
ELEKTROTEHNIŠKI VESTNIK 88(5): 290-298, 2021

REVIEW SCIENTIFIC PAPER

Big Data Optimization Using Hive

Vedrana Nerić1, Nermin Sarajlić2

1 Virgin Pulse, Tuzla, Bosnia and Herzegovina
2 Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina
E-mail: vedrana_neric@yahoo.com

Abstract. Traditional database management systems can not deal with big data challenges and too large and

complex datasets. Big data covers a wide area of research and work with and on data – large amounts of data,

new technologies for storing and processing data as well as changes in the interpretation of data. Apache Hadoop

is a platform that was invented to manage big data. Apache Hive is a query and analysis engine built on top of

Hadoop. Although Hadoop/Hive can process any amount of data, optimization can significantly improve the

processing time and cost. The main idea of the paper is to analyze some possible big data optimization techniques

for improving the query performance on Hadoop using Hive.

Keywords: big data, Hadoop, SQL-on-Hadoop, Hive, optimization

Optimizacija velikih podatkov s pomočjo Hive

Tradicionalni sistemi za upravljanje baz podatkov težje

analizirajo velike količine podatkov. Velike količine podatkov

pokrivajo široko področje raziskav, ki vključujejo tudi nove

tehnologije za shranjevanje in obdelavo podatkov ter

spremembe v njihovi interpretaciji. Apache Hadoop/Hive je

platforma za upravljanje velike količine podatkov. Čeprav

lahko Hadoop/Hive obdeluje poljubno količino podatkov, z

optimizacijo podatkov znatno izboljšamo čas obdelave in

posledično stroške. V prispevku so predstavljeni različni

pristopi k optimizaciji obdelave velike količine podatkov.

1 INTRODUCTION

The big data is a field related to dealing with data sets

that are too large or too complex to be handled by

traditional relational database management systems

(RDBMS). The big data is a high volume, high velocity,

and/or high variety of information assets that require

new forms of information processing to enable an

enhanced insight discovery, decision making, and

process optimization [1]. The big data can be described

with the following characteristics [2]-[5]:

• Volume – the large amount of the generated and

stored data; the size of the big data is today in the

rank of even exabytes and zettabytes,

• Velocity – the high speed at which the data is

generated and speed at which that data needs to be

processed,

• Variety – the diversity of the available data in

different sources and forms: structured, semi-

structured and unstructured,

• Veracity – the accuracy of a data set that is

equivalent to the data quality,

• Value – the ability to transform the data into a

business value,

• Variability – the consistency of the data in terms of

availability or reporting period,

• Viscosity – the speed element used to describe the

delay time in the data relating to the event being

described,

• Virality – the data spread rate that describes how

often the data is collected and repeated by other

users or events.

 The paper provides an analysis of some big data

optimization techniques using Hive on a platform for

the distributed data storage Hadoop. The paper is

organized as follows. After the introduction, Apache

Hadoop is described in Chapter 2, Apache Hive in

Chapter 3 and Cloudera Distribution Hadoop (CDH) in

Chapter 4. Chapter 5 describes some of the Hive big

data optimization techniques: cost-based optimization,

statistics, predicate pushdown, parallel execution,

partitioning, bucketing, join types (common join,

skewed join, map join, bucket join). Chapter 6 provides

concluding remarks based on the analysis and testing of

the big data optimization techniques using Hive on

concrete query examples.

2 APACHE HADOOP

One way to store the big data in a distributed

environment and parallel processing is Hadoop. Hadoop

is an Apache open-source software framework for

distributed processing and querying large datasets.

Hadoop is made up of the following main elements:

Received 17 July 2021

Accepted 5 November 2021

BIG DATA OPTIMIZATION USING HIVE 291

• Hadoop Distributed File System (HDFS) – file

system to store the big data at multiple nodes in the

cluster,

• MapReduce – programming model for parallel

computing of the big data,

• Hadoop Common – configuration files and libraries

required by other Hadoop modules,

• YARN – framework for job scheduling and cluster

resource management [6]-[11].

 Most of the tools and solutions are used to support

the main Hadoop elements and provide services such as

storage, analysis, and maintenance of the data. Hadoop

components that together form a Hadoop ecosystem are:

HDFS; YARN (Yet Another Resource Negotiator);

MapReduce (data processing using programming);

Spark (in-memory data processing); Pig, Hive (data

processing using query – SQL-like); HBase (NoSQL

database); Mahout, Spark MLlib (machine learning

algorithm libraries); Solar, Lucene (searching and

indexing), Zookeeper (managing cluster); Oozie (job

scheduling); Apache Drill (SQL-on-Hadoop); Flume,

Sqoop (data ingesting services); Ambari (provision,

monitor and maintain cluster). [12]-[15]

3 APACHE HIVE

Apache Hive is a data warehouse software that enables

writing SQL-like queries to efficiently extract the data

from Apache Hadoop. Traditional SQL queries must be

implemented in the MapReduce Java API to execute

over the distributed data. To bypass writing Java and

simply access data using SQL-like queries, Facebook

developed Apache Hive data warehouse. Apache Hive

is initially developed by Facebook, but it is also used

and developed by other companies (Netflix, Financial

Industry Regulatory Authority). For querying the data

stored in a Hadoop cluster, Hive Query Language

(HiveQL) can be used. Apache Hive translates the input

program written in the HiveQL language to one or more

Java MapReduce, Tez, or Spark jobs that can run in

Hadoop YARN. Apache Hive organizes the data into

tables for HDFS and runs the jobs on a cluster to

produce an answer. [16]-[19]

Some of the Hive features [17]:

• Hive provides a simpler query model with less

coding than MapReduce,

• HiveQL and SQL have a similar syntax,

• Hive provides lots of functions that lead to an easier

analytics usage,

• The response time is typically much faster than other

types of queries on the same type of huge datasets,

• Hive supports running on different computing

frameworks,

• Hive supports the ad hoc querying data on HDFS,

• Hive supports the user-defined functions, scripts,

and a customized I/O format to extend its

functionality,

• Hive is scalable and extensible to various types of

the data and bigger datasets,

• Matured JDBC and ODBC drivers allow many

applications to pull the Hive data for seamless

reporting,

• Hive allows users to read the data in arbitrary

formats, using SerDes and I/O formats,

• Hive has a well-defined architecture for the metadata

management, authentication, and query

optimizations,

• There is a big community of practitioners and

developers working on and using Hive.

The major Hive components are [20]:

• Hive Client – allows writing applications using

different types of clients such as thrift server, JDBC

driver for Java, and applications that use the ODBC

protocol.

• Hive Services

o User Interface – enables external users to

interact with Hive by submitting queries,

instructions and monitoring the process status.

Hive Web UI, command line interface (CLI),

and Hive HD Insight (in windows server) are

supported by the user interface.

o Hive Driver – a component which receives

queries from different sources and clients like

the thrift server, JDBC, and ODBC using the

Hive Server and directly from Hive CLI and

Web UI, and after receiving the queries, it

transfers them to the compiler.

o Compiler – a component that parses the query,

does semantic analysis on the query blocks and

query expressions, and eventually generates an

execution plan with the help of the table and

partition the metadata looked up from the

metastore. The compiler converts the query to

an abstract syntax tree (AST). After checking

for the compatibility and compiled time errors,

it converts AST to a directed acyclic graph

(DAG). DAG divides operators into

MapReduce stages and tasks based on the input

query and data.

o Optimizer – performs transformations on the

execution plan to get an optimized DAG.

o Execution Engine – a component which

executes the execution plan created by the

compiler. The plan is a DAG of stages. The

execution engine manages the dependencies

between different stages of the plan and

executes these stages on appropriate system

components.

• Hive Storage (Metastore) – stores the metadata

about the database like a scheme of the table,

location in the HDFS, data types of the columns, etc.

292 NERIĆ, SARAJLIĆ

4 CLOUDERA DISTRIBUTION HADOOP

Cloudera Inc. is an American software company that

provides a software platform for data engineering, data

warehousing, machine learning, and analytics. The most

popular distribution of Hadoop is the Cloudera open-

source platform CDH (Cloudera Distribution Hadoop).

It is a solution for batch processing, interactive SQL,

interactive search, and continuous availability. CDH

delivers the core elements of Hadoop scalable storage

and distributed computing with additional components

such as the user interface, plus necessary enterprise

capabilities such as security, and integration with a

broad range of hardware and software solutions. The

Cloudera Manager is an end-to-end application for

managing the CDH clusters. It enables fast, easy, and

secure deployment, monitoring, alerting, and

management of the Cloudera platform. The Cloudera

Manager provides a granular visibility into and control

over every part of the CDH cluster. [21]

 Apache Scoop is a part of CDH and a tool that easily

transfers the structured data from RDBMS into HDFS,

while preserving the structure. The Scoop job can be

launched in terminal:
[cloudera@quickstart ~]$ sqoop import-

all-tables \

 -m 1 \

 --connect

jdbc:mysql://quickstart:3306/retail_db \

 --username=retail_dba \

 --password=cloudera \

 --compression-codec=snappy \

 --as-parquetfile \

 --warehouse-dir=/user/hive/warehouse

\

 --hive-import

 The command is launching the MapReduce jobs to

pull the data from the MySQL database and write the

data to HDFS, distributed across the cluster in the

Apache Parquet format, and also it creates tables to

represent the HDFS files in Impala/Apache Hive with a

matching scheme. Parquet is a format designed for

analytical applications on Hadoop to optimize the data

storage and retrieval. Instead of grouping the data into

rows, it groups the data into columns. [22]

 End users can interact with the data warehouse using

Hue. Hue is a query editor web application. Hue runs in

a browser and provides an easy-to-use interface to

several applications to support an interaction with

Hadoop. Using Hue, any of the following tasks can be

performed [23]:

• query Hive data stores,

• create, load, and delete the Hive tables,

• work with the HDFS files and directories,

• create, submit, and monitor the MapReduce jobs,

• manage users and groups.

5 HIVE BIG DATA OPTIMIZATION

Although Hive is built to deal with the big data, the

query performance is still very important. Most of the

time, Hive can rely on the smart query optimizer to find

the best execution strategy as well as the default settings

of configuration parameters. However, for an efficient

data processing and query execution, optimization needs

to be done. In this chapter, some of the Hive query

optimization techniques will be discussed. [24]

5.1 Cost-based optimization and statistics

 Hive optimizes each query’s physical and logical

execution plan before submitting it for the final

execution, but optimization techniques are not based on

the cost of the query. The cost-based optimization

(CBO) is a new feature and a core component in the

Hive query processing engine. CBO offers a better Hive

query performance regarding the cost, resulting in

different decisions: which types of joins to perform,

how to order joins, degree of parallelism, etc. To use

CBO, the following properties (Table 1) should be set at

the beginning of the query. [25], [26]

Table 1. CBO configuration parameters [27]

Configuration

Parameter

Setting Description

hive.cbo.enable true Enables cost-based query

optimization.
hive.stats.autog

ather

true Enables automated gathering
of table level statistics for

newly created tables and

table partitions, such as
tables created with the
INSERT OVERWRITE

statement. The parameter

does not produce column

level statistics, such as those
generated by CBO. If

disabled, administrators

must manually generate the
table level statistics for

newly generated tables and

table partitions with the
ANALYZE TABLE

statement.
hive.stats.fetch

.column.stats

true Instructs Hive to collect
column level statistics.

hive.stats.fetch

.partition.stats

true Instructs Hive to collect

partition level statistics.
hive.compute.que

ry.using.stats

true Instructs Hive to use
statistics when generating

query plans.

 Data preparation for CBO is done by running

ANALYZE command to collect various statistics on the

tables for which CBO will be used. The Hive statistics

are a data collection, such as the number of rows,

number of files, number of partitions if the table is

partitioned, and row data size in bytes, that describe

more details of the objects in the Hive database.

Statistics is a metadata of the Hive data and an input to

BIG DATA OPTIMIZATION USING HIVE 293

the cost-based optimizer that will pick the query plan

with the lowest cost in terms of the system resources

required for the query completion. [17], [28]

The syntax for ANALYZE command is [29]:
ANALYZE TABLE [db_name.]tablename

[PARTITION (partcol1[=val1],

partcol2[=val2],...)]

COMPUTE STATISTICS

 [FOR COLUMNS]

 [CACHE METADATA]

 [NOSCAN];

Q1 – query example for the top ten most popular

product categories:
SELECT c.category_name,

COUNT(order_item_quantity) AS count

FROM order_items oi

INNER JOIN products p ON

oi.order_item_product_id = p.product_id

INNER JOIN categories c ON

c.category_id = p.product_category_id

GROUP BY c.category_name

ORDER BY count DESC

LIMIT 10;

Table 2. CBO execution results

CBO Setting Q1

Execution

time (s)

Off SET hive.cbo.enable = false;

SET hive.compute.query.using

.stats = false;

49.7

On SET hive.cbo.enable = true;

SET hive.compute.query.using

.stats = true;

SET hive.stats.fetch.column.

stats = true;

ANALYZE TABLE order_items

COMPUTE STATISTICS;

ANALYZE TABLE products

COMPUTE STATISTICS;

ANALYZE TABLE categories

COMPUTE STATISTICS;

41.1

5.2 Predicate pushdown

 The predicate pushdown is a traditional RDBMS

term, whereas, in Hive, it works as a predicate pushup.

For the query performance optimization it is important

to execute expressions like filters as early as possible.

The predicate pushdown is enabled by setting the

following property: SET hive.optimize.ppd =

true;. When executing a query in a basic manner,

filtering happens very late in the process. A significant

performance improvement can be provided by moving

filtering to an early phase of the query execution and in

that way, non-matches can be eliminated earlier, and the

cost of processing can be saved at a later stage. The

predicate pushdown is important for minimizing the

amount of the data scanned and processed by an access

method, as well as reducing the amount of the data

passed into Hive for a further query evaluation. [30],

[31]

Q2 – query example for calculating the total revenue per

product and showing the top ten revenue generating

products:
SELECT p.product_id, p.product_name,

r.revenue FROM products p INNER JOIN

(SELECT oi.order_item_product_id,

 SUM(cast(oi.order_item_subtotal AS

 float)) AS revenue

 FROM order_items oi

 INNER JOIN orders o ON

 oi.order_item_order_id = o.order_id

 WHERE o.order_status <> 'CANCELED'

 AND o.order_status <> 'SUSPECTED_FRAUD'

 GROUP BY order_item_product_id) r

ON p.product_id = r.order_item_product_id

ORDER BY r.revenue DESC

LIMIT 10;

Table 3. Predicate pushdown execution results

PPD Setting Q2 Execution time (s)

Off SET hive.optimize.ppd

= false;

79

On SET hive.optimize.ppd

= true;

68

5.3 Parallel execution

 The Hive queries are commonly translated into

several stages (MapReduce stage, sampling stage,

merge stage, limit stage, etc.) that are executed by the

default sequence, one after the other. These stages are

not always dependent on each other and can run in

parallel to save the overall job running time. A parallel

execution can be enabled with the following setting

hive.exec.parallel to true (default false) and

the expected number of the jobs running in parallel

hive.exec.parallel.thread.number can be set

(default 8). [32], [33]

Q3:
SELECT p.product_id, p.product_name,

SUM(cast(oi.order_item_subtotal AS

float)) AS revenue FROM

(SELECT order_item_product_id,

 order_item_order_id, order_item_subtotal

 FROM order_items) oi INNER JOIN

(SELECT order_id FROM orders WHERE

 order_status <> 'CANCELED' AND

 order_status <> 'SUSPECTED_FRAUD') o

ON oi.order_item_order_id = o.order_id

INNER JOIN

(SELECT product_id, product_name FROM

 products) p ON p.product_id =

oi.order_item_product_id

GROUP BY p.product_id, p.product_name;

294 NERIĆ, SARAJLIĆ

Table 4. Parallel execution results

Parallel

Execution

Setting Q3

Execution

time (s)

Off SET hive.exec.parallel =

false;

58.94

On SET hive.exec.parallel =

true;

SET hive.exec.parallel.th

read.number = 16;

47.97

5.4 Partitioning and bucketing

 Partitioning in Hive is a very effective method for

improving the query performance on large tables. It is a

way of dividing a table into related parts based on the

values of a particular column. Using partitions, the data

is stored in subdirectories on HDFS, and it is easy to do

queries on slices of the data. In this way, the query

execution time is reduced because of looking at the

required partition only instead of querying the entire

dataset. Some commonly used dimensions as partitions

keys are partitions by the date and time, locations, and

business logic. [34], [35]

Here is the syntax for creating partitions in a Hive table:
CREATE TABLE table_name (column1

datatype, column2 datatype,…)

PARTITIONED BY(partition1 datatype,

partition2 datatype,…);.

There are two ways of creating partitions in a table [18]:

• Static Partitioning (default) – the data must be

inserted in different partitions of a table manually.

While creating static partitions, it should be

specified for which value a partition will be created.

o For inserting the data from a file to a Hive

table in specified partitions, the LOAD

command can be used. If there are more than

one partition columns in a table, the values for

all partitioning columns should be specified:
LOAD DATA [LOCAL] INPATH 'filepath'

[OVERWRITE] INTO TABLE tablename

[PARTITION(partcolumn1=value1,

partcolumn2=value2 ...)]

o For inserting the data from a query result of

another Hive table, the INSERT command can

be used. The INSERT OVERWRITE statement

will insert the data into a partition and it will

overwrite the existing data of that partition:
INSERT OVERWRITE TABLE tablename1

[PARTITION (partcolumn1=value1,

partcolumn2=value2 ...)]

select_statement1 FROM

from_statement;

o The INSERT INTO statement will insert the

data into a partition and it will not delete any

existing data of that partition and will append

the new data to that partition:
INSERT INTO TABLE tablename1

[PARTITION (partcolumn1=value1,

partcolumn2=value2 ...)]

select_statement1 FROM

from_statement;

• Dynamic Partitioning – while inserting the data, the

values for partition columns do not have to be

specified in the PARTITION clause. Only the name

of the partition columns should be specified, and the

partitions will be created based on the unique values

of that partition column. The dynamic partition

columns must be specified in the last among the

columns in the SELECT statement and in the same

order in which they appear in the PARTITION

clause. Dynamic Partitioning can be enabled by

setting the following properties:
SET hive.exec.dynamic.partition = true;

SET hive.exec.dynamic.partition.mode =

nonstrict;

 Partitioning is efficient for increasing the query

performance only if there is a limited number of

partitions. Partitioning will not perform well on a

column with a large number of unique values where

there will be a large number of partitions. To overcome

the partitioning problem, Hive provides bucketing.

Similar to partitioning, bucketing organizes the data into

separate files in HDFS. The bucketing concept is based

on the hashing principle, where the same type of the

keys is always sent to the same bucket. Bucketing can

be enabled by setting the following property [18]:
SET hive.enforce.bucketing = true;

Here is the syntax for dividing the Hive table into

buckets:
CREATE TABLE table_name(column1 datatype,

column2 datatype,…)

PARTITIONED BY (partition1 datatype,

partition2 datatype,…)

CLUSTERED BY (column1, column2,…) INTO

num BUCKETS;.

Example:
SET hive.exec.dynamic.partition = true;

SET hive.exec.dynamic.partition.mode =

nonstrict;

CREATE TABLE customers_part_state(

customer_id int,

customer_fname string,

customer_lname string,

customer_email string,

customer_password string,

customer_street string,

customer_city string,

customer_zipcode string)

PARTITIONED BY (customer_state string)

ROW FORMAT DELIMITED FIELDS

TERMINATED BY ',';

BIG DATA OPTIMIZATION USING HIVE 295

INSERT INTO customers_part_state

partition(customer_state)

SELECT customer_id, customer_fname,

customer_lname, customer_email,

customer_password, customer_street,

customer_city, customer_zipcode,

customer_state

FROM customers;

Q4:
SELECT * FROM customers

WHERE customer_state = 'PR';

Q5:
SELECT * FROM customers_part_state

WHERE customer_state = 'PR';

Q6:
SELECT SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM order_items oi

INNER JOIN orders o ON o.order_id =

oi.order_item_order_id

INNER JOIN customers c ON c.customer_id =

o.order_customer_id

WHERE c.customer_state = 'PR'

AND o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD';

Q7:
SELECT SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM order_items oi

INNER JOIN orders o ON o.order_id =

oi.order_item_order_id

INNER JOIN customers_part_state c ON

c.customer_id = o.order_customer_id

WHERE c.customer_state = 'PR'

AND o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD';

Table 5. Partitioning execution results

Partitioning Query Execution

time (s)

Off Q4, customers table without

partition

17.56

On Q5, customers_part_state

with partition customer_state

0

Off Q6, customers table without

partition

70

On Q7, customers_part_state

with partition customer_state

58.5

5.5 Joins

 A join in Hive is used for the same purpose as in the

traditional database systems. It is used to combine and

fetch the data from multiple tables based on a common

value or field. JOIN is performed whenever multiple

tables are specified inside the FROM clause of the

statement. [18]

5.5.1 Common join

 The default join type in Hive is a Common Join,

which is also called Distributed Join, or Shuffle Join, or

Reduce Side Join, or Sort Merged Join. This join has a

complete cycle of MapReduce. With a Common Join,

all rows from the joined tables are distributed to all

nodes based on the join keys and values from the same

join keys end up on the same node.

 When performing a normal join, the job is sent to a

MapReduce task which splits the main task into two

stages: map stage and reduce stage. The map stage

interprets the input data and returns the output to the

reduce stage in a form of the key-value pairs. The next

goes through a shuffle stage where they are sorted and

merged. The reducer gets the sorted data and completes

the join job.

 A Common Join works with tables of any size but

performs poorly when the data is skewed. If the join

keys have a large proportion of the data, the

corresponding reducers will be overloaded. When the

majority of the reducers have completed the join

operation while a few reducers are still running there

will be a typical skewed data issue. A Common Join can

be identified when using the EXPLAIN command. A

Join Operator can be seen just below Reduce Operator

Tree. [36], [37]

5.5.2 Skewed join

 The Skewed Join is helpful when a table is skewed (a

table that is having values that are present in large

numbers in the table compared to the other data). The

skew data is stored in a file while the rest of the data is

stored in a separate file. The Skewed Join targets the

skewed data issue when the query waits for the longest

running reducers on the skewed keys while the majority

of the reducers complete the join operation. At the

runtime, it scans the data and detects the keys with a

large skew, which is controlled by the

hive.skewjoin.key parameter (100000 by default),

and stores those keys in the HDFS directory temporarily

instead of processing. Then these skewed keys are

processed in a MapReduce job and that would be much

faster since it would be a Map Join. A Skewed Join can

be enabled with the following parameter: SET

hive.optimize.skewjoin = true; and can be

identified when using the EXPLAIN command,

handleSkewJoin:true can be seen below the Join

Operator and Reduce Operator Tree. [38], [39]

5.5.3 Map join

 A Map Join, also called an Auto Map Join, or Map

Side Join, or Broadcast Join, is efficient when one of the

join tables is small enough so that it can be loaded into

the memory and a join is performed in the map phase of

the MapReduce job. A Map Join is much faster than a

regular join because there is no involved reducer. Hive

296 NERIĆ, SARAJLIĆ

can convert a Common Join into a Map Join based on

the input file size with the following setting: SET

hive.auto.convert.join = true;. During the

join, the determination of the small table is controlled

by the hive.mapjoin.smalltable.filesize

parameter, that is by default 25MB.

 With a Map Join, before the original MapReduce

task, a local MapReduce task is created. It reads the data

of the small table from HDFS and saves it into an in-

memory hash table and then into a hash table file. When

the original join MapReduce task starts, it moves the

hash table file to the Hadoop Distributed Cache, which

will populate the file to each mapper local disk. All the

mappers can load this hash table file into the memory

and then do the join in map stage. For example, for a

join with big table A and small table B, for every

mapper for table A, table B is read completely. As the

smaller table is loaded into the memory and then a join

is performed in the map phase of the MapReduce job,

no reducer is needed, and the reduce phase is skipped.

The Map Join is faster than the regular default join and

can be identified when using the EXPLAIN command, a

Map Join Operator can be seen just below the Map

Operator Tree.

 The query using a Map Join can be specified with a

hint. The general syntax for a Map Join is as follows:
SELECT /*+ MAPJOIN(table2) */ column1,

column2, column3

FROM table1 [alias_name1]

JOIN table2 [alias_name2] ON

table1 [alias_name1].key =

table2 [alias_name2].key

where: table1: is the bigger or larger table, table2: is

the smaller table, [alias_name1]: is the alias name

for table1, [alias_name2]: is the alias name for

table2. [40]-[43]

5.5.4 Bucket join

 The Bucket Join is used when all join tables are large

and the table data has been distributed by the join key. It

is also called the Collocated Join. The Bucket Join is a

special type of the Map Join applied on the bucket

tables. The join tables must be the bucket tables, join on

the buckets columns, and the bucket number in bigger

tables must be a multiple of the bucket number in the

small tables. If one table has 2 buckets, then the other

table must have either 2 buckets or a multiple of 2

buckets (2, 4, 6, etc.). In this case, the efficiency of the

query is improved because the join can be done at the

only mapper side, only the required buckets are fetched,

not the complete table, and only the matching buckets of

all small tables are replicated onto each mapper.

Otherwise, a normal inner join is performed. The

following properties need to be set to true for the query

to work as a Bucket Join: SET

hive.optimize.bucketmapjoin = true; SET

hive.optimize.bucketmapjoin.sortedmerge =

true;. The Bucket Map Join can be identified when

using the EXPLAIN command, Sorted Merge Bucket

Map Join Operator can be seen below the Map Operator

Tree. [44]

5.5.5 Join order

 The query performance is affected by the order of the

join tables, because of the generated intermediate data

sets. The number of the possible join orders increases

exponentially with the number of the involved tables. It

is not possible to evaluate the execution cost of each

join order, but the aim is to find the join order with a

maximum reduction of the intermediate rows generated.

A query execution can be accelerated if the least amount

of the data, that are to be worked on, is identified early

enough. [45]

5.5.6 Join examples

Table 6. Join execution results

Join Setting Description using
EXPLAIN

Q2

Execution

time (s)

Common SET hive

.auto.co

nvert.jo

in =

false;

…

Reduce Operator

Tree:

Join Operator

condition map:

Inner Join 0 to

1

…

78

Map SET hive

.auto.co

nvert.jo

in =

true;

…

Map Operator

Tree:

Map Join

Operator

condition map:

Inner Join 0 to

1

…

67

Q8:
SELECT p.product_id, p.product_name,

SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM products p

INNER JOIN order_items oi ON

oi.order_item_product_id = p.product_id

INNER JOIN orders o ON o.order_id =

oi.order_item_order_id

WHERE o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD'

GROUP BY p.product_id, p.product_name

ORDER BY total DESC;

Q9:
SELECT p.product_id, p.product_name,

SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM order_items oi

INNER JOIN products p ON p.product_id =

oi.order_item_product_id

INNER JOIN orders o ON o.order_id =

oi.order_item_order_id

WHERE o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD'

https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/filecache/DistributedCache.html

BIG DATA OPTIMIZATION USING HIVE 297

GROUP BY p.product_id, p.product_name

ORDER BY total DESC;

Q10:
SELECT p.product_id, p.product_name,

SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM orders o

INNER JOIN order_items oi ON

oi.order_item_order_id = o.order_id

INNER JOIN products p ON p.product_id =

oi.order_item_product_id

WHERE o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD'

GROUP BY p.product_id, p.product_name

ORDER BY total DESC;

Q11:
SELECT p.product_id, p.product_name,

SUM(cast(oi.order_item_subtotal AS

float)) AS total FROM order_items oi

INNER JOIN orders o ON o.order_id =

oi.order_item_order_id

INNER JOIN products p ON p.product_id =

oi.order_item_product_id

WHERE o.order_status <> 'CANCELED'

AND o.order_status <> 'SUSPECTED_FRAUD'

GROUP BY p.product_id, p.product_name

ORDER BY total DESC;

Table 7. The query execution time using a different join order

Setting Query Execution

time (s)
SET hive.auto.convert.join

= true;

SET hive.optimize.ppd =

true;

Q8, Q9

99

Q10, Q11 79

 Table products has 1345 rows, table orders has

500.000 rows, and table order_items has 1.000.000

rows. For the above queries, Q8 and Q9 first join the

products table and the order_items table, and then

the orders table, while Q10 and Q11 join the orders

table and the order_items table first, and then join the

result and the products table. Q10 and Q11 queries are

more efficient because of joining the filtered table

orders and largest table order_items first. The

enabled predicate pushdown will cause filtering the data

before a join. In this way, by adjusting the join order in

a combination with the predicate pushdown, the size of

the intermediate result is reduced and the query

performance is improved.

6 CONCLUSION

The big data brings new opportunities as well as

challenges. One of these challenges is optimization. The

application of optimization techniques enables raising

the quality of the process in terms of improving the

management and processing of large amounts of the

data when achieving desired results. The paper

describes and analyzes different techniques for

improving the query performance. Various queries are

executed and reviewed by using different Hive

optimization techniques, like cost-based optimization,

statistics, predicate pushdown, parallel execution,

partitioning, bucketing, different join types and join

orders. The results of the analysis show that big data

optimization techniques using Hive on Hadoop can

significantly speed up queries. The improvement can

more or less depend on the amount of the data, query

operations and complexity, combination of the Hive

features, and configuration parameters.

REFERENCES

[1] http://www.gartner.com/it-glossary/big-data, accessed: April

2021.

[2] A. K. Bhadani, D. Jothimani, “Big Data: Challenges,
Opportunities, and Realities”, chapter in an edited volume

Effective Big Data Management and Opportunities for

Implementation, 2016.

[3] V. Ganjir, Dr. B. K. Sarkar, R. R. Kumar, “Big Data Analytics for
Healthcare”, International Journal of Research in Engineering,

Technology and Science, vol. VI, special issue, pp. 2-5, 2016.

[4] N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, W. K. M. Ali, M.

Alam, “Big Data: Survey, Technologies, Opportunities, and
Challenges”, The Scientific World Journal, Hindawi Publishing

Corporation, 2014.

[5] V. Nerić, T. Konjić, N. Sarajlić, N. Hodžić, “A Survey on Big

Data in Medical and Healthcare with a Review of the State in

Bosnia and Herzegovina”, The International Symposium on

Computer Science – ISCS, 10th Days of BHAAAS in Bosnia and

Herzegovina, Jahorina, B&H, 2018. (Advanced Technologies,
Systems, and Applications III, Proceedings of the International

Symposium on Innovative and Interdisciplinary Applications of

Advanced Technologies (IAT), vol. 2, Springer, pp. 494-508,

2019.)

[6] A. Pothuganti, “Big Data Analytics: Hadoop-Map Reduce &

NoSQL Databases”, International Journal of Computer Science

and Information Technologies (IJCSIT), vol. 6 (1), pp. 522-527,

2015.

[7] A. Y. Zomaya, S. Sakr, “Handbook of Big Data Technologies”,

Springer, 2017.

[8] T. White, “Hadoop: The Definitive Guide”, O’Reilly, 2015.

[9] R. Jhajj, “Apache Hadoop Cookbook”, Exelixis Media P. C.,

2016.

[10] C. Lam, “Hadoop in Action”, Manning Publications Co., 2010.

[11] A. Holmes, “Hadoop in Practice”, Manning Publications Co.,

2012.

[12] Y. Chen, X. Qin, H. Bian, J. Chen, Z. Dong, X. Du, Y. Gao, D.

Liu, J. Lu, H. Zhang, “A Study of SQL-on-Hadoop Systems”,

Springer International Publishing Switzerland, 2014.

[13] X. Qin, Y. Chen, J. Chen, S. Li, J. Liu, H. Zhang, “The
Performance of SQL-on-Hadoop Systems: An Experimental

Study”, IEEE 6th International Congress on Big Data, 2017.

[14] D. Abadi, S. Babu, F. Ozcan, I. Pandis, “Tutorial: SQL-on-

Hadoop Systems”, VLDB Endowment, vol. 8, no. 12, 2015.

[15] A. Tapdiya, D. Fabbri, “A Comparative Analysis of state-of-the-
art SQL-on-Hadoop Systems for Interactive Analytics”, IEEE Big

Data Conference, 2017.

[16] M. A. Kukreja, “Apache Hive: Enterprise SQL on Big Data

Frameworks”, Technical Report, 2016.

[17] D. Du, “Apache Hive Essentials”, Packt Publishing, 2015.

[18] H. Bansal, S. Chauhan, S. Mehrotra, “Apache Hive Cookbook”,

Packt Publishing, 2016.

[19] J. Rutherglen, D. Wampler, E. Capriolo, “Programming Hive:

Data Warehouse and Query Language for Hadoop”, O’Reilly,

2012.

http://www.gartner.com/it-glossary/big-data

298 NERIĆ, SARAJLIĆ

[20] https://cwiki.apache.org/confluence/display/Hive/Design,

accessed: April 2021.

[21] Cloudera Inc., “Apache Hive Guide”, 2021.

[22] Cloudera Deployment Guide, “Getting Started with Hadoop

Tutorial”, 2021.

[23] Cloudera Inc., “Hue Guide”, 2021.

[24] V. Nerić, N. Sarajlić, “A Review on Big Data Optimization
Techniques”, B&H Electrical Engineering, vol. 14, pp. 13-18,

2020.

[25] S. Bagui, K. Devulapalli, “Comparison of Hive’s Query

Optimisation Techniques”, Int. J. Big Data Intelligence, 2018.

[26] https://cwiki.apache.org/confluence/display/Hive/Cost-

based+optimization+in+Hive, accessed: April 2021.

[27] https://docs.cloudera.com/HDPDocuments/HDP2/HDP-

2.6.4/bk_hive-performance-tuning/content/ch_cost-based-

optimizer.html, accessed: April 2021.

[28] A. Gruenheid, E. Omiecinski, L. Mark, “Query Optimization

Using Column Statistics in Hive”, IDEAS11, 2011.

[29] https://cwiki.apache.org/confluence/display/Hive/StatsDev,

accessed: April 2021.

[30] Q. Liu, H. Hong, H. Zhu, H. Fan, “Research and Comparison of

SQL Optimization Techniques Based on MapReduce”,
International Conference on Computer Science and Application

Engineering (CSAE), 2017.

[31] https://cwiki.apache.org/confluence/display/Hive/FilterPushdown

Dev, accessed: April 2021.

[32] A. Barman, D. Paranjpe, “Improving the Performance of Hive by
Parallel Processing of Massive Data”, International Journal of

Recent Development in Engineering and Technology (IJRDT),

vol. 7, issue 4, 2018.

[33] S. Wu, F. Li, S. Mehrotra, B. C. Ooi, “Query Optimization for

Massively Parallel Data Processing”, SOCC, 2011.

[34] E. Costa, C. Costa, M. Y. Santos, “Partitioning and Bucketing in

Hive-Based Big Data Warehouses”, Trends, and Advances in

Information Systems and Technologies, pp. 764-774, 2018.

[35] E. Costa, C. Costa, M. Y. Santos, “Evaluating Partitioning and
Bucketing Strategies for Hive-based Big Data Warehousing

Systems”, Journal of Big Data, no. 34, 2019.

[36] https://weidongzhou.wordpress.com/2017/06/06/join-type-in-

hive-common-join/, accessed: April 2021.

[37] https://cwiki.apache.org/confluence/display/Hive/LanguageManu

al+JoinOptimization, accessed: April 2021.

[38] https://weidongzhou.wordpress.com/2017/06/08/join-type-in-

hive-skewed-join/, accessed: April 2021.

[39] https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+

Optimization, accessed: April 2021.

[40] https://weidongzhou.wordpress.com/2017/06/07/join-type-in-

hive-map-join/, accessed: April 2021.

[41] https://cwiki.apache.org/confluence/display/Hive/MapJoinOptimi

zation, accessed: April 2021.

[42] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,
“Parallel Data Processing with MapReduce: A Survey”, SIGMOD

Record, vol. 40, no. 4, pp. 11–20, 2011.

[43] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y.

Tian, “A Comparison of Join Algorithms for Log Processing in
MapReduce”, SIGMOD International Conference on

Management of data, New York, NY, USA, pp. 975–986, 2010.

[44] https://weidongzhou.wordpress.com/2017/06/09/join-type-bucket-

join/, accessed: April 2021.

[45] S. Pal, “SQL on Big Data – Technology, Architecture, and

Innovation”, Apress, 2016.

Vedrana Nerić graduated in 2006 and received her M.Sc.

degree in 2013 from the Faculty of Electrical Engineering of

the University of Tuzla, Bosnia and Herzegovina. During her

studies, she was presented three Silver and a Gold Medal by

the same university. Currently, she is a Ph.D. student. She is

employed with Virgin Pulse, Tuzla, as a senior data engineer.

In 2014, she was nominated to a teaching assistant in the field

of Computer and Information Science at the same faculty.

Nermin Sarajlić graduated in 1987 and received his M.Sc.

degree in 1997 from the Faculty of Electrical Engineering and

Faculty of Electrical Engineering and Mechanical

Engineering, respectively, and his Ph.D. degree in 2002 from

the Faculty of Electrical Engineering of the University of

Tuzla, Bosnia and Herzegovina. His field of interest is the

calculation of the coupled electromagnetic-temperature fields,

cryptography, crypto analysis.

https://cwiki.apache.org/confluence/display/Hive/Design
https://cwiki.apache.org/confluence/display/Hive/Cost-based+optimization+in+Hive
https://cwiki.apache.org/confluence/display/Hive/Cost-based+optimization+in+Hive
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.4/bk_hive-performance-tuning/content/ch_cost-based-optimizer.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.4/bk_hive-performance-tuning/content/ch_cost-based-optimizer.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.4/bk_hive-performance-tuning/content/ch_cost-based-optimizer.html
https://cwiki.apache.org/confluence/display/Hive/StatsDev
https://cwiki.apache.org/confluence/display/Hive/FilterPushdownDev
https://cwiki.apache.org/confluence/display/Hive/FilterPushdownDev
https://weidongzhou.wordpress.com/2017/06/06/join-type-in-hive-common-join/
https://weidongzhou.wordpress.com/2017/06/06/join-type-in-hive-common-join/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://weidongzhou.wordpress.com/2017/06/07/join-type-in-hive-map-join/
https://weidongzhou.wordpress.com/2017/06/07/join-type-in-hive-map-join/
https://cwiki.apache.org/confluence/display/Hive/MapJoinOptimization
https://cwiki.apache.org/confluence/display/Hive/MapJoinOptimization

