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Abstract. Traditional database management systems can not deal with big data challenges and too large and 

complex datasets. Big data covers a wide area of research and work with and on data – large amounts of data, 

new technologies for storing and processing data as well as changes in the interpretation of data. Apache Hadoop 

is a platform that was invented to manage big data. Apache Hive is a query and analysis engine built on top of 

Hadoop. Although Hadoop/Hive can process any amount of data, optimization can significantly improve the 

processing time and cost. The main idea of the paper is to analyze some possible big data optimization techniques 

for improving the query performance on Hadoop using Hive. 
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Optimizacija velikih podatkov s pomočjo Hive 

Tradicionalni sistemi za upravljanje baz podatkov težje 

analizirajo velike količine podatkov. Velike količine podatkov 

pokrivajo široko področje raziskav, ki vključujejo tudi nove 

tehnologije za shranjevanje in obdelavo podatkov ter 

spremembe v njihovi interpretaciji. Apache Hadoop/Hive je 

platforma za upravljanje velike količine podatkov. Čeprav 

lahko Hadoop/Hive obdeluje poljubno količino podatkov, z 

optimizacijo podatkov znatno izboljšamo čas obdelave in 

posledično stroške. V prispevku so predstavljeni različni 

pristopi k optimizaciji obdelave velike količine podatkov. 

 

1 INTRODUCTION 

The big data is a field related to dealing with data sets 

that are too large or too complex to be handled by 

traditional relational database management systems 

(RDBMS). The big data is a high volume, high velocity, 

and/or high variety of information assets that require 

new forms of information processing to enable an 

enhanced insight discovery, decision making, and 

process optimization [1]. The big data can be described 

with the following characteristics [2]-[5]: 

• Volume – the large amount of the generated and 

stored data; the size of the big data is today in the 

rank of even exabytes and zettabytes,  

• Velocity – the high speed at which the data is 

generated and speed at which that data needs to be 

processed, 

• Variety – the diversity of the available data in 

different sources and forms: structured, semi-

structured and unstructured, 

• Veracity – the accuracy of a data set that is 

equivalent to the data quality, 

• Value – the ability to transform the data into a 

business value, 

• Variability – the consistency of the data in terms of 

availability or reporting period, 

• Viscosity – the speed element used to describe the 

delay time in the data relating to the event being 

described, 

• Virality – the data spread rate that describes how 

often the data is collected and repeated by other 

users or events. 

 The paper provides an analysis of some big data 

optimization techniques using Hive on a platform for 

the distributed data storage Hadoop. The paper is 

organized as follows. After the introduction, Apache 

Hadoop is described in Chapter 2, Apache Hive in 

Chapter 3 and Cloudera Distribution Hadoop (CDH) in 

Chapter 4. Chapter 5 describes some of the Hive big 

data optimization techniques: cost-based optimization, 

statistics, predicate pushdown, parallel execution, 

partitioning, bucketing, join types (common join, 

skewed join, map join, bucket join). Chapter 6 provides 

concluding remarks based on the analysis and testing of 

the big data optimization techniques using Hive on 

concrete query examples.  

 

  

2 APACHE HADOOP  

One way to store the big data in a distributed 

environment and parallel processing is Hadoop. Hadoop 

is an Apache open-source software framework for 

distributed processing and querying large datasets. 

Hadoop is made up of the following main elements:  
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• Hadoop Distributed File System (HDFS) – file 

system to store the big data at multiple nodes in the 

cluster, 

• MapReduce – programming model for parallel 

computing of the big data, 

• Hadoop Common – configuration files and libraries 

required by other Hadoop modules,  

• YARN – framework for job scheduling and cluster 

resource management [6]-[11]. 

 Most of the tools and solutions are used to support 

the main Hadoop elements and provide services such as 

storage, analysis, and maintenance of the data. Hadoop 

components that together form a Hadoop ecosystem are: 

HDFS; YARN (Yet Another Resource Negotiator); 

MapReduce (data processing using programming); 

Spark (in-memory data processing); Pig, Hive (data 

processing using query – SQL-like); HBase (NoSQL 

database); Mahout, Spark MLlib (machine learning 

algorithm libraries); Solar, Lucene (searching and 

indexing), Zookeeper (managing cluster); Oozie (job 

scheduling); Apache Drill (SQL-on-Hadoop); Flume, 

Sqoop (data ingesting services); Ambari (provision, 

monitor and maintain cluster). [12]-[15] 

 

3 APACHE HIVE 

Apache Hive is a data warehouse software that enables 

writing SQL-like queries to efficiently extract the data 

from Apache Hadoop. Traditional SQL queries must be 

implemented in the MapReduce Java API to execute 

over the distributed data. To bypass writing Java and 

simply access data using SQL-like queries, Facebook 

developed Apache Hive data warehouse. Apache Hive 

is initially developed by Facebook, but it is also used 

and developed by other companies (Netflix, Financial 

Industry Regulatory Authority). For querying the data 

stored in a Hadoop cluster, Hive Query Language 

(HiveQL) can be used. Apache Hive translates the input 

program written in the HiveQL language to one or more 

Java MapReduce, Tez, or Spark jobs that can run in 

Hadoop YARN. Apache Hive organizes the data into 

tables for HDFS and runs the jobs on a cluster to 

produce an answer. [16]-[19] 

 

Some of the Hive features [17]: 

• Hive provides a simpler query model with less 

coding than MapReduce, 

• HiveQL and SQL have a similar syntax, 

• Hive provides lots of functions that lead to an easier 

analytics usage, 

• The response time is typically much faster than other 

types of queries on the same type of huge datasets, 

• Hive supports running on different computing 

frameworks, 

• Hive supports the ad hoc querying data on HDFS, 

• Hive supports the user-defined functions, scripts, 

and a customized I/O format to extend its 

functionality, 

• Hive is scalable and extensible to various types of 

the data and bigger datasets, 

• Matured JDBC and ODBC drivers allow many 

applications to pull the Hive data for seamless 

reporting, 

• Hive allows users to read the data in arbitrary 

formats, using SerDes and I/O formats, 

• Hive has a well-defined architecture for the metadata 

management, authentication, and query 

optimizations, 

• There is a big community of practitioners and 

developers working on and using Hive. 

 

The major Hive components are [20]: 

• Hive Client – allows writing applications using 

different types of clients such as thrift server, JDBC 

driver for Java, and applications that use the ODBC 

protocol. 

• Hive Services 

o User Interface – enables external users to 

interact with Hive by submitting queries, 

instructions and monitoring the process status. 

Hive Web UI, command line interface (CLI), 

and Hive HD Insight (in windows server) are 

supported by the user interface. 

o Hive Driver – a component which receives 

queries from different sources and clients like 

the thrift server, JDBC, and ODBC using the 

Hive Server and directly from Hive CLI and 

Web UI, and after receiving the queries, it 

transfers them to the compiler. 

o Compiler – a component that parses the query, 

does semantic analysis on the query blocks and 

query expressions, and eventually generates an 

execution plan with the help of the table and 

partition the metadata looked up from the 

metastore. The compiler converts the query to 

an abstract syntax tree (AST). After checking 

for the compatibility and compiled time errors, 

it converts AST to a directed acyclic graph 

(DAG). DAG divides operators into 

MapReduce stages and tasks based on the input 

query and data. 

o Optimizer – performs transformations on the 

execution plan to get an optimized DAG. 

o Execution Engine – a component which 

executes the execution plan created by the 

compiler. The plan is a DAG of stages. The 

execution engine manages the dependencies 

between different stages of the plan and 

executes these stages on appropriate system 

components. 

• Hive Storage (Metastore) – stores the metadata 

about the database like a scheme of the table, 

location in the HDFS, data types of the columns, etc. 
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4 CLOUDERA DISTRIBUTION HADOOP  

Cloudera Inc. is an American software company that 

provides a software platform for data engineering, data 

warehousing, machine learning, and analytics. The most 

popular distribution of Hadoop is the Cloudera open-

source platform CDH (Cloudera Distribution Hadoop). 

It is a solution for batch processing, interactive SQL, 

interactive search, and continuous availability. CDH 

delivers the core elements of Hadoop scalable storage 

and distributed computing with additional components 

such as the user interface, plus necessary enterprise 

capabilities such as security, and integration with a 

broad range of hardware and software solutions. The 

Cloudera Manager is an end-to-end application for 

managing the CDH clusters. It enables fast, easy, and 

secure deployment, monitoring, alerting, and 

management of the Cloudera platform. The Cloudera 

Manager provides a granular visibility into and control 

over every part of the CDH cluster. [21] 

 Apache Scoop is a part of CDH and a tool that easily 

transfers the structured data from RDBMS into HDFS, 

while preserving the structure. The Scoop job can be 

launched in terminal: 
[cloudera@quickstart ~]$ sqoop import-

all-tables \ 

    -m 1 \ 

    --connect 

jdbc:mysql://quickstart:3306/retail_db \ 

    --username=retail_dba \ 

    --password=cloudera \ 

    --compression-codec=snappy \ 

    --as-parquetfile \ 

    --warehouse-dir=/user/hive/warehouse 

\ 

    --hive-import 

 The command is launching the MapReduce jobs to 

pull the data from the MySQL database and write the 

data to HDFS, distributed across the cluster in the 

Apache Parquet format, and also it creates tables to 

represent the HDFS files in Impala/Apache Hive with a 

matching scheme. Parquet is a format designed for 

analytical applications on Hadoop to optimize the data 

storage and retrieval. Instead of grouping the data into 

rows, it groups the data into columns. [22] 

 End users can interact with the data warehouse using 

Hue. Hue is a query editor web application. Hue runs in 

a browser and provides an easy-to-use interface to 

several applications to support an interaction with 

Hadoop. Using Hue, any of the following tasks can be 

performed [23]: 

• query Hive data stores, 

• create, load, and delete the Hive tables, 

• work with the HDFS files and directories, 

• create, submit, and monitor the MapReduce jobs, 

• manage users and groups. 

 

5 HIVE BIG DATA OPTIMIZATION  

Although Hive is built to deal with the big data, the 

query performance is still very important. Most of the 

time, Hive can rely on the smart query optimizer to find 

the best execution strategy as well as the default settings 

of configuration parameters. However, for an efficient 

data processing and query execution, optimization needs 

to be done. In this chapter, some of the Hive query 

optimization techniques will be discussed. [24] 

 

5.1 Cost-based optimization and statistics 

 Hive optimizes each query’s physical and logical 

execution plan before submitting it for the final 

execution, but optimization techniques are not based on 

the cost of the query. The cost-based optimization 

(CBO) is a new feature and a core component in the 

Hive query processing engine. CBO offers a better Hive 

query performance regarding the cost, resulting in 

different decisions: which types of joins to perform, 

how to order joins, degree of parallelism, etc. To use 

CBO, the following properties (Table 1) should be set at 

the beginning of the query. [25], [26] 

 

Table 1. CBO configuration parameters [27] 

Configuration 

Parameter 

Setting Description 

hive.cbo.enable true Enables cost-based query 

optimization. 
hive.stats.autog

ather 

true Enables automated gathering 
of table level statistics for 

newly created tables and 

table partitions, such as 
tables created with the 
INSERT OVERWRITE 

statement. The parameter 

does not produce column 

level statistics, such as those 
generated by CBO. If 

disabled, administrators 

must manually generate the 
table level statistics for 

newly generated tables and 

table partitions with the 
ANALYZE TABLE 

statement. 
hive.stats.fetch

.column.stats 

true Instructs Hive to collect 
column level statistics. 

hive.stats.fetch

.partition.stats 

true Instructs Hive to collect 

partition level statistics. 
hive.compute.que

ry.using.stats 

true Instructs Hive to use 
statistics when generating 

query plans. 

 

 Data preparation for CBO is done by running 

ANALYZE command to collect various statistics on the 

tables for which CBO will be used. The Hive statistics 

are a data collection, such as the number of rows, 

number of files, number of partitions if the table is 

partitioned, and row data size in bytes, that describe 

more details of the objects in the Hive database. 

Statistics is a metadata of the Hive data and an input to 
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the cost-based optimizer that will pick the query plan 

with the lowest cost in terms of the system resources 

required for the query completion. [17], [28] 

 

The syntax for ANALYZE command is [29]: 
ANALYZE TABLE [db_name.]tablename  

[PARTITION (partcol1[=val1], 

partcol2[=val2],...)] 

COMPUTE STATISTICS 

  [FOR COLUMNS] 

  [CACHE METADATA] 

  [NOSCAN]; 

 

Q1 – query example for the top ten most popular 

product categories: 
SELECT c.category_name,        

COUNT(order_item_quantity) AS count   

FROM order_items oi 

INNER JOIN products p ON 

oi.order_item_product_id = p.product_id 

INNER JOIN categories c ON  

c.category_id = p.product_category_id 

GROUP BY c.category_name 

ORDER BY count DESC 

LIMIT 10; 

 

Table 2. CBO execution results 

CBO Setting Q1 

Execution 

time (s) 

Off SET hive.cbo.enable = false; 

SET hive.compute.query.using

.stats = false; 

49.7 

 

On SET hive.cbo.enable = true; 

SET hive.compute.query.using

.stats = true; 

SET hive.stats.fetch.column.

stats = true; 

ANALYZE TABLE order_items 

COMPUTE STATISTICS; 

ANALYZE TABLE products 

COMPUTE STATISTICS; 

ANALYZE TABLE categories 

COMPUTE STATISTICS; 

41.1 

 

5.2 Predicate pushdown 

 The predicate pushdown is a traditional RDBMS 

term, whereas, in Hive, it works as a predicate pushup. 

For the query performance optimization it is important 

to execute expressions like filters as early as possible. 

The predicate pushdown is enabled by setting the 

following property: SET hive.optimize.ppd = 

true;. When executing a query in a basic manner, 

filtering happens very late in the process. A significant 

performance improvement can be provided by moving 

filtering to an early phase of the query execution and in 

that way, non-matches can be eliminated earlier, and the 

cost of processing can be saved at a later stage. The 

predicate pushdown is important for minimizing the 

amount of the data scanned and processed by an access 

method, as well as reducing the amount of the data 

passed into Hive for a further query evaluation. [30], 

[31] 

 

Q2 – query example for calculating the total revenue per 

product and showing the top ten revenue generating 

products: 
SELECT p.product_id, p.product_name, 

r.revenue FROM products p INNER JOIN  

(SELECT oi.order_item_product_id,  

 SUM(cast(oi.order_item_subtotal AS     

 float)) AS revenue  

 FROM order_items oi  

 INNER JOIN orders o ON     

 oi.order_item_order_id = o.order_id  

 WHERE o.order_status <> 'CANCELED'  

 AND o.order_status <> 'SUSPECTED_FRAUD' 

 GROUP BY order_item_product_id) r  

ON p.product_id = r.order_item_product_id 

ORDER BY r.revenue DESC 

LIMIT 10; 

 

Table 3. Predicate pushdown execution results 

PPD Setting Q2 Execution time (s) 

Off SET hive.optimize.ppd 

= false; 

79 

On SET hive.optimize.ppd 

= true; 

68 

 

5.3 Parallel execution 

 The Hive queries are commonly translated into 

several stages (MapReduce stage, sampling stage, 

merge stage, limit stage, etc.) that are executed by the 

default sequence, one after the other. These stages are 

not always dependent on each other and can run in 

parallel to save the overall job running time. A parallel 

execution can be enabled with the following setting 

hive.exec.parallel to true (default false) and 

the expected number of the jobs running in parallel 

hive.exec.parallel.thread.number can be set 

(default 8). [32], [33] 

 

Q3: 
SELECT p.product_id, p.product_name, 

SUM(cast(oi.order_item_subtotal AS 

float)) AS revenue FROM  

(SELECT order_item_product_id,    

 order_item_order_id, order_item_subtotal 

 FROM order_items) oi INNER JOIN  

(SELECT order_id FROM orders WHERE    

 order_status <> 'CANCELED' AND    

 order_status <> 'SUSPECTED_FRAUD') o  

ON oi.order_item_order_id = o.order_id 

INNER JOIN  

(SELECT product_id, product_name FROM   

 products) p ON p.product_id = 

oi.order_item_product_id 

GROUP BY p.product_id, p.product_name; 
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Table 4. Parallel execution results 

Parallel 

Execution 

Setting Q3 

Execution 

time (s) 

Off SET hive.exec.parallel = 

false; 

58.94 

On SET hive.exec.parallel = 

true; 

SET hive.exec.parallel.th

read.number = 16; 

47.97 

 

5.4 Partitioning and bucketing 

 Partitioning in Hive is a very effective method for 

improving the query performance on large tables. It is a 

way of dividing a table into related parts based on the 

values of a particular column. Using partitions, the data 

is stored in subdirectories on HDFS, and it is easy to do 

queries on slices of the data. In this way, the query 

execution time is reduced because of looking at the 

required partition only instead of querying the entire 

dataset. Some commonly used dimensions as partitions 

keys are partitions by the date and time, locations, and 

business logic. [34], [35] 

 

Here is the syntax for creating partitions in a Hive table: 
CREATE TABLE table_name (column1 

datatype, column2 datatype,…) 

PARTITIONED BY(partition1 datatype, 

partition2 datatype,…);. 

 

There are two ways of creating partitions in a table [18]: 

• Static Partitioning (default) – the data must be 

inserted in different partitions of a table manually. 

While creating static partitions, it should be 

specified for which value a partition will be created.  

o For inserting the data from a file to a Hive 

table in specified partitions, the LOAD 

command can be used. If there are more than 

one partition columns in a table, the values for 

all partitioning columns should be specified: 
LOAD DATA [LOCAL] INPATH 'filepath' 

[OVERWRITE] INTO TABLE tablename 

[PARTITION(partcolumn1=value1, 

partcolumn2=value2 ...)] 

o For inserting the data from a query result of 

another Hive table, the INSERT command can 

be used. The INSERT OVERWRITE statement 

will insert the data into a partition and it will 

overwrite the existing data of that partition: 
INSERT OVERWRITE TABLE tablename1  

[PARTITION (partcolumn1=value1, 

partcolumn2=value2 ...)] 

select_statement1 FROM 

from_statement; 

o The INSERT INTO statement will insert the 

data into a partition and it will not delete any 

existing data of that partition and will append 

the new data to that partition: 
INSERT INTO TABLE tablename1  

[PARTITION (partcolumn1=value1, 

partcolumn2=value2 ...)] 

select_statement1 FROM 

from_statement; 

• Dynamic Partitioning – while inserting the data, the 

values for partition columns do not have to be 

specified in the PARTITION clause. Only the name 

of the partition columns should be specified, and the 

partitions will be created based on the unique values 

of that partition column. The dynamic partition 

columns must be specified in the last among the 

columns in the SELECT statement and in the same 

order in which they appear in the PARTITION 

clause. Dynamic Partitioning can be enabled by 

setting the following properties: 
SET hive.exec.dynamic.partition = true; 

SET hive.exec.dynamic.partition.mode = 

nonstrict; 

 

 Partitioning is efficient for increasing the query 

performance only if there is a limited number of 

partitions. Partitioning will not perform well on a 

column with a large number of unique values where 

there will be a large number of partitions. To overcome 

the partitioning problem, Hive provides bucketing. 

Similar to partitioning, bucketing organizes the data into 

separate files in HDFS. The bucketing concept is based 

on the hashing principle, where the same type of the 

keys is always sent to the same bucket. Bucketing can 

be enabled by setting the following property [18]:  
SET hive.enforce.bucketing = true; 

 

Here is the syntax for dividing the Hive table into 

buckets: 
CREATE TABLE table_name(column1 datatype, 

column2 datatype,…) 

PARTITIONED BY (partition1 datatype, 

partition2 datatype,…) 

CLUSTERED BY (column1, column2,…) INTO 

num BUCKETS;. 

 

Example: 
SET hive.exec.dynamic.partition = true; 

SET hive.exec.dynamic.partition.mode = 

nonstrict; 

 

CREATE TABLE customers_part_state( 

customer_id int, 

customer_fname string,  

customer_lname string,  

customer_email string,  

customer_password string, 

customer_street string, 

customer_city string, 

customer_zipcode string) 

PARTITIONED BY (customer_state string) 

ROW FORMAT DELIMITED FIELDS  

TERMINATED BY ','; 
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INSERT INTO customers_part_state 

partition(customer_state) 

SELECT customer_id, customer_fname, 

customer_lname, customer_email, 

customer_password, customer_street, 

customer_city, customer_zipcode, 

customer_state 

FROM customers; 

 

Q4: 
SELECT * FROM customers  

WHERE customer_state = 'PR'; 

 

Q5:  
SELECT * FROM customers_part_state  

WHERE customer_state = 'PR'; 

 

Q6: 
SELECT SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM order_items oi 

INNER JOIN orders o ON o.order_id = 

oi.order_item_order_id 

INNER JOIN customers c ON c.customer_id = 

o.order_customer_id 

WHERE c.customer_state = 'PR' 

AND o.order_status <> 'CANCELED' 

AND o.order_status <> 'SUSPECTED_FRAUD'; 

 

Q7: 
SELECT SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM order_items oi 

INNER JOIN orders o ON o.order_id = 

oi.order_item_order_id 

INNER JOIN customers_part_state c ON 

c.customer_id = o.order_customer_id 

WHERE c.customer_state = 'PR'  

AND o.order_status <> 'CANCELED' 

AND o.order_status <> 'SUSPECTED_FRAUD'; 

 

Table 5. Partitioning execution results 

Partitioning Query Execution 

time (s) 

Off Q4, customers table without 

partition 

17.56 

On Q5, customers_part_state 

with partition customer_state 

0 

Off Q6, customers table without 

partition 

70 

On Q7, customers_part_state 

with partition customer_state 

58.5 

 

5.5 Joins 

 A join in Hive is used for the same purpose as in the 

traditional database systems. It is used to combine and 

fetch the data from multiple tables based on a common 

value or field. JOIN is performed whenever multiple 

tables are specified inside the FROM clause of the 

statement. [18] 

  

5.5.1 Common join  

 The default join type in Hive is a Common Join, 

which is also called Distributed Join, or Shuffle Join, or 

Reduce Side Join, or Sort Merged Join. This join has a 

complete cycle of MapReduce. With a Common Join, 

all rows from the joined tables are distributed to all 

nodes based on the join keys and values from the same 

join keys end up on the same node. 

 When performing a normal join, the job is sent to a 

MapReduce task which splits the main task into two 

stages: map stage and reduce stage. The map stage 

interprets the input data and returns the output to the 

reduce stage in a form of the key-value pairs. The next 

goes through a shuffle stage where they are sorted and 

merged. The reducer gets the sorted data and completes 

the join job. 

 A Common Join works with tables of any size but 

performs poorly when the data is skewed. If the join 

keys have a large proportion of the data, the 

corresponding reducers will be overloaded. When the 

majority of the reducers have completed the join 

operation while a few reducers are still running there 

will be a typical skewed data issue. A Common Join can 

be identified when using the EXPLAIN command. A 

Join Operator can be seen just below Reduce Operator 

Tree. [36], [37] 

 

5.5.2 Skewed join 

 The Skewed Join is helpful when a table is skewed (a 

table that is having values that are present in large 

numbers in the table compared to the other data). The 

skew data is stored in a file while the rest of the data is 

stored in a separate file. The Skewed Join targets the 

skewed data issue when the query waits for the longest 

running reducers on the skewed keys while the majority 

of the reducers complete the join operation. At the 

runtime, it scans the data and detects the keys with a 

large skew, which is controlled by the 

hive.skewjoin.key parameter (100000 by default), 

and stores those keys in the HDFS directory temporarily 

instead of processing. Then these skewed keys are 

processed in a MapReduce job and that would be much 

faster since it would be a Map Join. A Skewed Join can 

be enabled with the following parameter:  SET 

hive.optimize.skewjoin = true; and can be 

identified when using the EXPLAIN command, 

handleSkewJoin:true can be seen below the Join 

Operator and Reduce Operator Tree. [38], [39] 

 

5.5.3 Map join  

 A Map Join, also called an Auto Map Join, or Map 

Side Join, or Broadcast Join, is efficient when one of the 

join tables is small enough so that it can be loaded into 

the memory and a join is performed in the map phase of 

the MapReduce job. A Map Join is much faster than a 

regular join because there is no involved reducer. Hive 
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can convert a Common Join into a Map Join based on 

the input file size with the following setting: SET 

hive.auto.convert.join = true;. During the 

join, the determination of the small table is controlled 

by the hive.mapjoin.smalltable.filesize 

parameter, that is by default 25MB. 

 With a Map Join, before the original MapReduce 

task, a local MapReduce task is created. It reads the data 

of the small table from HDFS and saves it into an in-

memory hash table and then into a hash table file. When 

the original join MapReduce task starts, it moves the 

hash table file to the Hadoop Distributed Cache, which 

will populate the file to each mapper local disk. All the 

mappers can load this hash table file into the memory 

and then do the join in map stage. For example, for a 

join with big table A and small table B, for every 

mapper for table A, table B is read completely. As the 

smaller table is loaded into the memory and then a join 

is performed in the map phase of the MapReduce job, 

no reducer is needed, and the reduce phase is skipped. 

The Map Join is faster than the regular default join and 

can be identified when using the EXPLAIN command, a 

Map Join Operator can be seen just below the Map 

Operator Tree. 

 

 The query using a Map Join can be specified with a 

hint. The general syntax for a Map Join is as follows: 
SELECT /*+ MAPJOIN(table2) */ column1,  

column2, column3  

FROM table1 [alias_name1]  

JOIN table2 [alias_name2] ON  

table1 [alias_name1].key =  

table2 [alias_name2].key 

where: table1: is the bigger or larger table, table2: is 

the smaller table, [alias_name1]: is the alias name 

for table1, [alias_name2]: is the alias name for 

table2. [40]-[43]  

 

5.5.4 Bucket join  

 The Bucket Join is used when all join tables are large 

and the table data has been distributed by the join key. It 

is also called the Collocated Join. The Bucket Join is a 

special type of the Map Join applied on the bucket 

tables. The join tables must be the bucket tables, join on 

the buckets columns, and the bucket number in bigger 

tables must be a multiple of the bucket number in the 

small tables. If one table has 2 buckets, then the other 

table must have either 2 buckets or a multiple of 2 

buckets (2, 4, 6, etc.). In this case, the efficiency of the 

query is improved because the join can be done at the 

only mapper side, only the required buckets are fetched, 

not the complete table, and only the matching buckets of 

all small tables are replicated onto each mapper. 

Otherwise, a normal inner join is performed. The 

following properties need to be set to true for the query 

to work as a Bucket Join: SET 

hive.optimize.bucketmapjoin = true; SET 

hive.optimize.bucketmapjoin.sortedmerge = 

true;. The Bucket Map Join can be identified when 

using the EXPLAIN command, Sorted Merge Bucket 

Map Join Operator can be seen below the Map Operator 

Tree. [44] 

 

5.5.5 Join order 

 The query performance is affected by the order of the 

join tables, because of the generated intermediate data 

sets. The number of the possible join orders increases 

exponentially with the number of the involved tables. It 

is not possible to evaluate the execution cost of each 

join order, but the aim is to find the join order with a 

maximum reduction of the intermediate rows generated. 

A query execution can be accelerated if the least amount 

of the data, that are to be worked on, is identified early 

enough. [45] 

 

5.5.6 Join examples 

Table 6. Join execution results 

Join Setting Description using 
EXPLAIN 

Q2 

Execution 

time (s) 

Common SET hive

.auto.co

nvert.jo

in = 

false; 

… 

Reduce Operator 

Tree: 

Join Operator 

condition map: 

Inner Join 0 to 

1 

… 

78 

Map SET hive

.auto.co

nvert.jo

in = 

true; 

… 

Map Operator 

Tree: 

Map Join 

Operator 

condition map: 

Inner Join 0 to 

1 

… 

67 

 

Q8: 
SELECT p.product_id, p.product_name,  

SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM products p  

INNER JOIN order_items oi ON 

oi.order_item_product_id = p.product_id 

INNER JOIN orders o ON o.order_id = 

oi.order_item_order_id 

WHERE o.order_status <> 'CANCELED'  

AND o.order_status <> 'SUSPECTED_FRAUD' 

GROUP BY p.product_id, p.product_name 

ORDER BY total DESC; 

 

Q9: 
SELECT p.product_id, p.product_name,  

SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM order_items oi  

INNER JOIN products p ON p.product_id = 

oi.order_item_product_id 

INNER JOIN orders o ON o.order_id = 

oi.order_item_order_id 

WHERE o.order_status <> 'CANCELED' 

AND o.order_status <> 'SUSPECTED_FRAUD' 

https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/filecache/DistributedCache.html
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GROUP BY p.product_id, p.product_name 

ORDER BY total DESC; 

 

 

Q10: 
SELECT p.product_id, p.product_name,  

SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM orders o  

INNER JOIN order_items oi ON 

oi.order_item_order_id = o.order_id 

INNER JOIN products p ON p.product_id = 

oi.order_item_product_id 

WHERE o.order_status <> 'CANCELED' 

AND o.order_status <> 'SUSPECTED_FRAUD' 

GROUP BY p.product_id, p.product_name 

ORDER BY total DESC; 

 

Q11: 
SELECT p.product_id, p.product_name,  

SUM(cast(oi.order_item_subtotal AS 

float)) AS total FROM order_items oi  

INNER JOIN orders o ON o.order_id = 

oi.order_item_order_id 

INNER JOIN products p ON p.product_id = 

oi.order_item_product_id 

WHERE o.order_status <> 'CANCELED' 

AND o.order_status <> 'SUSPECTED_FRAUD' 

GROUP BY p.product_id, p.product_name 

ORDER BY total DESC; 

 

Table 7. The query execution time using a different join order 

Setting Query Execution 

time (s) 
SET hive.auto.convert.join 

= true; 

SET hive.optimize.ppd = 

true; 

Q8, Q9 

 

99 

Q10, Q11 79 

 

 Table products has 1345 rows, table orders has 

500.000 rows, and table order_items has 1.000.000 

rows. For the above queries, Q8 and Q9 first join the 

products table and the order_items table, and then 

the orders table, while Q10 and Q11 join the orders 

table and the order_items table first, and then join the 

result and the products table. Q10 and Q11 queries are 

more efficient because of joining the filtered table 

orders and largest table order_items first. The 

enabled predicate pushdown will cause filtering the data 

before a join. In this way, by adjusting the join order in 

a combination with the predicate pushdown, the size of 

the intermediate result is reduced and the query 

performance is improved. 

  

6 CONCLUSION 

The big data brings new opportunities as well as 

challenges. One of these challenges is optimization. The 

application of optimization techniques enables raising 

the quality of the process in terms of improving the 

management and processing of large amounts of the 

data when achieving desired results. The paper 

describes and analyzes different techniques for 

improving the query performance. Various queries are 

executed and reviewed by using different Hive 

optimization techniques, like cost-based optimization, 

statistics, predicate pushdown, parallel execution, 

partitioning, bucketing, different join types and join 

orders. The results of the analysis show that big data 

optimization techniques using Hive on Hadoop can 

significantly speed up queries. The improvement can 

more or less depend on the amount of the data, query 

operations and complexity, combination of the Hive 

features, and configuration parameters. 
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