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Abstract.  This paper presents a mathematical method to calculate the displacement of overhead-line conductors 

and suspension insulator sets during changeable conditions caused by ice and/or wind. The method which is 

consistent and mathematically transparent is primarily intended to be used in a 3D space to determine the initial 

conditions for a later more advanced dynamic calculation based on the finite element method. The method is 

based on the 3D catenary differential equations which for appropriate boundary conditions and insulator-set 

motion constraints form a mathematical system of algebraic-differential equations that are solved numerically. A 

numerical example shows that the method can be used with confidence as a simple alternative to other static 

methods or commercial softwares. Using the method, a wide spectrum of practical design problems associated 

with the overhead-line and ice and/or wind loads can be analyzed. 
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Izračun pomikov izolatorjev s tridimenzionalnimi 

enačbami verižnice ob delovanju žlednih in vetrnih obtežb   

Članek predstavlja matematično metodo za izračun pomikov 

izolatorskih sestavov in stanj verižnice visokonapetostnih 

daljnovodov, nastalih zaradi delovanja zunanjih vremenskih 

dejavnikov, predvsem žledne ali vetrne obtežbe na posamezne 

elemente daljnovoda. Predstavljena metoda je matematično 

transparentna in je namenjena predvsem za uporabo pri 3-D 

prostorskih problemih, ko moramo določiti začetne pogoje za 

reševanje zahtevnejših dinamične problemov. Ti po navadi 

temeljijo na metodi končnih elementov. Za ustrezno reševanje 

dinamičnih numeričnih integracij so natančni začetni pogoji 

nujni pogoj za doseganje konvergenc rešitev. Predstavljena 

matematična metoda temelji na tridimenzionalnih 

diferencialnih enačbah verižnice, ki skupaj z ustreznimi 

robnimi pogoji in enačbami mehanskih omejitev gibanja 

izolatorskih sestavov skupaj tvorijo sistem algebrajsko-

diferencialnih enačb, ki ga moramo rešiti. Predstavljeni 

numerični rezultati kažejo, da je predstavljena metoda 

zanesljiva, in jo je mogoče uporabiti kot preprosto alternativo 

drugim metodam oziroma plačljivim komercialnim 

programskim paketom..  

 

Ključne besede: izolatorji, pomiki, prenos, verižnica, 

numerične metode 

 

 

Nomenclature 

A- Conductor cross-section 

a -Span length  

b0-Perpendicular distance  

𝐂𝑬- Euler-transformation matrix 

𝐂𝒘-Wind-transformation matrix  

𝐂𝟏- Vee-transformation matrix  

𝐶𝑑𝑡 , 𝐶𝑑𝑛, 𝐶𝑑𝑏- Non-dimensional drag coefficients 

d0- Conductor sag at a 2⁄   

𝐷𝑐  -Conductor diameter  

𝐷𝑎- Ice-load thickness on conductor  

E – Young modulus of elasticity  

𝐅- Force vector 

𝐹𝑡𝑖, 𝐹𝑛𝑖, 𝐹𝑏𝑖- Wind-force components 

g- Gravitational constant 

h -Vertical height distance 

𝐻- Horizontal conductor force 

𝐻𝐿 , 𝐻𝑅- Horizontal force in the left- and right-hand side 

suspension point  

J𝑘- I insulator-set weight 

J𝑥, J𝑧  - Vee insulator-set weight components 

L0- Conductor stressed length  

L𝑢- Conductor unstressed length  

L𝑘, L𝑝, L𝑏- Hanging I, post and brace insulator lengths  

m𝑘, m𝑝, m𝑏- Hanging I, post and brace insulator masses  

𝑚𝑐-Conductor mass per length 

𝑃𝐿  𝑃𝑅- - Perpendicular force in left- and right-hand side 

suspension point 

r𝑥, 𝑟𝑧  – Vee insulator gravity center components 

𝑠- Conductor unstressed material point 

𝐓𝑑 - Drag force vector  

𝐓𝐿- Conductor tension vector  

𝑇𝐿- Conductor tension tangential component 

t,n,b- Local conductor frame of reference vectors 
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𝑈 –Absolute wind velocity  

𝐯𝑟 –Wind velocity vector  

𝑣𝑟𝑡, 𝑣𝑟𝑛, 𝑣𝑟𝑏 – Wind components’ relative velocity  

𝑉- Vertical force 

𝑉𝐿, 𝑉𝑅 - Vertical force at left- or right-hand side 

suspension point 

𝑤𝐿-Ice weight  

𝑥, 𝑦, 𝑧-Coordinates in global frame of reference 

XYZ- Global frame of reference 

X1Y1Z1- Local frame of reference Vee insulator-set 

𝛼-Angle between wind velocity and y,z plane  

𝚫– Displacements vector  

𝛿, 𝜀, 𝜂 -Components of displacements vector 

𝜌- Air density  

𝜃, 𝜙, 𝜓- Euler angles 

𝛋 – Vector of geometric span data 

 

 

1 INTRODUCTION 

The development of new compact overhead power-

transmission lines (OL) or reconstruction of the existing 

ones to decrease their visual impact on the landscape 

remains to be a very important aspect of the design 

process. One of the possible solutions involves the use 

of different types of insulator systems. Speaking in 

terms of the mechanical strength, it is important that 

when analyzing and designing such OLs, conductor 

sags, internal and external safety electrical distances and 

insulator shape, determined by using an appropriate 

design tool are considered in the calculation process.  

While the OL static design is well known and supported 

by commercial software, to enable OL dynamic 

analysis, OL dynamic models must in most cases be 

developed and transformed to the software. Dynamic 

models based on the finite element methods (FEM) 

enabling a dynamic simulation, the initial conditions 

must be implemented. Usually, the commercial software 

is a closed black box from which the initial conditions 

needed for a dynamic model cannot be directly 

obtained. The paper presents a new numerical-

mathematical approach to solving this issue. The 

method provides a tool to consider most of the used OL 

designs needing no special commercial software to 

establish the initial conditions to be used in dynamic 

simulations and analyses.     

This paper deals with the problem of calculating the 

suspension-insulator sets displacement, caused by ice or 

wind loads or a combination of both. These loads can 

affect one or more spans of the high-voltage OL. An 

external load affecting a conductor changes its tensile 

force manifested as a displacement of a suspension-

insulator set. When on insulator-set moves in a span 

with an increased conductor tensile force, the conductor 

force tends to reduce the span length and increases it in 

the adjacent spans. From its neutral position, the 

insulator set rotates to a new position, thus causing a 

conductor clip-in point displacement and giving rise to a 

new conductor-insulator force equilibrium inside the OL 

tension field. No matter how simple is a vertically 

hanging insulator set, the calculation of a relatively 

simple problem is difficult as in addition to the ice load, 

the wind load too, must be taken into account. The 

impact of the wind load on the conductor turns a 2D 

problem into a three-dimensional (3D) problem where 

the catenary equation is not fully solved. The paper 

presents a consistent and mathematically transparent 

method to calculate the conductor displacements and 

sags induced by different ice or wind for an arbitrary 

shape of the insulator set. 

Today, the usual approach to the problem solution and 

providing a corresponding software tool is using a 

method based on the conductor analytical catenary 

equation solved in 2D. The method is well presented by 

Kiesling et al. in [1]. They provide a physical 

understanding of the problem without considering the 

wind load in the mathematical model. Though not 

directly connected to our problem here, classical 

approaches to considering wind loads on a conductor 

are well presented by Peyrot et.al. [2]. Here in the 

development of a cable element, the solved catenary 

equation in 2D is still used. In the model, the conductor 

is virtually segmented into several elements and the 

wind pressure assumed to affect each element is 

constant and equal to that at the mid-length of the 

effected element. This concept is used in a common 

software tool [3]. The third concept comes from the 

field of dynamic problems where the commercial 

software, is based on the classical finite-element method 

(FEM). It used by Yan et al. [4] and McClure et al [5]. 

The conductor is divided into finite elements presented 

as beam elements by adding external ice and wind 

forces. 

Unlike the existing methods which use an analytical 

conductor catenary solution in a 2D space or divide 

conductors into smaller elements, our method is directly 

based on differential cable equations in a 3D space. In 

searching for a numerical solution, we use the today’s 

standard PCs and their numerical capabilities. We 

developed a relatively simple mathematical method 

using single-span differential equations developed by 

Bliek [6]. For a multi-span conductor we developed a 

system of algebraic differential equations (ADEs) that 

mathematically describe the OL tension field. Another 

advantage of this method is that it can be used for any 

arbitrary insulator-set geometry. 

The paper is organized as follows. Following this 

introduction, section 2 presents the span-displacement 

equilibrium equations used as the boundary conditions 

to solve the ADEs. Section 3 provides the conductor 3D 

governing static differential equations and includes the 

wind and ice loads as part of the conductor governing 

equations. Section 4 introduces the movement 

constraints expressed with displacement equations for a 

particular insulator set. Equations for the two most 

common insulator sets are presented. The first one is the 

classical vertical hanging I insulator and the second one 



288 ZEMLJARIČ 

 

is the rotating Vee brace insulator set [7, 8]. Section 5 

presents a numerical example and draws conclusions.  

 

2 SPAN-DISPLACEMENT EQUILIBRIUM 

EQUATIONS 

Let us consider that the OL consists of n spans. The 

conductor tension field is divided into 𝑛 spans with 

suspension sets 𝑖 = 1,2, . . , 𝑛 − 1, mounted on 

supporting towers. The first and the last tower are 

tension towers with a tension set. A single span with 

index 𝑖 has a span length of 𝑎0𝑖, span height difference 

of ℎ0𝑖, and span perpendicular distance of 𝑏0𝑖, as 

presented in Fig. 1. A global XYZ frame of reference is 

used. The subscript 0 indicates the OL initial state. This 

means that there are no external forces relating due to 

the ice or wind loads and the conductor horizontal force 

which is equal for all n-spans is 𝐻0. The initial span 

length and the vertical and perpendicular distances 

between the suspension points in the 𝑖-th span, written 

as a vector, are 

 

𝛋0𝑖 = [𝑎0𝑖 ℎ0𝑖 𝑏0𝑖]
𝑇 . (1) 

 

Consequently, at no ice or wind loads, all the insulator 

strings inside the tension field lie in the initial position. 

This state is taken as a reference position with the 

displacements equaling zero. Note that the conductors 

are clipped-in in the insulator sets. In Fig. 1, the initial 

states are shawn with a continuous catenary line. 

 

 

Figure 1. OL profile in the initial (continuous line) and 

displaced (dash line) state. 

 

In most cases the initial position for the classical I 

insulator-set is in the vertical Z direction. The neutral 

position of the Vee brace insulator is in the X direction 

perpendicular to OL. The initial OL data and the initial 

conductor tension force allow us to calculate the 

conductor span length and sag using the classical 

catenary equation [1], [2], or, with an acceptable 

accuracy, the parabola equation [9]. In the initial state, 

besides to the conductor horizontal tension force, only 

the gravitational force, determines the catenary shape 

inside individual spans. For OLs where the catenary 

profile is usually flat, the sag-to-span ratio is 1:8 or less, 

so for maximum conductor sag d0𝑖 at the span mid-

point and conductor length 𝐿0𝑖 in single span 𝑖 the 

following two equations apply  

 

𝑑0𝑖 = 𝑚𝑐g𝑎0𝑖 
2 8𝐻0𝑖⁄  (2) 

 

𝐿0𝑖 = √ℎ0𝑖
2 + {𝑎0𝑖[1 + (8 3⁄ )(𝑑0𝑖 𝑎0𝑖⁄ )2]}2. (3) 

 

In (3), 𝐿0𝑖 is the actual conductor stretch length for any 

initial temperature. As our focus is on the conductor-

state changes caused by wind and/or ice forces, it is 

assumed that the temperature is constant. So, the 

conductor elongation and/or contraction due to 

temperature variations are omitted in the mathematical 

model. Besides the initial span data (1), by knowing 

unstressed conductor length 𝐿𝑢𝑖 as a supplement to 

horizontal tension force 𝐻0𝑖, the catenary equation is 

fully determined. Assuming that the tension in the 

conductor is constant throughout the span length, the 

unstressed conductor length gives the following 

equation adopted from [2]   

 

 𝐿𝑢𝑖 = 𝐿0𝑖 (1 −
𝐻0𝑖𝐿0𝑖

𝐴𝐸ℎ0𝑖
). (4) 

 

At this point, we define force vector 𝐅 acting on the 

insulator-set suspension point with the components 

defined in the global frame of reference. Inside the i-th 

span on the left-hand side end suspension point and 

equally on the right-hand side and suspension point, the 

forces are   

 

𝐅𝐿𝑖 = [𝐻𝐿𝑖 𝑉𝐿𝑖 𝑃𝐿𝑖]𝑇  , 𝐅𝑅𝑖 = [𝐻𝑅𝑖 𝑉𝑅𝑖 𝑃𝑅𝑖]𝑇.   (5) 

 

For a moment, we must assume that force vectors (5) 

are known. However, when the conductor condition is 

changed by a wind or ice load, the conductor tensile 

forces change in all the spans. If the conductor 

suspension points in a span move, the higher tensile 

force moves the suspension points in these directions 

and consequently changes the span data in the adjacent 

spans as shown in Fig. 2 and illustrated with a dotted 

catenary line in Fig. 1. 
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Figure 2.  Displacements of the I insulator from its initial 

position. 

 

The newly shaped catenary data with the displaced 

insulator-set for an i-th span can be written in the 

following vector form  

 

𝛋𝑖 = [a𝑖 h𝑖 b𝑖]𝑇. (6) 

 

Displacements vector 𝚫𝑖 of an i-th insulator suspension 

set with horizontal 𝛿𝑖, vertical 𝜀𝑖, and perpendicular 𝜂𝑖 

components in the global frame of reference for a single 

suspension set is 

 

𝚫𝑖 = [𝛿𝑖 𝜀𝑖 𝜂𝑖]
𝑇.  (7) 

 

The displacement is caused by the difference in the 

forces effecting the conductor from adjacent spans 𝑖 and 

𝑖 − 1 in the supporting point as the new equilibrium of 

moments is set. The force-difference vector at the 

suspension point is  

  

𝐅𝑖 = [𝐻𝑖 𝑉𝑖 𝑃𝑖]𝑇 = 𝐅𝑅𝑖−1 − 𝐅𝐿𝑖 . (8) 

 

The displacement vector (7) in fact describes a an 

enforced insulator-set movement and is given by the 

kinematics of the chosen suspension-set type. The 

displacement equations can be derived for any 

suspension-set geometry, as we will show later in 

Section 4. Besides the given material and the 

geometrical insulator-set data (weight, insulator 

dimensions, constraints) that are constants, the 

displacement is only a function of the resultant forces 

(8) in the suspension point. So 𝚫𝑖 = 𝚫𝑖(𝐅𝐿𝑖 , 𝐅𝑅𝑖). Note 

that the conductor force at the conductor end (5) and the 

catenary data (6) are also determined and can be viewed 

as a function of 𝛋𝑖 = 𝛋𝑖(𝐅𝐿𝑖).   Referring to Fig. 2, the 

following vector equation holds for all spans 

 

𝛋0𝑖 + (𝚫𝑖+1 − 𝚫𝑖) − 𝛋𝑖 = 𝟎 𝑖 = 1,2, . . , 𝑛.  (9) 

 

Equation (9) which describes the boundary conditions to 

be met when searching for the algorithm, is only a 

function of the conductor tension forces. By 

determining the conductor forces in an individual span 

that satisfies equation (9), the displacement in a static 

configuration can be calculated by taking into account 

the wind and/or ice loads for an arbitrary span. 

 

3 3D CONDUCTOR STATIC EQUATIONS 

In this section, equations are given to calculate the new 

span data (6) and the adjacent span resultant forces (8) 

in the suspension point. At this point our approach 

differs significantly from the existing methods. The 

forces are calculated directly with differential 3D 

catenary equations developed in [6]. They are extracted 

a static solution of the original dynamical equation 

describing 3D conductor motions in a single span. 

Using them under a static condition, the single-span 

catenary is fully determined with seven ADEs written in 

the conductor natural frame of reference fixed on the 

conductor and expressed in terms of the Euler angles. 

After minor adaptations to better fit our problem and 

adding the ice load and ice thickness variables, the 

equations are summarized as the governing equations 

 
∂𝑇𝑖

∂s𝑖
+ 𝐹𝑡𝑖 − (𝑚𝑐𝑔 + 𝑤𝐿𝑖) sin 𝜙𝑖 = 0    

𝑇𝑖

cos 𝜓𝑖

∂𝜙𝑖

∂s𝑖
+ 𝐹𝑛𝑖 − (𝑚𝑐𝑔 + 𝑤𝐿𝑖) cos 𝜓𝑖 cos 𝜙𝑖 = 0  

𝐹𝑏𝑖 + (𝑚𝑐𝑔 + 𝑤𝐿𝑖) sin 𝜓𝑖 cos 𝜙𝑖 = 0  
𝑇𝑖 cos 𝜙𝑖

sin 𝜓𝑖

∂𝜃𝑖

∂s𝑖

− 𝐹𝑛𝑖 + (𝑚𝑐𝑔 + 𝑤𝐿𝑖) cos 𝜓𝑖 cos 𝜙𝑖 = 0 

  (10a) 

and as the geometrical equations 
∂𝑦𝑖

∂s𝑖
= (1 +

𝑇𝑖

𝐸𝐴
) cos 𝜃𝑖 cos 𝜙𝑖 = 0  

∂𝑧𝑖

∂s𝑖
= (1 +

𝑇𝑖

𝐸𝐴
) cos 𝜃𝑖 sin 𝜙𝑖 = 0   

∂𝑥𝑖

∂s𝑖
= − (1 +

𝑇𝑖

𝐸𝐴
) sin 𝜃𝑖 cos 𝜙𝑖 = 0.  (10b) 

 

Parameter s𝑖 is an un-stressed material point on the 

conductor. Not going into detail, Euler angles 𝜙𝑖, 𝜃𝑖, 𝜓𝑖  

define the position of the local t,n,b frame of the 

reference relative to global frame of reference XYZ, 

(see Fig. 3).  

 

Figure 3.  Conductor global and local frame of reference. 

 

In the natural frame of reference, the conductor ends 

have only the tangential component in the direction of 

vector t, which is on the conductor either left- or right-

hand side, equal to 𝑇𝐿𝑖, or 𝑇𝑅𝑖 .  In a vector form, both 

sides are defined as 𝐓𝐿𝑖 = [𝑇𝐿𝑖 0 0]𝑇 and 𝐓𝑅𝑖 =
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[𝑇𝑅𝑖 0 0]𝑇. Using the transformation matrix 𝑪𝑬  

given in the Appendix, the transformations between the 

local and global force (5) components are  

 

𝐅𝑅𝑖 = 𝑪𝑬
−𝟏𝐓𝑹𝒊 or 𝐅𝐿𝑖 = 𝑪𝑬

−𝟏𝐓𝑳𝒊. (11) 

 

In the governing equations (10a), the external drag-force 

components per unit length 𝐹𝑡𝑖, 𝐹𝑏𝑖 𝐹𝑛𝑖 induced by the 

wind force on the conductor are directly included in the 

equations. In a vector form, the drag force on the 

conductor in the local frame of reference is defined as 

 

 𝐓𝑑𝑖 = [𝐹𝑡𝑖 𝐹𝑏𝑖 𝐹𝑛𝑖]
𝑇 .  (12) 

 

At this point it is also necessary to consider two aspects 

of the OL wind load discussed in the literature. The first 

aspect provides an insight into the related design 

standards [10] imposed on the inclusion of the wind 

velocity as an external OL load in the design process. 

The wind force is calculated using simplified equations 

and applicable tables showing the wind coefficients. 

The second aspect deals with the mechanic-dynamic 

phenomena such as Aeolian vibrations, sub-span 

oscillations and galloping conductors [11-15]. The wind 

force acting on a conductor is calculated as a classical 

drag-force response to the wind velocity. So, equations 

[6] can also be used in our numerical model, similarly 

as in the above-mentioned references. In a quasi-static 

state, the relative wind velocity is the same as the wind 

velocity. Assuming that the wind blows horizontally in 

the XY plane with velocity 𝑈 and defining angle 𝛼 

between the wind direction and the YZ plane, the 

components of the wind-induced forces are:   

 

𝐹𝑡𝑖 = −
1

2
𝜌𝐶𝑑𝑡(𝐷𝑐 + 2𝐷𝑎𝑖)𝑣𝑟𝑡𝑖|𝑣𝑟𝑡𝑖| (1 +

2𝑇𝑖

𝐸𝐴
)   

𝐹𝑛𝑖 = −
1

2
𝜌𝐶𝑑𝑛(𝐷𝑐 + 2𝐷𝑎𝑖)(𝑣𝑟𝑛𝑖

2 + 𝑣𝑟𝑏𝑖
2 )

1

2𝑣𝑟𝑛𝑖 (1 +
2𝑇𝑖

𝐸𝐴
)  

𝐹𝑏𝑖 = −
1

2
𝜌𝐶𝑑𝑏(𝐷𝑐 + 2𝐷𝑎𝑖)(𝑣𝑟𝑛𝑖

2 + 𝑣𝑟𝑏𝑖
2 )

1

2𝑣𝑟𝑏𝑖 (1 +
2𝑇𝑖

𝐸𝐴
)  

  (13) 

 

In Eq. (13), the vector of relative wind velocity 𝐯𝑟𝑖 is 

defined in the local frame of reference with the 

components 𝐯𝑟𝑖 = [𝑣𝑟𝑡𝑖 𝑣𝑟𝑛𝑖  𝑣𝑟𝑏𝑖  ]𝑇. Knowing wind 

velocity 𝑈 and wind-blowing angle 𝛼 in the global 

frame using wind-transformation matrix 𝐂𝒘 given in the 

Appendix, the relative components in the local frame of 

reference expressed in terms of the Euler angles are  

 

𝐯𝑟𝑖 = 𝐂𝒘𝒊𝑈 . (14) 

 

A brief comment on ice weight 𝑤𝐿𝑖  and ice thickness 

𝐷𝑎𝑖  included in (10a) and (10b) should be made. In 

general, they are both chosen arbitrarily.  

For individual span 𝑖, a system of seven equations (10a 

and 10b) with seven unknowns needs to be solved.  In 

n-span tension field, an equation system consisting of 

𝑛 ∗ 7 sets of ADEs is created. Each single-span 

integration interval is determined by the conductor 

unstressed length (4) in interval [0 L𝑢𝑖]. The results of 

integrating the governing relations (10a) in individual 

spans are the conductor tension force and Euler angles. 

By simultaneously integrating the geometrical relations 

(10b), individual span data 𝛋𝑖 are calculated. They 

depend on the conductor tension force and Euler angles. 

As an example, integrating the first geometrical 

equation gives the horizontal span length of 𝑎𝑖 =

∫ (1 +
𝑇𝑖

𝐸𝐴
) cos 𝜃𝑖 cos 𝜙𝑖

𝐿𝑢𝑖

0
ds𝑖. The same is true for the 

second and third geometrical equation and the results 

are ℎ𝑖 and 𝑏𝑖. Note that, by using algebraic equation 

third angle 𝜓𝑖  can be expressed with the other two Euler 

angles.  To solve the system equation (9), an iterative 

method is needed.  It can be a shooting method or any 

software pre-built numerical method able to solve an 

ADE system. We shoot to 𝑇𝑖 , 𝜙𝑖, 𝜃𝑖, and integrate the 

geometrical equation to obtain the span and 

displacement data for the current iterations. The 

iterations continue until (9) is satisfied. Note that the 

data (𝑎𝑖 , ℎ𝑖 , 𝑏𝑖) of span is an integral boundary condition 

and corresponds to three unknowns per span, i.e one is 

the force and two are the Euler angles. Finally, to solve 

(9), the insulator displacement equation 𝚫𝑖 as a function 

of the force vector is determined as shown in the next 

section.  

 

4 INSULATOR SET-DISPLACEMENT 

Two of the most used insulator types will be discussed. 

However, it should be mentioned that the presented 

method is open for any insulator-set geometry. For 

presentation purposes, we chose the hanging I insulator-

set and the Vee insulator-set. It should be made clear 

that the displacement equations are developed for a 

particular insulator type. By changing equation set (8), it 

is easy to move between the different insulator types in 

the mathematical model. The insulator-set rotation is a 

kinematically constrained movement.  In the paper we 

present the final results derived from the moments and 

the constrained equations. 

4.1 I insulator set 

 Referring to Fig. 2, the displacement vector 

components in the global frame of reference for the 

vertical I insulator string of length 𝐿𝑘 and insulator 

weight 𝐽𝑘 give the equations 

𝛿𝑖 = 𝐿𝑘
𝐻𝑖

√𝐻𝑖
2+(

𝐽𝑘
2

+𝑉𝑖)
2

+𝑃𝑖
2
  

𝜀𝑖 = 𝐿𝑘 (1 −
−(

𝐽𝑘
2

+𝑉𝑖)

√𝐻𝑖
2+(

𝐽𝑘
2

+𝑉𝑖)
2

+𝑃𝑖
2
)  

𝜂𝑖 = 𝐿𝑘
𝑃𝑖

√𝐻𝑖
2+(

𝐽𝑘
2

+𝑉𝑖)
2

+𝑃𝑖
2
 .  (15) 

 

Taking the wind force as zero, the equation reduces to a 

2D case with the same equations as in [1]. 
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4.2 Vee insulator set 

As the Vee insulator set is more complex, the basic 

steps towards displacement equations are outlined to 

show the calculation principle. A typical Vee-braced 

insulator-set is given in Fig. 4a.  

 

Figure 4.  Vee insulator set (a. initial position, b. mathematical 

model in a local frame of reference). 

 

The insulator-set assembly consists of two basic 

elements. A post insulator of length 𝐿𝑝𝑖 and mass 𝑚𝑝𝑖 

mounted at inclination 𝛽𝑖 to the horizontal X global 

axis. The brace insulator has length 𝐿𝑏𝑖 and mass 𝑚𝑏𝑖. 

The post and brace part hang at points on the rotation 

CC axis. The CC axis has inclination 𝛾𝑖 to the vertical Z 

axis. The assembly has a rigid connection between the 

elements at point C* and freely rotates around the CC 

axis. The first calculating step in calculating the 

displacement is introducing the local frame of reference, 

𝑋1𝑌1𝑍1, rotated by 𝛾𝑖  around the Y axis, as presented 

in Fig. 4b. The values in the 𝑋1𝑌1𝑍1 frame of reference 

are written with a dashed upper script. The relation 

between the global and the local frame of reference now 

defines transformation matrix 𝐂𝟏 given in the Appendix. 

Using the local frame of reference, the problem is 

simplified to triangular kinematics, where self-insulator 

set weight 𝐽�̅�𝑖 acts on the triangular gravity center and 

together with resultant force 𝐅𝑖 at point C* rotates the 

assembly. The calculation for the gravity center and 

self-weight is given in the Appendix. The conductor 

forces expressed in local frame of references expressed 

with the global forces are  

 

�̅�𝑖 = [𝐻𝑖 �̅�𝑖 �̅�𝑖]
𝑇 = 𝐂𝟏𝐅𝑖 .  (16) 

 

It is obvious that in the local frame of reference there 

are only two displacement components exists, the third 

one is identical to zero.  Writing only the results of the 

equation derivation, vector  �̅�𝑖 = [𝛿�̅� 𝜀�̅� �̅�𝑖]
𝑇 with 

components is 

𝛿�̅� = ℎ𝑎𝑖
2 �̅�𝑖

√(ℎ𝑎𝑖�̅�𝑖)2+(�̅�𝑥𝑖𝐽�̅�𝑖+ℎ𝑎𝑖�̅�𝑖)2
  

𝜀�̅� = 0 (17) 

�̅�𝑖 = ℎ𝑎𝑖 (1 −
−(�̅�𝑥𝑖𝐽�̅�𝑖+ℎ𝑎�̅�𝑖)

√(ℎ𝑎𝑖�̅�𝑖)2+(�̅�𝑥𝑖𝐽�̅�𝑖+ℎ𝑎𝑖�̅�𝑖)2
).  

Finally, back from the local to the global frame of 

reference with the transformation in the vector form 

they are 

 

𝚫𝒊 = 𝐂𝟏
−1�̅�𝑖 (18) 

 

A similar approach is used to prepare the displacement 

equations for another insulator-set assembly. 

 

5 NUMERICAL EXAMPLE 

To verify and demonstrate the usefulness of our 

mathematical method, the method is used for a practical 

designer problem, where the differences between the 

OL equipped with a classical I insulator-set or with Vee 

insulator-set are analyzed. In the numerical example, the 

results attained with our method and those calculated 

with the commercial software [3] are compared. The 

calculations are performed on PC in a self-developed 

software program based on the MatLab platform. As the 

presented method uses the numerical calculations, the 

initial conditions for solving ADE are necessary. The 

testing problems can be solved within in the range of a 

normal ice load and/or wind load up to 15 m/s using the 

following rough initial assumptions 

 

𝑇𝑖~(L𝑖 − L0𝑖 L0𝑖⁄ )𝐸𝐴  

𝜙0𝑖~ tan−1(2(ℎ𝑖 − 𝑑𝑖) 𝑎𝑖⁄ )  (19) 

𝜃0𝑖 = tan−1(𝑈𝑑𝑖 𝑚𝑖𝑔⁄ ). 

 

At higher wind speeds, a higher initial accuracy or step 

calculation is needed to achieve iteration convergence to 

a solution. To overcome the convergence problem, the 

loads should be divided into smaller parts and more 

calculation steps should be taken for the solution. In the 

numerical example, the ACSR 240/40 conductor is 

strung in a tension field consisting of four spans with 

the lengths of 257m, 270m, 260m and 245m and three 

isolator-sets I1, I2, I3. The height differences between 

the span suspension points are 0m, 0m, -4m, and -2m, 

and OL is a straight line. The horizontal conductor 

tension is 22.6 kN. The conductor mass per unit length 

is 0.98 kg/m, the cross-section is 282.5 mm2, the 

diameter is 21.8 mm and the Young’s modulus is 

77,000 N/mm2. The mass of the classic I insulator-set is 

15 kg and the length is 2m. In the Vee insulator set, the 

length of the post insulator is 1.4 m, the mass is 15 kg 

and inclination to the horizontal axis is 12°. The length 

of the brace insulator part is 1.6 m, the mass is 5 kg. 

Table I summarizes the comparison results for the two 

calculation methods and two insulator-set types. The 

three cases, A, B and C, are included in the table. In 

case A an ice load of the weight of 15 N/m is only in the 

second span where there is no wind pressure. In case B 

ice load condition is the same and the speed of a 

perpendicular wind is 10 m/s at all spans and at the air 

density of 1.225 kg/m3. Case C is the same as case B 

with the exception of the wind which here attacks at a 

30° angle to the OL. Table I shows a good agreement 
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between the compared calculation methods for the two 

insulator types in each sub-case. The small differences 

of 10% in the longitudinal direction is likely to be due 

to the different numerical models. The accuracy 

obtained on the basis of tailored initial conditions, 

enables a direct and converging numerical calculation. 

 

 
Table 1: Results of a comparison between the two calculation methods  

  I INSULATOR-SETS VEE INSULATOR-SETS 

 

PRESENTED METHOD 

DISPLACEMENTS 

SAPS SOFTWARE 

DISPLACEMENTS 

PRESENTED METHOD 

DISPLACEMENTS 

SAPS SOFTWARE 

DISPLACEMENTS 

 Y Z X Y Z X Y Z X Y Z X 

 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 

A. Ice load in second span.  

  

         

I1 0.131 0.004 0 0.123 0.003 0 0.132 0.001 -0.007 0.124 0.000 -0.006 

I2 -0.206 0.011 0 -0.227 0.012 0 -0.214 0.004 -0.018 -0.236 0.004 -0.022 

I3 -0.107 0.003 0 -0.107 0.003 0 -0.111 0.001 -0.009 -0.112 -0.000 -0.005 

B. Ice load and perpendicular wind.  

  

         

I1 0.131 0.015 -0.211 0.123 0.014 -0.212 0.132 0.001 -0.006 0.124 0.000 -0.006 

I2 -0.205 0.021 -0.204 -0.227 0.023 -0.205 -0.212 0.004 -0.017 -0.239 0.004 -0.022 

I3 -0.106 0.019 -0.259 -0.107 0.019 -0.260 -0.110 0.001 -0.005 -0.113 -0.000 -0.004 

C. Ice load and wind under 30°.  

  

         

I1 0.138 0.005 -0.053 0.123 0.004 -0.053 0.139 0.002 -0.007 0.124 0.000 -0.006 

I2 -0.194 0.010 -0.052 -0.227 0.013 -0.051 -0.199 0.003 -0.015 -0.236 0.004 -0.022 

I3 -0.099 0.004 -0.066 -0.107 0.004 -0.066 -0.102 0.001 -0.004 -0.112 -0.000 -0.005 

 

The main goal of this paper is to compare the methods. 

Analyzing the differences between the two insulator 

types is left to the reader. 

 

6 CONCLUSION 

The numerical example shows that the presented 

method can be used with confidence by OL designers as 

a simple alternative to other known methods or 

commercial software to calculate a new conductor state 

induced by ice and/or wind loads. Primarily, the method 

is developed to calculate the initial conditions needed 

for the dynamic FEM based calculations. It is general 

and mathematically transparent and can be viewed as an 

alternative when tailored input data for solving special 

problems must be determined and no commercial 

software is available.   

Though the aim of this paper is to investigate the 

insulator-set displacement, the output of the presented 

method are sags, forces and other data important for the 

designer work. The method can be upgraded for any 

insulator-set shape by developing the designers own 

displacement equations and simply adding them to the 

library. Besides calculating initial conditions for the 

FEM methods, the method can be applied to a wide 

spectrum of practical problems to analyze different OL 

issues and to provide either compact or classical 

solutions.  

 

7 APPENDIX 

7.1 Euler-transformation matrix  

Transformation from the conductor global (XYZ) frame 

of reference to the local (natural t n b) frame of 

reference using the Euler angles with rotating sequence 

𝑌, 𝑍, 𝑋/𝜃, 𝜙, 𝜓 

 

𝐂𝑬 =

[

cos 𝜃𝑖 cos 𝜙𝑖 sin 𝜙𝑖

sin 𝜓𝑖 sin 𝜃𝑖 − cos 𝜓𝑖 sin 𝜙𝑖 cos 𝜃𝑖 cos 𝜓𝑖 cos 𝜙𝑖

cos 𝜓𝑖 sin 𝜃𝑖 + sin 𝜓𝑖 sin 𝜙𝑖 cos 𝜃𝑖 −sin 𝜓𝑖 cos 𝜙𝑖

  

 
− sin 𝜃𝑖 cos 𝜙𝑖

sin 𝜓𝑖 cos 𝜃𝑖 + cos 𝜓𝑖 sin 𝜙𝑖 sin 𝜃𝑖

cos 𝜓𝑖 cos 𝜃𝑖 − sin 𝜓𝑖 sin 𝜙𝑖 sin 𝜃𝑖

].  (20) 

 

7.2 Wind-transformation matrix  

The wind transformation matrix is 

 

𝐂𝒘 =

− [

cos(𝜃𝑖 − 𝛼) cos 𝜙𝑖

sin(𝜃𝑖 − 𝛼) sin 𝜓𝑖 − cos(𝜃𝑖 − 𝛼) sin 𝜙𝑖 cos 𝜓𝑖

sin(𝜃𝑖 − 𝛼) cos 𝜓𝑖 + cos(𝜃𝑖 − 𝛼) sin 𝜙𝑖 sin 𝜓𝑖

] (21) 

 

7.3 Vee-transformation matrix  

The transformation matrix from the global (XYZ) to the 

insulator local (X1Y1Z1) frame of reference is 
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𝐂𝟏 = [
1 0 0
0 cos 𝛾𝑖 − sin 𝛾𝑖

0 sin 𝛾𝑖 cos 𝛾𝑖

]  (22) 

 

7.4 Gravity center of the Vee insulator-set 

The insulator weight vector and gravity center vector in 

the local frame of reference are  

 

𝐉̅
𝑖 = [𝐽�̅�𝑖 0 𝐽�̅�𝑖]

𝑇 = 𝐂𝟏[−𝑔(𝑚𝑝𝑖 + 𝑚𝑏𝑖) 0 0]
𝑇
  

 

�̅�𝑐𝑖 = [0 �̅�𝑧 �̅�𝑥]𝑇 =
1

𝑚𝑝𝑖+𝑚𝑏𝑖
[𝑚𝑝𝑖�̅�𝑐𝑝𝑖 + 𝑚𝑏𝑖�̅�𝑐𝑏𝑖] (23) 

 

where the geometrical values are 

ℎ𝑎𝑖 = 𝐿𝑝𝑖 cos(𝛽𝑖 + 𝛾𝑖)  

ℎ𝑏𝑖 = 𝐿𝑝𝑖 sin(𝛽𝑖 + 𝛾𝑖) + √𝐿𝑏𝑖
2 − ℎ𝑎𝑖

2   

and the local gravity centers for the post and brace parts 

separately are 

 

�̅�𝑐𝑝𝑖 = [0
𝐿𝑝𝑖

2
sin(𝛽𝑖 + 𝛾𝑖)

ℎ𝑎𝑖

2
]

𝑇

  

�̅�𝑐𝑏𝑖 = [0
1

2
(ℎ𝑏 + 𝐿𝑝𝑖sin(𝛽𝑖 + 𝛾𝑖))

ℎ𝑎𝑖

2
]

𝑇

. 
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