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Abstract. Finger vein recognition has gained a lot of attention in recent years due to the high robustness of
existing recognition models against spoofing attacks as well as their high recognition performance. A lot of
effort has been put into improving the performance of the recognition models over the years while studies
exploring their robustness have not received a comparable amount of attention in the literature. The paper tries
to fill this gap by empirically analysing the robustness of three popular finger vein recognition models, i.e.,
Repeated Line Tracking (RLT), Maximum Curvature (MC), and Wide Line Detector (WLD), against four types
of image distortions, i.e., blur, two types of noise and JPEG2000 compression, and evaluating their impact
on the verification performance of the three selected models. Experimental results on the VERA finger vein
dataset show that the tested finger vein models are highly susceptible to the presence of noise and blur, whereas
compression artifacts have only a limited affect on the overall recognition performance.

Keywords: Biometrics, deep learning, vein recognition

Analiza občutljivosti modelov za razpoznavanje žil

Področje razpoznavanja žil je bilo v zadnjih letih deležno
veliko pozornosti zaradi modelov, sposobnih robustnega de-
lovanja pri razpoznavanju žil kljub prisotnosti prevarantskih
napadov. Veliko napredka je bilo narejenega na področju
izboljšave delovanja modelov razpoznavanja, manj pa študij o
robustnosti teh modelov. V tem članku poskušamo zapolniti to
vrzel preko kvantitativnega vrednotenja robustnosti treh izmed
najbolj uporabljenih modelov za razpoznavanje žil, Repeated
Line Tracking (RLT), Maximum Curvature (MC), and Wide
Line Detector (WLD), ob prisotnosti štirih različnih virov
popačenja slik - glajenja, Gaussovega šuma, šuma ”sol in
poper”, ter kompresije z algoritmom JPEG2000. Za vsak vir
popačenja slik sistematično ovrednotimo delovanje omenjenih
modelov za razpoznavanje žil. Rezultati na podatkovni zbirki
Vera finger vein dataset kažejo, da so izbrani modeli močno
občutljivi na šum in glajenje, kompresijski artefakti pa imajo
manjši vpliv na uspešnost razpoznavanja.

Ključne besede: biometrija, globoko učenje, razpoznavanje žil.

1 INTRODUCTION

Finger vein recognition has received a considerable
amount of attention over recent years. The interest
in the technology is fueled by the performance of
existing recognition models and more importantly by
the resilience of finger vein recognition techniques to
spoofing attacks [1], [2], [3], [4], [5]. While a lot of
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work has been done over the years to improve recog-
nition performance in this area, considerably less effort
has been put into studying the robustness of existing
recognition models. Recognition techniques are typically
tested on standard finger vein datasets with high-quality
images without obvious image degradations such as high
levels of noise, blur or compression artifacts, which
can easily be present in real world applications due
to detector errors, finger movement, storage constraints,
image transmission, and other external circumstances.

Research on the robustness of finger vein models is
heavily underrepresented in the literature, which is an
issue given the fact that understanding the strengths
and weaknesses of the existing models is of paramount
importance to their robustness in real-life deployment
scenarios. While there have been prior efforts taken to
investigate the robustness of finger vein models [6],
[7], [8], they have been limited to a handful of im-
age distortions (e.g., compression or longitudinal finger
rotation) or evaluating models on different databases
with images of varying quality [9]. To the best of our
knowledge, there has been little to no work done in terms
of a comprehensive study of robustness of finger vein
models that would consider multiple image distortions
in a common evaluation framework.

When assessing the robustness of a finger vein model,
distortions are typically added to the input images and
an analysis is conducted on how the strength of the
added distortion affects the performance of the model.
Images are usually distorted in a manner corresponding
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to real-world environments, where image capture errors
can occur or compression is applied to the images
due to storage constraints. In [6], [7], an analysis
is then performed to determine how image distortions
affect the recognition accuracy of the finger vein model
considered.

The paper follows this general methodology and
explores the strengths and weaknesses of finger vein
models through a comprehensive study of the robustness
of the models against different types and levels of image
distortion. The paper analyzes the affects of multiple
types of image distortions on the verification accuracy
of three finger vein models for which an open source
implementation is available online. We use the Repeated
Line Tracking (RLT) [4] model, the Maximum Curvature
(MC) [3] model, and the Wide Line Detector (WLD) [1]
model to extract vein features from the input images.
We then use the features to explore how different types
of image distortion such as noise, blur and compres-
sion artifacts affect their accuracy. The accuracy of the
tested models is evaluated on the VERA finger vein
database [9], which is regarded as a challenging database
in terms of preprocessing, alignment and recognition.
Our study suggests that the performance of the tested
finger vein models is decreased substantially when dif-
ferent sources of image degradation are present at the
input.

Compared to to existing robustness studies involving
finger vein recognition models, our two main contribu-
tions are:

• We conduct a comprehensive analysis of the ro-
bustness of three popular finger vein models and
investigate the impact of multiple types of image
degradations (i.e., two types of noise, blur and
compression artifacts) on their performance using
a consistent evaluation framework.

• We contribute towards a better understanding of
existing finger vein recognition models and make
novel findings not reported in the literature before.

2 RELATED WORK

This section provides a brief review existing work rel-
evant to our analysis. We first present an overview of
existing finger vein recognition methods and then sum-
marize prior work related to the robustness of existing
models in the field of finger vein recognition. The reader
is referred to [10] for a comprehensive coverage of the
topic of finger vein recognition.

2.1 Finger vein models
A significant amount of work in the field of finger

vein recognition focuses on the feature extraction stage,
which is crucial for achieving high recognition perfor-
mance. Among existing methods from this group the ,
Repeated Line Tracking (RLT) and Maximum Curvature

(MC) approaches of Miura et al. [4], [3] are particularly
popular in the research community and used also in ex-
isting robustness studies [6], [7] . The RLT approach [4]
extracts finger-vein patterns by using line tracking that
starts from various positions, whereas the MC technique
from [3] determines local maximum curvatures of cross-
sectional profiles of veins and extracts consistent center-
lines that are unaffected by variations in the vein width
and brightness. Another standard finger vein extraction
technique often used in the literature is the Wide Line
Detector (WLD) [1]. Here, the authors propose a wide
line detector for feature extraction and a new pattern
normalization model which can effectively reduce the
distortion caused by finger pose.

Among the more popular feature extraction techniques
for finger vein recognition are methods based on Gabor
filtering, which excel at extracting texture characteris-
tics. In [11], the authors combined the Weber Local
Descriptor (WLD) with curvature Gabor filters for finger
vein recognition. In [5] the authors applied convolutional
neural networks (CNNs) to learn the parameters of a
bank of Gabor filters automatically and report promising
results.

Another popular feature extraction technique for fin-
ger vein recognition is Local Binary Patterns (LPB). An
example of work based on LBP is presented by Xiong et
al. [12]. Here, the authors improve on the classics LBP
technique by adopting a center-symmetric local binary
patterns (CSLBP), that reduce feature dimensions and
provide better robustness to noise. Another study based
on LPB is described by Hu et al. [13]. Here, the authors
combine the LBP operator with 2D-PCA for feature
compression and again achieved competitive recognition
performance.

With the recent advancements in deep learning, at-
tempts have been made to incorporate Deep Neural
Networks (DNNs) into finger vein recognition models.
An example of a deep learning implementation of finger
vein recognition was proposed in [14]. Specifically, the
authors present a combination of canonical correlation
analysis (CCA) and PCANet as a new filter generation
method and report results comparable to state-of-the-art
models. In [15], the authors also use a CNN-based model
to learn finger vein features that are more discriminative
and robust than handcrafted features. They demonstrated
that their end-to-end method can address the problem
of misalignment caused by translations and rotations in
finger vein images to a certain degree.

We select the RLT, MC and WLD feature extraction
techniques which are standard finger vein feature extrac-
tion techniques used for analysis of finger vein models.
Our choice is motivated by the popularity of the three
techniques, their performance with respect to the state-
of-the-art and the fact that open-source implementations
are readily available and contribute to the reproducibility
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of our analysis.

2.2 Performance assessments of the finger vein
models

There has been a considerable amount of done in
the past few years to develop new models for finger
vein recognition. In contrast, studies of the robustness
of these models are still limited in the literature, despite
their importance for practical deployment aspects.

An example of work studying the impact of image
degradation on finger vein recognition was presented
by Ablinger et al. [6]. The authors explore the ef-
fects of different compression standards on finger vein
recognition accuracy. They conclude that images can
be compressed heavily while still enabling competitive
finger vein recognition performance due to the large
uniform areas present in these images.

Another study presented by Prommegger et al. [7]
explores the influence of longitudinal rotation on the
performance of finger vein recognition systems, and the
degree to which adverse effects can be circumvented.
The authors confirm the adverse impact of longitudinal
rotation on the recognition performance of finger vein
models and show that its correction noticeably improves
performance.

In [8] the authors presented a more comprehensive
analysis of a finger-vein based biometric identification
system on four publicly available databases to assess the
effectiveness of the proposed network under different
image quality conditions. But unlike the research in
[6] no image quality related covariate was found to
significantly affect performance.

All of the above studies have had a profound im-
pact on the development of finger vein recognition
technology by providing valuable information on the
weaknesses of finger vein models in non-ideal condi-
tions commonly encountered in real-world biometrics
applications. In this work, we further contribute to a
better understanding of the robustness of standard finger
vein models to image degradations by comprehensively
studying different types of image distortions at various
intensity levels.

3 METHODOLOGY

In this section we present the methodology used to
assess the robustness of three finger vein models. We
first introduce the dataset adopted to perform model
evaluations and then present the methodology defined
for the experiments. Next, we elaborate on the finger
vein models selected for the analysis and finally describe
the distortions considered in this work.

3.1 The VERA Finger vein Database
The VERA Finger Vein database [9], collected at the

Idiap Research Institute, consists of 440 images from

110 subjects and contains images of both index fingers
of all subjects, i.e., 2 images per finger. 40 of the subjects
are women and 70 are men. Subject age ranges between
18 and 60 years, with an average of 33 years. Images
were acquired in one session with 2 images per finger,
with a 5 minute separation between the acquisitions.
The recording was performed at 2 different locations,
always inside buildings with normal light conditions.
All of the 440 images are stored in PNG format with
a resolution of 250 × 665 pixels. The database also
contains extracted ROI images with a resolution of
150×565 pixels. The database was chosen because it is
one of the standard finger vein databases and one of the
more challenging databases regarding recognition. For
the purposes of our evaluation, we use the full resolution
images. For the experiments, we resize all images using
a scale factor of 0.4 and then apply the finger localisation
method from [16] to mask out background pixels (i.e.
by setting them to 0). The final resolution of the images
is 100× 266 pixels.

3.2 Evaluation Methodology

To study the robustness of finger vein models with
respect to different types of image distortions, we select
three finger vein models for analysis and assess their
performance in a verification experiment. The output
for each of the models is a vein image (referred to as
feature image hereafter) of the same dimensions as the
input image. This transformation can be described as
a mapping of the following form: y = f(x), where
x ∈ Rn×m is the input image, f(·) represents the
selected finger vein model and y ∈ Rn×m is the
generated feature image. When the feature images are
computed (see Fig. 1), we calculate a similarity score
RM between each image pair. Based on the similarity
score, the matching decision function τ is:

τ(x1, x2, f,∆) =

{
w1, if RM (y1, y2) ≥ ∆

w2, otherwise,
(1)

where x1 and x2 are the input images to be matched,
RM (·, ·) is the Miura score [3], ∆ is a chosen decision
threshold and w1 and w2 are class labels corresponding
to matching and non-matching verification attempts,
respectively. For a given pair of input images the de-
cision function should assign class label w1 when the
identities of the fingers match and class label w2 when
the identities do not match. To study the robustness
of the considered finger vein models, their accuracy is
first determined without altering the input images x1
and x2 in Eq.(1). This serves as a reference for all
considered finger vein models and represents the basis
for evaluating the impact of image distortions. In all
experiments image distortions are added to one of the
input images, while leaving the second image unaltered.
By adopting such a setup, one can directly observe the
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(a) Input image

(b) RLT

(c) MC

(d) WLD

Figure 1.: Visual examples of the featue images gen-
erated by the three finger vein models selected for the
analysis in this paper. The figure shows: (a) the original
grey-scale input image, and feature images generated by
(b) the RLT, (c) the MC and (d) the WLD finger vein
models.

change in model verification accuracy due to the quality
miss-match between the two images being compared.

3.3 Feature extraction techniques
For the finger vein models, three feature extraction

techniques are chosen, for which an open source im-
plementation is publicly available online. Each feature
extraction technique returns a binary vein image that is
of the same dimensions as the input image. Examples
of the feature images generated by the three models are
shown in Fig. 1. Note the difference in the appearance
of the feature images. Below we describe the selected
models in more detail:

• Repeated Line Tracking (RLT) [4] takes advantage
of the fact that veins appear as valleys in the cross-
sectional profile of the input images. A randomly
initialised tracking point is moved pixel by pixel
along a dark line that corresponds to a valley and
the depth of the valley indicates the movement
direction. If no valley is detected, a new tracking
operation is started. The number of times a pixel is
tracked is recorded in a matrix, called locus space.
Pixels that are tracked multiple times have a high
likelihood of belonging to a blood vessel (high
value in the locus space image). Binarization is,
therefore, applied to the locus space image to get
the final binary output image. An example of the
binary feature image generated by the RLT model

is shown in Fig. 1(b).
• Maximum Curvature (MC) [4] emphasises the cen-

ter lines of the veins and is therefore insensitive
to changes in the width of the veins. The first
step of this model is the extraction of the center
positions of the veins. For this purpose, the local
maximum curvature in cross-sectional profiles in
four directions, i.e., horizontal, vertical and the two
oblique directions, is determined based on the first-
and second-order derivatives. Then, each profile is
classified as being concave or convex (curvature
positive or negative), where local maxima in con-
cave profiles indicate the center positions of the
veins. Finally, each center position is assigned a
score according to the width and curvature of the
region. An example of a feature image generated by
the MC feature extraction technique is presented in
Fig. 1(c).

• Wide Line Detector (WLD) [1] works similarly to
the adaptive thresholding (using isotropic nonlin-
ear filtering) and relies on thresholding inside a
local neighbourhood region. Here, the difference
between each pixel inside a circular neighbourhood
and the central pixel of the neighborhood is cal-
culated first. If the difference exceed a predefined
threshold, the pixel is set to 0, if not, the pixel is set
to 1. The procedure returns a binary feature image
with vein patterns clearly visible in the output (Fig.
1(d)).

3.4 Distortion Sources

To study the effect of image degradation on the
performance of finger vein models, we consider three
sources of image distortion, i.e., noise, blur and image
compression.

We use Gaussian blur to simulate sources of blur such
as motion or sensor distortions. We use noise as a sim-
ulation of sensor and circuitry problems during image
capture. Finally, we also study compression artifacts as
they are a common problem arising from low-bandwidth
communications. Each of image distortion represents
problems that can be encountered in real-life biometric
applications. We apply the distortions separately with
different levels to the probe images x and then process
the distorted images x̂ with the finger vein models
described in the previous section, or formally:

x̂ = δ(x, θ), (2)

where x̂ is the degraded finger vein image, δ(·) is
a distortion function and θ are the parameters of the
distortion function that determine the extent of the
distortion. Below we describe the image distortions δ
considered in this work in more detail:

• Gaussian noise: The first distortion considered in
the experiments is additive Gaussian noise with
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mean µ = 0 and varying standard deviation σ, thus,
θ = {µ, σ}. Gaussian noise is added to a finger vein
image using the following operation:

x̂ = max(0,min(255, x+ g)), (3)

where x ∈ Rn×m is the input image, g ∈ Rn×m

represents random Gaussian noise drawn from
N (0, σ), and x̂ ∈ Rn×m is the corrupted output
image. For the analysis, we let σ vary from 10 to
100 in steps of 10.

• Salt-and-pepper noise: The second distortion stud-
ied in the experiment is salt-and-pepper noise.
Here, we set the pixel values of the finger vein
image either to 0 or 255 with a probability of
ρ/2 each (thus, θ = {ρ}). For the experiment,
we generate 10 modified probe sets corresponding
to probabilities ρ between 0.05 and 0.5, sampled
uniformly with a step size of 0.05.

• Blur: The next distortion we consider is blurring.
To this end, we take a Gaussian kernel and vary
the standard deviation of the kernel from 1 to 10 in
steps of 1. We implement blurring via the discrete
convolution using square kernels of size 2d2σe+1,
where d·e is the ceiling operator. The parameters of
this distortion function are defined by the standard
deviation of the blurring kernel, i.e., θ = {σ}.

• JPEG2000: The last distortion we consider is
JPEG2000 compression. We subject the original
images to varying degrees of compression and ob-
serve the impact on verification performance. The
level of compression is measured with a compres-
sion ratio ζ, i.e., the ratio of the original file size
and the compressed file size. For our experiments,
we let the compression ratio ζ vary from 20 to 200
in steps of 20, i.e., θ = {ζ}.

In Fig. 2 we show some examples of images degraded
with different distortion functions and levels of distor-
tions.

4 EXPERIMENTAL RESULTS

In this section we discuss the experimental setup, perfor-
mance metrics and the results of our sensitivity analysis.

4.1 Experiment Setup
The open source finger vein framework PLUS

OpenVein Toolkit is used for the experiments. The
toolkit implements a full feature extraction and match-
ing/evaluation framework for finger- and hand- vein
recognition in MATLAB.

For the evaluation, we use the test procedure defined
by the Vera Full protocol [9]:

• We use the first image of both index fingers (of
all 110 subjects) for the enrollment. This results in
220 unique fingers (or classes) and corresponds to
220 distinct images.

(a) (b) (c)

(d)

Figure 2.: Visual examples of the image degradations
caused by the distortion functions considered in this
paper at varying levels of intensity. From left to right:
(a) Gaussian noise with different σ (top to bottom): 10,
50, 100, (b) salt and pepper noise with different levels
of ρ (top to bottom): 0.1, 0.3, 0.5, (c) Gaussian blur
with different σ levels (top to bottom): 3, 5, 10. and (d)
compression artifacts with different compression ratios
ζ (top to bottom): 50, 100, 200.

• We compare the second image (i.e., the probe) of
of all classes with the corresponding enrollment
image. This amounts to 110 genuine scores.

• We compare the probe image of a given class with
the enrollment images of all the other classes. Thus,
we compute a total of 11990 impostor scores

Both the genuine and imposter scores are obtained
with the matching method proposed in [3], which is a
similarity measure based on correlation.

4.2 Performance Metric
To evaluate the performance of the finger vein recog-

nition models, we report equal error rates (EER) for all
experiments. The EER metric was chosen because it is a
standard metric for evaluating biometric verification sys-
tems [17]. The equal error rate is defined as the operating
point on the Received Operating Characteristics (ROC)
curve, where the false acceptance rate (FAR) and false
rejection rate (FRR) are equal. Lower EERs corresponds
to better verification performance.

4.3 Baseline Performance
To observe the effect of each distortions on the

verification accuracy of the tested models, we first report
the reference EER values computed on the original
(undistorted) images in Table 1. The MC model achieves
the highest verification accuracy (lowest EER) on the
VERA database. Compared to RLT and WLD, the MC
model achieves half the EER score. These results are
somewhat higher compared to the results reported in
similar studies where the same models were evaluated on
different databases [6]. This can be partially contributed
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Figure 3.: Impact of different sources of image degradations on the verification accuracy of three finger vein models
measured in terms of EER: (left to right and top to bottom): Gaussian noise, salt-and-pepper noise, Gaussian blur,
compression artifacts.

Table 1.: Reference EER values for the three models
obtained on the original (undistorted) images.

Model MC RLT WLD
EER [in %] 7.26 18.17 14.99

to the more challenging nature of the finger vein images
in the VERA database.

4.4 Robustness analysis
We now investigate the impact of various image

distortions on the verification performance of the tested
models.

Noise: The first type of distortion we explore is noise
and first look at the impact of additive Gaussian noise.
As can be seen from Fig. 3 (top left) the negative effect
of Gaussian noise on the selected models verification
accuracy is significant. For the MC model the EER score
rises proportionally with σ, whereas this is not the case
for the WLD and RLT models, where the smallest value
of σ already has a detrimental effect on the EER score
of the two models. This can also be seen from Figs.
4(a) and 4(b) where the effect of different values of σ
on the visual appearance of the feature images of the
three models is shown. For the RLT and WLD models
the difference in feature images for different σ is not
significant - images already look poor for smaller values

of σ and do not change much with an increase in σ. For
the MC models, on the other hand, the feature image
with less noise retains more of the original vein patterns.

The impact of salt-and-pepper noise on the verifi-
cation accuracy of the models is almost identical to
additive Gaussian noise, as can be observed from Fig.
3 (top right) We again see a detrimental effect for all
models, with the WLD and RLT model being particu-
larly sensitive to even small amounts of noise. We also
observe a similar effect on the appearance of the feature
images in Figs. 4(c) and 4(d) where there is no large
difference in feature images for σ values of 30 and 80
for the WLD and RLT models, as opposed to the MC
model, where the difference in the vein pattern is very
clearly visible. This again suggest that the performance
degradation for the MC model is proportional to the
amount of noise.

Blur: Next, we explore the impact of Gaussian blur on
the verification accuracy of the finger vein models. We
see from the results in Fig. 3 (bottom left) that Gaussian
blur does not have as negative of an effect on the models
verification performance as Gaussian noise. Here, the
MC and the RLT models seem to be more robust to
blur then the WLD technique as their rate of change in
EER score is not as high as for the WLD model. This
can also be seen from the feature images in Fig. 4(e)
and 4(f), where the vein patterns seem to completely
disappear for higher values of σ for the WLD model,



SENSITIVITY ANALYSIS OF FINGER VEIN RECOGNITION MODELS 293

(a) σ = 30 (b) σ = 80 (c) ρ = 0.15 (d) ρ = 0.4 (e) σ = 4 (f) σ = 10 (g) ζ = 80 (h) ζ = 180

Figure 4.: Impact of different types and levels of noise on feature images of the tested models (from top to bottom):
MC, WLD, RLT. a) and b) Gaussian Noise with different values of σ. c) and d) Salt and pepper noise with different
values of ρ.

while the features images for the MC and RLT models
appear to retain the original vein patterns relatively well
even for higher values of σ.

JPEG2000: Finally, we explore the impact of com-
pression artifacts of the performance of the considered
finger vein models. It can be seen from Fig. 3 (bottom
right) that of all the distortions considered in this work,
JPEG2000 compression degrades the performance of
the models the least. We observe that the MC and the
RLT models are more robust to this type of degradation
then the WLD model for higher compression ratios.
This can also be seen from Figs. 4(g) and 4(h) from
the feature images of the RLT and MC models, which
appear identical in their vein patterns for low and high
compression ratios (80, 180), while WLD does not retain
the vein patterns for higher compression ratios as well
as the aforementioned techniques. In comparison to the
study of Ablinger et al. [6] we observe a similar change
in the EER score over the same range of compression
ratios.

5 CONCLUSION

We have presented a comprehensive analysis of the
effects of different types and levels of image distortion
on finger vein recognition. Our main findings are the
following:

• Each of the three analysed finger vein models are
susceptible to noise and blur distortions by varying
degrees, while being mostly robust to JPEG2000
compression artifacts. This indicates that more ef-
fort should be put into developing models that are
more robust to image degradations, such as noise
and blur.

• The analysed models were most easily degraded
in performance by Gaussian noise and salt-and-
pepper noise, although there is a difference in the
rate of performance degradation. Specifically, the
WLD and RLT models exhibit substantially higher
degradations than MC.

• Gaussian blur was found to significantly negatively
effect the verification performance, especially on
the WLD model. However, the performance degra-
dation starts at much larger values of σ for the RLT

and MC models.
• JPEG2000 compression had the least affects on the

verification accuracy of the finger vein models. The
EER scores of all the models considered increased
only slightly through the different levels of com-
pression.

None of the analysed models was found to consid-
erally outperform the others in regards to robustness
to image degradations, although the WLD model is
the least robust overall due to its poor verification
performance when subjected to blur and compression
artifacts compared to the MC and RLT models.
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