 

rotor speed error is less than 0.08 (rad/s). 

 

 
Figure 11. Rotor-speed at a +% RR variation. 

Figure 12. Rotor-speed error at a +% RR variation. 

Figure 13. Flux modulus at a + % RR variation. 

 

5.3 Performance of the high-gain observer control 

associated with the sliding-mode control 
 

The nonlinear observer control is simultaneously 

simulated at a low and nominal speed. Fig. 14 shows the 

robustness and efficiency of the high-gain observer 

control adapted to a reduced motor model. The estimated 

flux follows its reference value perfectly despite the 
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variation in the rotor resistance over time. This is 

confirmed in Figs. 15 and 16 where the estimation error 

tends to zero after 0.02 s both at a low as well as at a 

nominal speed. 

  

 
Figure 14. Flux modulus of a +% RR variation and low speed 

(230 tr/mn). 

 
Figure 15. Flux error at a +% RR variation and low speed 

(230 tr/mn). 

 
Figure 16. Flux error at a +% RR variation and nominal speed 

(150 rad/s). 

 
Figure 17. Nominal speed error at a +% RR variation. 

 

6 VALIDATION 

 

Our numerical simulations and results are validated 

compliantly with Benchaib et al. [10] and Hinkannen et. 

al. [16] using the same experimental conditions to ensure 

the similarity of the  numerical results. The motor speed 

is evaluated as a function of time. A comparison between 

the results shows a very good satisfactory agreement. 

 

 
Figure 18. Comparaison between the obtained and the 

reference values [9]. 

 

 
Figure 19. Comparaison between the obtained and the 

reference values [15]. 

 

7 CONCLUSION 

 

Two robust control methods are used to setup a T-inverse 

model of the induction motor. The motor-model 

reduction technique is presented. The methods used to 

control the rotor speed and resistance variation give a 

good dynamic response in very low-speed domain. 

Applying a high gain nonlinear observer control proves 

their robustness in estimating the motor rotor flux. With 

the T-inverse there is no impact by the rotor inductance. 

Simulation results and validation under experimental 

conditions confirm the methods suitability for proposer. 

In future, the impact of the variation of the rotor 

resistance on the control will be experimentally verified 

and estimated for a possible adaptive control. 
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