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Abstract. Designing a multi-agent system by specifying individual agents and their local interaction in a way that 

will give rise to a desired global behavior is a difficult task. In this paper, an approach is presented to designing a 

global emergent behavior for the heap formation task in a reactive multi-agent system using genetic algorithms. 

Instead of building a multi-agent system by defining the agents’ reaction rules, the system is designed using 

evolution of the global behavior by genetically operating on single agents while evaluating fitness of the whole 

system. The research includes examination of scalability of the evolved solutions relative to the number of the 

agents by cross-testing evolved solutions in different system configurations. It is shown that the evolved solutions 

perform properly, but scale well only on limited intervals that do not span over a critical point corresponding to 

the condition where the number of the agents equals the number of the objects. 
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Načrtovanje globalnih lastnosti reakcijskih večagentnih 

sistemov z uporabo evolucijskega računanja 

Načrtovanje večagentnih sistemov z neposrednim planiranjem 

posameznih agentov in njihovega vzajemnega delovanja je 

težak problem.  V članku predstavljamo postopek načrtovanja 

globalnega emergentnega vedenja večagentnega sistema z 

uporabo genetskih algoritmov na primeru kopičenja 

predmetov. Načrtovanje sistema temelji na evolucijskem 

razvoju globalnega vedenja z genetskim delovanjem na ravni 

posameznega agenta in vrednotenjem na ravni celotnega 

večagentnega sistema. Raziskava je vsebovala tudi preučitev 

skalabilnosti pridobljenih rešitev v razmerju do števila agentov 

v sistemu. Raziskava je pokazala, da so bile pridobljene 

rešitve ustrezne, a so pri spremembi števila agentov delovale 

dobro le na omejenem intervalu, ki se ni raztezal preko točke, 

ko je bilo število agentov enako številu predmetov. 

 

1 INTRODUCTION 

Certain natural multi-agent systems, like ant colonies, 

prove that decentralized systems based on simple 

constituent parts can exhibit an advanced global 

behavior that has important advantages over explicit 

central control in multi-agent systems. Multi-agent 

systems are systems composed of multiple interacting 

computational entities, named agents, and their 

environment. Multi-agent systems can be used to solve 

a range of different problems [1] [2] [3], wherein the 

distinctive quality of the multi-agent systems are the 

agents’ mutual interactions and the emerging overall 

effects that overcome properties and capabilities of the 

single agents. The agents that constitute a multi-agent 

system can be sophisticated and complex computer 

programs, or in contrast, a multi-agent system can be 

composed of very simple software agents.  

 A special case of multi-agent systems are reactive 

multi-agent systems that contain a large number of 

simple reactive agents [4] [5] [6]. The reactive agent 

behavior consists of simple reactions to its local 

environment following very basic rules. The reactive 

agent does not include any communication capabilities 

other than ability to sense and change its local 

environment. Even though the reactive agent behavior is 

elementary, a reactive multi-agent system as a whole is 

capable of exhibiting a complex global behavior. 

However, designing a desired global behavior by 

defining the agents’ reaction rules is a difficult task, 

since the global behavior in a reactive multi-agent 

system is in general an emergent phenomenon [7]. The 

emergent phenomena are not linear and therefore it is 

very difficult to predict the global behavior of the whole 

system on the basis of the behavior of single agents. 

 Instead of building a reactive multi-agent system by 

explicitly defining the agents’ reaction rules, the system 

can be designed using evolution of the global emergent 

phenomena using genetic algorithms (GA) [8] by 

genetically operating on single agents, but then 

evaluating fitness of the whole system. This approach 

represents a shift from the conventional method where 

the genetic activity and fitness evaluation operate at the 

same level of the system. For instance, in the field of 

artificial life, the development of an ecosystem is 
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typically performed by evaluating and operating at the 

same level, i.e., at the level of an organism [9] [10]. 

 A solution resulting from the described optimization 

process is evolved in a particular configuration of the 

system parameters (i.e., the number of the agents, the 

ratio between the number of the agents and the number 

of the environment cells, etc.). However, an optimized 

solution that evolves using one set of the system 

parameters does not necessarily provide a good solution 

under a different set of the system parameters.  

 The objective of the presented research was to 

develop optimization methods for constructing the 

desired global behavior of a homogeneous reactive 

multi-agent system entirely by evolution of the agents' 

local behavior. The required task was to produce a heap 

formation behavior [11]. The resulting multi-agent 

systems were tested for performance scalability relative 

to the change in the number of the agents while keeping 

the rest of the system parameters invariable. 

 The heap formation task examined in this research is 

well covered in the scientific literature. Deneubourg et 

al. [12] presented a computer simulation of various 

tasks inspired by ants’ behavior. They showed that 

simple agents can perform coordinated clustering of 

scattered objects using only simple local rules and 

without any explicit communication between the agents.  

Beckers, Holland and Deneubourg [1] achieved 

clustering by using small, puck-piling robots with an 

even simpler algorithm. A similar research was done by 

Chantemargue and Hirsbrunner [13] who achieved 

regrouping of objects in the environment by virtue of 

self-organization and emergence, and by Barfoot and 

D’Eleuterio [14] who used a cellular automaton to 

arbitrate between a number of fixed basis behaviors to 

drive agents. Another simulation-based research 

exploring emergent cooperation was done by Dagaeff et 

al. [15]. They used an environment composed of a 

discrete torus grid, a set of objects, and mobile agents 

charged to gather all the objects on a single cell. Arkin 

and Balch dealt with the heap formation task using 

behavior-based robotics [16].  

 To date, there has not been much work done 

concerning the problem of scalability of the evolved 

solutions in multi-agent systems. Bahceci and Sahin 

[17] studied how different parameters of evolutionary 

methods affect the performance and scalability in the 

swarm robotic systems. Some other relevant research on 

scalability in multi-agent systems was done by Fontan 

and Mataric [18] that studied the issue of the critical 

mass in a multi-agent retrieval task and found that 

effectiveness of a group of robots depends significantly 

on the group size. Further, Rosenfeld et al. [19] 

presented a study on productivity of the robotic groups 

during scaling-up. They introduced an interference 

metric that measures the total time the robots take to 

deal with resolving the team conflicts and reducing the 

group productivity. 

   

2 METHODS 

2.1 Reactive multi-agent system 

The experimental multi-agent system consists of a set of 

identical reactive agents, a set of passive objects that the 

agents can manipulate and a multicellular environment. 

 The core of each agent is a finite state machine 

(FSM) which transforms the agent’s input perceptions 

into its output actions. Perceptions sensing and actions 

execution are implemented by the perception and 

execution function (see Fig. 1).  

 

 

Figure 1. Reactive agent connected with its environment by 

converting perceptions into actions. 

 

 The FSM transition function is represented by a state 

transition table. This type of the lookup table mapping 

between perceptions and actions is called reactive 

control. The agent with a reactive control is called 

reactive agent. The agent’s FSM assigns action     to 

each perception     and internal state    : 

            (1) 

where   is a set of all possible agent perceptions,   is a 

set of FSM internal states, and   is a set of all possible 

actions that the agent can perform. Other than the FSM 

internal state, reactive agents have no presentation of 

the universe in which they operate, thus they merely 

react to their local environment. 

 The perception function assigns perception     to 

each local environment state    :  

                  (2) 

where   is a set of all possible states of the agent’s 

environment. The agents are orientated in the 

environment and their local environment is defined as a 

cell in front of the agent. The perception function 

distinguishes between the following elementary 

perceptions: an empty cell, a cell with an agent, a cell 

with a small pile of objects, and a cell with a large pile 

of objects. The size of the pile is determined 

probabilistically according to the number of the objects 

in the pile and the total number of the objects in the 

system. The elementary perception is combined with a 

random bit to form a combined final perception. 

 The execution function puts into effect a new local 

environment state      as a result of execution of 

action     on local environment state     

                  (3) 
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The execution function performs the following actions: 

doing nothing, turning left, turning right, stepping 

forward, picking up an object, and putting down the 

object. 

 The agents are entirely defined by FSM, the 

perception and the execution function, together with the 

corresponding sets of perceptions and actions. All the 

agents in the same experimental multi-agent system 

have an identical FSM and share the same perception 

and execution function, hence they are identical. 

 The agents’ environment is a discrete two-

dimensional toroidal grid of cells. A single cell can be 

empty or can hold a pile of objects, a single agent, or an 

agent transporting an object. The time advances in 

discrete steps. In every time step, for all the agents in 

the environment, a percept–react–execute sequence is 

performed. The order in which the agents are processed 

is not explicitly determined. 

 

2.2 Evolutionary optimization 

Construction of the desired global behavior of a reactive 

multi-agent system is formulated as an optimization 

process using a genetic algorithm. In order to use a 

genetic algorithm to solve an optimization problem, a 

corresponding optimization task has to be defined. In 

our case, the problem of the global system behavior 

design is determined as the following optimization task: 

"Find the agents’ FSM transition function that 

minimizes the distance between the resulting global 

behavior and the desired global behavior of the multi-

agent system." The corresponding objective function 

        mapping the search space to the set of real 

numbers, cannot be expressed analytically. The 

objective function reflects some global property of the 

whole system that is in general an emergent property. 

An emergent property is by definition computationally 

irreducible and its outcome can essentially be found 

only by explicit simulation. 

 

 

Figure 2. Representation of a particular solution as a string of 

integers representing the state transition table, being the same 

for all the agents.  

 

In an experimental homogeneous reactive multi-agent 

system, a single reactive behavior pattern defined by 

FSM applies to all the agents and therefore every 

solution in the search space can be represented by a 

single state transition table. Throughout the 

evolutionary process, the number of the FSM internal 

states is fixed. Consequently, the size of the search 

space is equivalent to the number of all the possible 

different transition tables of the same size determined 

by the number of the FSM internal states, the number of 

the possible perceptions and the number of the possible 

actions. 

 The transition table represented in a chromosome 

appears as a string of integers that correspond to the 

internal states and actions indices (see Fig. 2).  

 

3 EXPERIMENTS AND RESULTS 

The goal of our experiments was to study an 

evolutionary construction of a desired global behavior 

of a homogeneous multi-agent system by genetically 

operating on the agents' local reactive behavior. The 

global task was to collect the objects into piles. 

 Our experiments involved a multi-agent system with 

a discrete two dimensional toroidal grid of the size 64 × 

64 cells. The agents and objects were initially randomly 

positioned. The experiments varied in the number of the 

agents and objects involved. The fitness function 

measured the relative number of the objects included in 

the biggest pile at the end of the evolutionary 

optimization process. 

 The experiments were performed in two stages. In 

the first stage, the evolutionary optimization process 

was tested on different configurations varying in the 

number of the FSM internal states. These preliminary 

experiments were used to examine validity of the 

proposed methods for evolutionary construction of the 

multi-agent global behavior. In the second stage, 

experiments were conducted to evaluate scalability of 

the evolved solutions.  

 

3.1 Preliminary optimization examination 

The experimental multi-agent system contained 64 

randomly positioned objects and 32 randomly 

positioned reactive agents. All the agents had the same 

FSM. The fitness function measured the fraction of the 

objects included in the biggest pile averaged over the 

last 27 simulation steps. Simulations were left to run 

until stalling for the 27000 agents’ steps. 

 The GA population of 100 representations of the 

FSM transition table was used. The number of 

generations in the evolution was 250. In the course of 

the same experiment, the FSM complexity (the number 

of internal states) was fixed and only the FSM state 

transition table was evolved. The crossover probability 

used in the evolution process was 0.04 and the mutation 

probability was 0.01.  
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 In the experiments, different configurations were 

tested. They differed in the number of the FSM internal 

states. Fig. 3 shows the fitness values of the best multi-

agent systems in the first 250 generations, where 1, 2, 4, 

and 8 states FSM were used. The experiments showed a 

clear progress of the evolved systems. Also noted was 

that the higher FSM complexity resulted in an improved 

outcome of the evolutionary process. 

 

 

 

 

Figure 3. Best fitness values in 250 evolution generations for 

multi-agent configurations using FSM with 1, 2, 4 and 8 

internal states. 

 

3.2 Scalability of the evolved solutions  

Scalability of an evolved multi-agent system refers to 

the ability of the system to respond to the changes of its 

particular parameter. For example, the scalability 

variable can be the size of the problem. The scalability 

variable considered in our research was the number of 

the constituent agents, while keeping the rest of the 

system parameters invariable. 

  

 

Figure 4. Scalability evaluation of the evolved multi-agent 

systems. For every system configuration, optimized solutions 

are sought in the first phase. In the second phase, these 

solutions are tested under all system configurations including 

configurations different from those used in the evolution. 

 

 Scalability was evaluated in two phases (see Fig. 4). 

In the first phase, best solutions for different system 

configurations were found using GA with the same 

optimization process as described in Section 3.1. In the 

second phase, the best evolved solutions were cross-

tested in all the system configurations. 

 

3.2.1 Optimization process 

The first phase consisted of the optimization process 

where best solutions to the task were searched by using 

GA. The experimental setup was a variation of the setup 

used in the basic optimization process. In order to study 

the impact of the ratio between the agents and objects in 

the optimization phase on scalability of the optimized 

solution, nine system configurations with a different 

agent/object ratio were examined as shown in Table 1. 

Table 1: System configurations used in the scalability-

evaluation optimization step and the scalability-evaluation test 

step  

 

Number of   

Agents 

Number of   

Objects 

Agents/Objects 

Ratio 

1 54 0.02 

13 54 0.24 

27 54 0.50 

40 54 0.74 

54 54 1.00 

68 54 1.26 

81 54 1.50 

95 54 1.76 

108 54 2.00 

 

A GA population of 108 representations of the FSM 

transition table was used. The number of the generations 

in evolution was 324. The number of the internal states 

was 4. The crossover fraction used in the evolution 

process was 0.5 and the mutation probability was 0.02.  

 

 

 

Figure 5. Best fitness values in the evolutionary process for 

nine different experimental system configurations. Parameter 

n indicates the number of the agents in the system. The 

number of the objects is 54 for any of the system 

configurations. 

 

In a set of experiments, an evolution process was 

executed on different configurations varying in the 

agent/object ratio. Fig. 5 shows the fitness values of the 

best evolution solutions. As seen, different 

configurations produced significantly different 

outcomes of the evolutionary process. 
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3.2.2 Scalability Test 

The results of the first phase were nine FSM sets with 

their corresponding fitness values. The best three FSMs 

for each examined configuration passed to the second 

experimental phase where the scalability tests were 

performed. The scalability tests measured the 

performance of the best FSMs from the first phase in 

each of the multi-agent system configurations. The rest 

of the system parameters were invariable.  

A single scalability test consisted of nine sets of 

simulations, each testing one of the system 

configurations. Each set consisted of 108 random runs 

for each of the best three solutions from the first 

experimental phase. The simulations in the scalability 

test were the same as the ones used in the optimization 

process. The averaged results of the scalability tests are 

shown in Fig. 6. 

In addition to cross-testing the evolved solutions with 

the same simulations as used in the optimization phase, 

the solutions were further cross-tested with another type 

of simulations. For these simulations, the agents had to 

form a pile of the size equal to 7. The measured value 

was the number of the agents’ steps for the task to be 

completed (see Fig. 7). The agents’ steps were limited 

to 1,000,000. Note that the number of the agents’ steps 

and not the number of the simulation steps was 

considered in further scalability tests while comparing 

the different evolved solutions from the first phase. In 

this way, it was the effective work that was compared 

rather than the time taken by the system to complete the 

task. 

 

4 DISCUSSION AND CONCLUSION  

Allowing global coordination to emerge from collection 

of simple components has important advantages over 

explicit central control in both the natural and the multi-

agent systems (i.e., robustness, flexibility, and 

scalability). On the other hand, complex emergent 

systems are highly unpredictable and difficult to design.  

 Our preliminary experiments confirm that 

evolutionary optimization using GA can be used to 

design global emergent properties of a reactive multi-

agent system. We show that the performance of the 

evolutionary approach to designing reactive multi-agent 

systems is much dependent on the complexity of the 

agents’ FSM, where the FSM complexity is determined 

by the number of the FSM internal states. The simplest 

agents do not develop a successful behavior, while more 

complex agents do develop a useful behavior. 

 As expected, our scalability experiments show that 

the evolved solutions perform well if the agent/object 

ratio of the multi-agent system used in testing is similar 

to the agent/object ratio of the multi-agent system used 

in the evolution. On the basis of the measured data, a 

critical point can be identified, at which performances 

of different solutions differ minimally, while far from 

the critical point some solutions perform significantly 

better than others. Typically, the solutions performing 

well on one side of the critical point perform badly on 

the other side, suggesting that the solutions 

performances are significantly dependent on the 

agent/object ratio. The critical point corresponds to the 

boundary of the critical condition that occurs where the 

number of the agents is equal or greater than the number 

of the objects. 

 Additional scalability tests showed substantial 

changes in the solutions performances in the critical 

condition interval with rapid changes at the critical 

point. Manifestation of the critical condition can be 

explained by the fact that when the number of the agents 

surpasses the number of the objects, the agents will 

probably at some time carry all the objects so that none 

remains on the ground as a seed for the pile. This 

situation is difficult to be dealt with, especially for the 

solutions that are evolved in the systems where a critical 

condition cannot occur, i.e., in systems with the 

agent/object ratio lower than 1. On the other hand, it is 

not evident why the solutions that evolve in large multi-

   

Figure 6. Results of the scalability tests expressed as mean score values (left graph) and as mean pile sizes (right graph). The 

horizontal axe represents the multi-agent system size used for cross-testing scalability of the obtained solutions. The different 

lines represent the optimized solutions for a particular multi-agent system size. 
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agent systems perform badly in small multi-agent 

systems. This question needs to be examined in further 

research. 

 In the presented study, we show that evolutionary 

computation can be used to build a reactive multi-agent 

system with a required global behavior. Unfortunately, 

the study demonstrated that such evolved solutions may 

scale poor under the conditions that differ from those 

used in evolution. Further research is needed on 

evolutionary optimization techniques that will produce 

solutions that will scale well under the system 

configuration changes. 
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Figure 7. Results of the additional scalability tests measured in the agents’ steps (left graph) and in the simulation time steps 

(right graph). The horizontal axe represents the multi-agent system size used for cross-testing the solutions scalability. The 

different lines represent the optimized solutions for a particular multi-agent system size. 

 


