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Abstract. Nvidia Compute Unified Device Architecture (CUDA) is a platform for parallel programming and ap-

plication programming interface which allows developers and engineers to drastically accelerate the calculation of 

common parallel algorithms using the power of a graphical processing unit (GPU). One of the easily parallelized 

image-generation algorithms is the Perlin noise. The paper evaluates parallel implementations of the Perlin noise 

on a desktop central processing unit (CPU) and GPU. The obtained speedup is about 45 times for GPU compared 

to a single CPU thread. Differences between the CPU and GPU results are evaluated and are found significant. The 

performances like image differences and profiling performances are evaluated with the CUDA profiler. 
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Ocena zmogljivosti platforme NVIDIA CUDA za izračun 

gradientnega šuma Perlin 

Nvidia CUDA (Compute Unified Device Architecture) je plat-

forma za vzporedno programiranje, ki temelji na grafičnih pro-

cesnih enotah (GPU). Aplikacijski vmesnik platforme omogoča 

razvojnim inženirjem drastično pospeševanje računanja vzpo-

rednih algoritmov. Algoritem za ustvarjanje slik z gradientnim 

šumom Perlin je enostaven za vzporedno izvajanje. V prispevku 

smo ovrednotili izvajanje vzporednega algoritma Perlin na 

CPU in GPU. Algoritem se izvede na GPU 45-krat hitreje kot 

na posamezni niti CPU. Ugotovili smo signifikantne razlike 

med CPU in GPU ter s profiliranjem ocenili zmogljivost plat-

forme CUDA. 

 

 

1 INTRODUCTION 

The procedural texture primitive [1] is often used to in-

crease the appearance of realism in the computer 

graphics. A procedural texture is a texture created using 

a mathematical description rather than stored data.  

 The Perlin noise [2] is an extremely powerful algo-

rithm that is often used in the procedural content genera-

tion. The Perlin noise is probably the most well-known 

procedural noise function [3]. 

 The procedural noise has many advantages, like a very 

low memory footprint, fast computation, etc. Its function 

assigns pseudo-random gradient vectors to each point of 

the vector lattice and obtains the resulting value by using 

a cubic polynomial to interpolate between the closest gra-

dient vectors. The pseudo-random gradient is obtained by 

hashing the lattice point and using the result to choose a 

gradient. There are several improvements to the original 

algorithm. 

 The improved Perlin noise [4], [5] reduces visual arti-

facts in the noise derivatives and improves the overall 

noise appearance. 

 The lattice gradient noise generates noises by interpo-

lating or convolving random values and/or gradients de-

fined at the points of the integer lattice [3]. The Perlin 

noise is a representative example of the lattice gradient 

noise. 

 In [6], the authors present a general data-augmentation 

strategy using the Perlin noise which generates a random 

mixture of class-labeled ROI patches. 

 In [7], the authors propose the Gaussian brightness 

models with the Perlin noise model to simulate aged 

banknotes. 

 In [8], the author proposes a modification of the Perlin 

improved noise that makes it much suitable for imple-

mentation on GPU. The modified noise function is pre-

sented without table lookups. 

 In [9], a Pixel shader on GPU to generate the Perlin 

noise function is proposed. 

 The paper evaluates, a parallel implementation of the 

improved Perlin noise [4] in a CPU and GPU execution 

environment using CUDA. The Perlin noise imple-

mented by using CPU and GPU on a Google Cloud. The 

obtained results and speedup are analyzed. Other profil-

ing performances are analyzed using the CUDA profiler. 

 

2 PERLIN NOISE ALGORITHM  

The Perlin noise algorithm is usually implemented as a 

two- or three- dimensional function but can be defined 

for any number of dimensions. The algorithm consists of 

three steps: grid definition with random gradient vectors,  
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Figure 1. Phases of the Perlin noise generation. 

 

computation of the dot-product between the distance-gra-

dient vectors, and interpolation between these values. 

Due its nature, the Perlin noise can be relatively easily 

parallelized. This set of problems is called embarrass-

ingly parallel, which is a problem where little effort is 

needed to separate the problem into many parallel tasks. 

   The first step is to define an n-dimensional grid by sub-

dividing the domain into unit cells where each point is an 

n-dimensional unit-length gradient vector (see Figure 1). 

The random gradients (g) at the cell corners are then cal-

culated. The random gradients are assigned by using a 

pseudo-random number generator. As this process can be 

computably expensive hash and lookup tables can be 

used for precomputed gradient vectors. In the fourth step, 

the difference vectors from cell corners for point p are 

calculated (Figure 1). 

   The dot product between the gradient vector at the node 

and the distance vector is now computed. In the last step, 

a smooth interpolation is made between the computed dot 

products at the nodes of the cell containing the point. The 

resulting pixel, given with a variable noise, is obtained 

using a linear interpolation. 

2.1 CUDA 

CUDA [10] is a platform for parallel processing and Ap-

plication Programming Interface (API) created by Nvidia 

for General Purpose computing on Graphical Processing 

Units (GPGPU). Dramatical improvements in processing 

can be obtained by harnessing the power of modern 

GPUs. 

The CUDA application works together with CPU, the 

sequential workload runs on CPU and the computer- in-

tensive portion runs on thousands of GPU cores in paral-

lel. CUDA can be used with C [11], C++, Fortran, and 

Python code. It supports heterogeneous computing with 

a host which is CPU and its associated memory, and a 

device with the GPU and its associated memory.  

The processing flow in CUDA is the following. The data 

is copied from the CPU memory to the GPU memory, 

execute the code on GPU and copy the results from the 

GPU memory to the CPU memory. The advantage of 

CUDA is the usage of the standard C program that runs 

on the host, and the NVIDIA compiler (nvcc) used to 

compile the programs without the device code. CUDA 

extends the standard C code with some new possibilities. 

The compiler nvcc separates the source code on the 

host and device functions. The device functions are pro-

cessed with the nvcc and host functions by a standard 

host compiler. 

The host code is executed in a kernel. In the CUDA 

terminology, the parallel invocation of the code is re-

ferred to as a block, and the set of blocks is referred to as 

a grid. Each block is executed on the device in parallel. 

Each block can be separated into parallel threads as 

shown in Figure 2. 

The CUDA programming model assumes a system 

composed of a host and a device, each with its separate 

memory. Kernels operate out of the device memory. For 

a full control and optimal performance, the CUDA 

runtime provides functions to allocate the device 

memory, release the device memory, and transfer the data 

between the host memory and the device memory. Upon 

transferring the data to the GPU global memory, the ker-

nel function can be invoked from the host side to perform, 

for example, the array summation on GPU. As soon as 

the kernel is called, the control is immediately returned 

to the host. At this point, the host is able to perform other 

functions while the kernel is running on GPU. Thus, the 

kernel is asynchronous with regard to the host. When the 

kernel has finished processing all array elements on 

GPU, the result is stored on the GPU global memory in 

the array. The result is copied from the GPU memory 

back to the host array. 

 

 

Figure 2. CUDA architecture. 
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3 MEASURING PERFORMANCE 

The improved Perlin noise is implemented in a single-

threaded version, used as a baseline for comparison and 

is parallel with the multiple-thread CPU and CUDA ver-

sion for GPU. To have it evaluated, several generated 

noise images are used. The algorithm evaluation is made 

for several resolutions, from 8x8 to 10000x10000 pixels.  

The CPU and GPU specifications used in the process 

of comparison are given in Table 1. All experiments are 

made on a Google Colaboratory on a Linux system and 

CUDA version 10.1 with the 418.67 graphics card driver 

version for GPU and CPU1 which is on a Google Cloud. 

The desktop CPU2 is used. 

 

Table 1. Hardware specifications for the experiments. 

 

Component Model 
CPU1 Intel® Xeon® CPU @ 2.30GHz     

2 CPUs 

CPU2 Intel® Core™ i5-2500 @ 3.30Ghz 

GPU Tesla K80 2x12 GB RAM 

RAM 12 GB 
OS Ubuntu 18.04.3 LTS 

 

The GPU implementation is compiled with an nvcc com-

piler using a O3 optimization flag. The CPU version is 

compiled with a gcc compiler using a O2 optimization 

flag and a pthreads library. No other optimizations are 

applied for either of the versions. 

Each test run is made 100 times. Thus obtained mean 

value is used for the display in the following charts. An 

example of a generated Perlin image is shown in Fig-

ure 3.  

In the first experiment, the running times for three 

versions of the same algorithm are measured. To simplify 

the display, the image resolutions are grouped into a 

small, medium and large number of the image elements. 

The Y-axis shows the time in microseconds needed to 

complete the algorithm. The resolution of the image and 

the type of the implementation are shown on the X-axis. 

As expected, one CPU thread achieves the best per-

formance for a relatively small number of elements (Fig-

ure 4). The performance of two threads is worse because 

of the time lost between the switching threads. Here, 

CUDA here performs almost consistently.  

 There are no lost CPU cycles for thread creation and 

synchronization. The only raw power of one CPU 

core/thread is enough to get the job done and there is no 

time lost for copying the results from GPU to the main 

memory for the CUDA comparison. For all charts, the 

blue bar represents a single CPU thread, the orange two 

threads, and the yellow CUDA threads. The speedup of 

one thread against two threads, for a small number of 

  

 

Figure 3. Example of a generated Perlin noise image. 

 

 
Table 2. GPU speedup for small and medium resolutions. 
 

 

Table 3. GPU speedup for large resolutions. 
 

 

 

elements ranges from 2.1 to 23 times for a 32x32 and 8x8 

resolution, respectively. Figure 5 shows the results for a 

medium number of elements. 

 

As seen in each experiment made, for this image group, 

CUDA outperforms CPU, and performances of one and 

two threads are similar. The speedup of CUDA against 

one thread is from 25 to 44 times for the 128x128 and 

1280x720 images, respectively. 

Finally, when applied to large resolutions, CUDA 

performs best, and its performance between one and two 

CPU threads is similar. Speedup of one CUDA against 

one thread is from 43 to 44 times for the 2084x1024 and 

10000x10000 images, respectively (Figure 6). 

Tables 2 and 3 show the speedup for a single thread 

implementation. Except for only one case, GPU gives a 

significant speedup, i.e. between 1.2 and 44.7. 

The CPU1 speedup is negligible in almost any case. 

For a small number of elements, the threaded version is 

significantly slower, and for a medium and a large num-

ber of elements it is a little faster. 

3.1 Comparison with the desktop CPU 

The performance on a Google Colaboratory CPU, de-

noted as CPU1, is low. This particularly applies to the  
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Figure 4. Timing performances for a small number of elements. 

 

 

Figure 5. Timing performances for a medium number of ele-

ments. 
 

threaded implementations. Figures 7, 8, and 9 show a 

comparison with a rather old CPU2. The performance of 

both CPUs is similar for almost all experiments. This is 

probably due to the high virtualization overhead in the 

Google Cloud. 

3.2  Image-quality differences between CPU and 

GPU  

Due the differences between the CPU and GPU archi-

tecture calculation results, the two architectures are com-

pared and the trade-off is calculated. The results obtained 

with CPU are used as a baseline and a comparison is 

made with the GPU implementation results using float-

ing-point operations. Table 4 shows the maximum abso-

lute difference between the pixel values and the number 

of different pixels after scaling to [0,255]. 

As these errors are relatively small, their impact on the 

GPU version is minor. Figure 10 shows the differences 

obtained when using GPU and their distribution on the 

image. The pixels calculated with GPU are marked with 

crosses. 

3.3 Profiling measurements 

The effectiveness of the GPU implementation is evalu-

ated with a profiler. The CUDA profiler [12] is a provid-

ing a vital feedback for optimizing the CUDA applica-

tions.  

 

 

Figure 6. Timing performances for a large number of elements. 

 

 
 

Figure 7. CPU1 and CPU2 performance comparison. 

 

 

Figure 8. CPU1 and CPU2 performance comparison. 

 

 

 

Figure 9. CPU1 and CPU2 performance comparison.  
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In our experiments, a command-line application nvprof 

and Visual Profiler from CUDA SDK are used. The prof- 

iler carries information about different performance 

measures of the whole application but the user usually 

needs information about the performance-critical code 

that can be later on improved. For profiling, the following 

performance measures are analyzed: achieved occu-

pancy, instruction replay overhead, requested global-load 

throughput, L1 throughput (L1 reads), eligible warps per 

active cycle, multiprocessor activity, issue-slot utiliza-

tion and FLOP efficiency (Peak single) and compute uti-

lization. Short descriptions of the used measures are 

given below. 

 

3.4 Achieved occupancy 

The achieved occupancy is measured during the execu-

tion of the kernel and can be compared with the theoreti-

cal occupancy. The theoretical occupancy is an upper 

limit for active warps, compile options for the kernel and 

device capabilities. 

The upper limit for active warps is the product of the up-

per limit for active blocks and the number of warps per 

block. The achieved occupancy of a kernel is defined as 

the ratio of the average active warps per cycle to the max-

imum of the warps supported on a streaming multipro-

cessor (SM). The occupancy varies over the time during 

the execution of the warps and can be different for each 

SM. A low occupancy results in poor instruction effi-

ciency because there are not enough eligible warps to 

hide the latency between dependent instructions. 

When running at different occupancy levels the effects 

on a kernel execution time are usually observed. 

 

Table 4. Differences between the CPU and GPU implementa-

tion for different resolutions. 

 

Image reso-

lution 

Max absolute 

difference 

(x10-7) 

Number of 

different pix-

els 

8x8 0.0596 0 

8x16 0.1788 0 

16x8 0.0596 0 

16x16 0.1788 0 

32x32 0.1788 0 

128x128 0.1788 0 

512x512 0.2533 0 

1280x720 0.2980 0 

1920x1080 0.2980 2 

2048x1024 0.2980 3 

2560x1440 0.2980 8 

3840x2160 0.2980 22 

4096x4096 0.2980 35 

8192x8192 0.2980 139 

10000x10000 0.2980 191 

 

Figure 10. Example of errors distribution in a GPU-generated 

image of 10000x10000; red crosses mark the pixels with errors. 

 

3.5 Instruction Replay Overhead 

The measure indicates the number of times an instruction 

is issued without being completed. There can be various 

reasons for this, such as constant cache miss on an imme-

diate constant, load cache misses, etc. The instruction re-

plays use an instruction for slot reducing to compute the 

throughput. 

    Figure 11 shows the performances for an achieved oc-

cupancy and instruction-replay overhead. For the me-

dium and large resolutions, the occupancy is over 90% 

which is a good result and can be further improved by 

optimization. The instruction replay overhead rises with 

higher resolutions and stays at about 45%, and the 

achieved occupancy for bigger images is above 90%. 

3.6 Multiprocessor Activity 

This measure reports the microprocessor activity. It indi-

cates the percentage of the time SM has one or more 

warps that are active. So, a low value indicates that much 

of the time a microprocessor is in an idle state i.e. not 

issuing instructions.  

3.7 Issue Slot Utilization 

The issue-slot utilization measure indicates the percent-

age of the issue slots issuing at least one instruction. This 

performance is an indication of how busy the kernel 

keeps the device.  

3.8 FLOP Efficiency (Peak single) 

The FLOP Efficiency (Peak single) measure defines the 

rate of the achieved peak single-precision floating-point 

operations. The CUDA profilers calculate FLOPs twice 

by replying the kernel. In the first step, the time and SM-

elapsed cycles are collected. In the second step, the 
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profiler modifies the kernel to calculate the total number 

of FLOPS. 

   The multiprocessor activity, issue-slot utilization and 

FLOP efficiency performances are given in Figure 12. 

The issue slot utilization is almost constant for all behav-

ior similar to that of the achieved occupancy. 

3.9 Requested Global-Load Throughput 

This metric marked with the gld_efficiency is defined as 

100*gld_requested_throughput/gld_throughput. 

The matrix is at its maximum when all accesses to 

memory have perfectly coalesced. When an application 

requests the values from the memory and if the values are 

scattered several transactions can be done to load all the 

data.  

3.10 L1 throughput (L1 reads) 

The architectures that employ an L1 cache combined 

with a shared memory exhibit a higher L1 bandwidth 

than the architectures employing an L1 cache and a 

shared memory. 

3.11  Eligible Warps per Active Cycle 

An actively executing warp is called a selected warp. If 

an active warp is ready to execute but not executing, it is 

an eligible warp. If a warp is not ready to execute, it is a 

stalled warp. The requested Global-Load Throughput, L1 

throughput (L1 reads) and Eligible Warps per Active Cy-

cle performances are given in Figure 13.  

    Figure 14 shows the kernel and multiprocessor activity 

execution vs the memory copy. The time taken for the 

kernel to run and the rest of the time is time, when, the 

data is copied from the device to the host memory. L1 

throughput is directly associated with the performance 

and shows a behavior similar to that of achieved occu-

pancy. Figures 11, 12 and 13 show the achieved occu-

pancy and the multiprocessor activity and the L2 

throughput is almost constant at a 512x512 resolution and 

higher, and for lower resolutions, the multiprocessor ac-

tivity is low.  

 

 

Figure 11. Performances for the achieved occupancy and in-

struction replay overhead. 

 

 

Figure 12. Performances for the multiprocessor activity, issue-

slot utilization and FLOP efficiency (Peak single). 

 

 

 

Figure 13. Performances measurement results for the requested 

global-load throughput, L2 throughput (L1 reads) and Eligible 

Warps per active cycle. 

 

 

Figure 14. Obtained performance measurement results for the 

GPU kernel running time and the time copy taken to the data 

from the device to the host memory. 

 

 

As seen, to copy a larger resolution from GPU to CPU 

takes about 10% of the whole execution time, so, the cost 

of moving data across the bus should be taken into ac-

count. Profiling the performance result shown in Figures 

11, 12, 13 and 14 is given in Table 5. 
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Table 5. Profiling the performance measurement results. 

 

 
 

4 CONCLUSION 

 

This paper presents a speedup and profiling performance 

of the CPU and GPU version of the Perlin noise. The 

measurement results, the Perlin noise and the other image 

processing algorithms significant for the performance 

improvement are obtained by using parallel program-

ming techniques. To enable parallelism within an appli-

cation, the capacity assesses of the main processor using 

threads should be sufficient It is shown, that if calcula-

tions are not done for very large arrays, the threads of the 

main processor should be used. The threads are even 

slower than the serial code execution unless the resolu-

tion is to be processed is the order of 1000 pixels or 

higher. 

 The performance of the Perlin noise algorithm is eval-

uated for several image resolutions used in practice. It is 

shown that for a very large number of the data to be pro-

cessed, the obtained speedup for a GPU implementation 

is about 45 times of that of non-optimized version. A pro-

filing provides an additional insight in the algorithm per-

formance and enables taking further optimization steps.  

 The focus of the future work will be on the GPU-code 

optimization based on the profiling data presented in this 

work.  
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8x8 8x16 16x8 16x16 32x32 128x128 512x512 1280x720 1920x1080 2048x1024 2560x1440 3840x2160 4096x4096 8192x8192 10000x10000

Achieved Occupancy 0.484953 0.486051 0.485055 0.487151 0.488877 0.640281 0.936983 0.934747 0.933168 0.933929 0.93349 0.932242 0.932073 0.931453 0.93135

Requested Global Load Throughput 2.4867 2.4935 2.4249 2.4231 2.3173 17.125 27.551 28.629 28.872 28.815 28.904 28.956 28.922 28.792 28.736

Multiprocessor Activity 6.46 6.49 6.44 6.44 6.38 6.209 98.16 99.49 99.78 99.69 99.82 99.92 99.96 99.99 99.99

Instruction Replay Overhead 0.353357 0.354329 0.316003 0.316697 0.291724 0.429945 0.459406 0.44739 0.444033 0.445238 0.443992 0.44377 0.444058 0.44586 0.448984

L2 Throughput (L1 Reads) 11.284 11.315 10.23 10.223 9.5677 70.722 113.9 118.33 119.34 119.1 119.47 119.68 119.54 119.01 118.78

Issue Slot Utilization 38.27 37.34 38.27 37.53 38.5 34.27 37.07 37.51 37.61 37.54 37.58 37.54 37.5 37.39 37.18

FLOP Efficiency(Peak Single) 0.28 0.28 0.3 0.29 0.3 2.31 3.88 4 4.05 4.03 4.05 4.04 4.04 4.02 3.98

Eligible Warps Per Active Cycle 6.465453 6.570727 6.440702 6.343696 6.42666 7.186495 12.667829 12.880582 12.914691 12.868511 12.880582 12.840956 12.766661 12.65356 12.463822

http://mrl.nyu.edu/~perlin/noise/

