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Abstract. Delay is an important Quality of Service (QoS) parameter. A significant part of an end-to-end delay of a
data flow islatency– the delay induced by scheduling algorithms in network devices. In this paper we present a
latency analysis of a Deficit Round-Robin (DRR) scheduler. We correct inaccuracies and deficiencies of the DRR
latency analysis detected in works of other authors. We derive a new andmore precise latency bound of the DRR
scheduler and show that, contrary to the latency bounds derived by other authors, our bound is mathematically
correct. Finally we give a comparative analysis of the DRR latency bounds discussed in the paper.
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Natančnejša meja zakasnitve odpravnika z deficitarnim krǒznim
dodeljevanjem

Povzetek- Zakasnitev je pomemben parameter kakovosti
storitve. Pomemben del zakasnitev od-konca-do-konca za
posamezen podatkovni pretok je tudi začetna zakasnitev
ali latenca – zakasnitev algoritma odpravnika v omrežnih
napravah. V tem prispevku predstavljamo analizo latence
odpravnika z deficitarnim krǒznim dodeljevanjem (Deficit
Round-Robin - DRR). Osvetlimo in odpravimo nepravil-
nosti in pomanjkljivosti analiz latence odpravnika DRR
v delih drugih avtorjev. Izpeljemo novo in natančneǰso
mejo zakasnitve odpravnika DRR in pokažemo, da je
le-ta, v nasprotju z mejami zakasnitve drugih avtorjev,
matematǐcno pravilna. Za konec podamo primerjalno
analizo mej zakasnitev odpravnikov DRR, obravnavanih
v tem prispevku.

Klju čne besede:DRR, odpravnik z deficitarnim krǒznim
dodeljevanjem, latenca, meja zakasnitve, paketno
omrězje, odpravnik

1 Introduction

In present communication networks Quality of Service
(QoS) is more and more important. QoS in commu-
nication networks is generally measured in terms of
cell/packet loss, mean delay and delay jitter. Conse-
quently the end-to-end delay is becoming a more im-
portant transmission parameter. It should be bounded, it
should be as low as possible, and it should not have too
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much jitter. This is true especially for (interactive) real-
time applications that do not tolerate high delays and jit-
ter.

In packet networks resources are statistically shared
among different traffic sources that try to send their data
to the desired destinations. Overload causes congestion
that is solved either by delaying or by dropping excess
packets. Many of the problems that we face in networks
are related to the allocation of a limited amount of shared
resources (buffer, memory, bandwidth, etc.) to competing
data flows. Solutions that try to solve this problem can
be grouped into two categories: end-system-based solu-
tions and network-based solutions. As latency∗ is a net-
work device property, we are here only interested in the
network-based solutions.

Many multimedia applications rely on the ability of the
network to provide some sort of quality of service guar-
antees. QoS can generally be defined as a set of net-
work mechanisms that satisfy the varied quality of ser-
vice levels, while at the same time maximizing band-
width utilization. Applications rely on traffic schedul-
ing algorithms in network devices to guarantee perfor-
mance bounds. Several measures are to be considered
when choosing a scheduling algorithm. The most impor-
tant are: latency, fairness and complexity. This paper fo-
cuses on latency.

The paper is organised as follows. In Section 2 we briefly
describe why latency is an important property of each
scheduler. In Section 3 we present our latency bound.
We continue with the explanation of the basics of Deficit

∗Latency is defined in the following sections.
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Round-Robin (DRR) scheduler in Section 4. Section 5 is
the core of this paper where we give the definition of the
latency and derive its upper bound for the Deficit Round-
Robin scheduler. We conclude with a comparison of la-
tency bounds of some well-known schedulers in section
6.

2 Importance of Delay and Latency

The end-to-end delay is a very important QoS parameter.
A number of factors contribute to the end-to-end delay:
forwarding delay, queuing delay, propagation delay and
serialization delay. When scheduling algorithms are dis-
cussed, it is only the queuing delay that is of our interest.
It denotes the amount of time that a packet has to wait in a
queue as the system performs statistical multiplexing and
while other packets are serviced before it can be transmit-
ted on the output port.

The scheduling algorithm of a scheduler should provide
end-to-end delay guarantees for individual flows∗ without
severely under-utilizing network resources.

While queuing delay can be viewed primarily as a delay
parameter of a packet(s), latency is a delay parameter as-
sociated to data flows. The notion of latency, that is going
to be used here, is based on the length of time it takesa
new flowto begin receiving service at its reserved rate (for
details see [6]). Therefore, latency directly affects the size
of the playback buffers required in real-time applications.

3 Our Latency Bound

Latency bounds of DRR have been given or derived in
several papers that discuss Latency-Rate or Round-Robin
like schedulers. Let us mention two of the more impor-
tant papers written by Stiliadis and Varma [6] and Kan-
here and Sethu [7]. Our derivation of the latency bound
of the DRR has been inspired by both papers. We claim
that our latency bound is more precise because some as-
sumptions used to derive the latency bounds in [6] and [7]
are incorrect.

In [6] they do not take into account the fact, that the packet
length is a discrete value. It is true that for large maxi-
mum packet lengths this does not yield a big difference in
latency bound, but for small maximum packet lengths it
does. A more critical effect on the result has the inaccu-
rate assumption about the maximal possible value of the
deficit counter. In [7] they remediate both inaccuracies
from [6], but they use irregular factor replacements in one
of the inequalities in their derivation process. A detailed

∗Traditionally, a flow is defined as a sequence of packets gener-
ated by the same source and headed toward the same destination via
the same path in the network. It is assumed that packets belonging to
different flows are queued separately while they await transmission. A
scheduler dequeues packets from these queues and forwards them for
transmission.

explanation of the mentioned inaccurate assumptions is
given in [1] and [2].

In section 5 we give a simplified derivation of our latency
bound. An exhaustive derivation with proofs can again be
found in [1] and [2]. Further comments about the differ-
ences in latency bounds are given within Sections 5 and
6.

The most important result of our work presented in this
paper is the latency bound that is more precise than the
latency bounds given in [6] and [7].

4 Deficit Round-Robin

Scheduling algorithms can be broadly classified into two
categories: sorted priority schedulers and frame-based
schedulers.

Sorted priority schedulers maintain a global variable
called the virtual time or system potential function. The
priority of each packet, called the time-stamp, is calcu-
lated based on this variable. The packets are then sched-
uled in an increasing order of their time-stamps. Exam-
ples of sorted priority schedulers are Weighted Fair Queu-
ing (WFQ), Self-clocked Fair Queuing (SCFQ), Start-
time Fair Queuing (SFQ) and Worst-case Fair Queuing
(WF2Q). Generally, they give good fairness and low la-
tency bound but they have great computational complex-
ity.

In frame-based schedulers, time is split into frames of
fixed or variable length. Reservations are made in terms
of the maximum amount of traffic the flow is allowed
to transmit during a frame period. The service received
by a flow in one round-robin opportunity is proportional
to its fair share of the bandwidth. These schedulers do
not have to perform sorting among packets and calcu-
late global virtual time function, so they have lower com-
putational complexity than the sorted priority schedulers
do. Deficit Round-Robin (DRR), Surplus Deficit Round-
Robin, Elastic Round-Robin, Nested Round-Robin are
some of the frame based schedulers with complexity
O(1), but they have worse fairness and latency properties
than the sorted priority schedulers.

In 1996, Shreedhar and Varghese [5] proposed DRR, one
of the most popular frame-based scheduling algorithms.
The main characteristic of all DRR-like scheduling algo-
rithms is their ability to provide guaranteed service rates
for each flow (queue). DRR services flows in a strict
round-robin order. It has complexityO(1) and it is easy
to implement. Its latency is comparable to other frame-
based schedulers. A detailed operation of the DRR algo-
rithm can be found in [5].
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Below is a list of variables used in our analysis:

R transmission rate of an output link,
N total number of active flows,
ri reserved rate of flowi,
wi weight assigned to each flowi,
Qi quantum assigned to flowi,
DCi deficit counter of flowi,
F frame size,
Lmax maximum possible packet size.

Because all flows share the same output link, a necessary
constraint is that the sum of all reserved rates must be less
or equal to the transmission rate of the output link:

∑

i

ri ≤ R (1)

Let rmin be the smallest ofri: rmin = min∀i ri. Each
flow i is assigned a weight that is given by:

wi =
ri

rmin

. (2)

Note that∀i ∈ 1, 2, · · · , N holdswi ≥ 1. Each flowi

is assigned a quantum ofQi bits, that is a whole positive
value, i.e.Qi ∈ N . This quantum is actually the amount
of service that the flow should receive during each round-
robin service opportunity. Let us define withQmin the
minimum of all the quanta. Then the quantum for each
flow i is expressed as:

Qi = wiQmin. (3)

5 Latency

Stiliadis and Varma in [6] defined a general class of sched-
ulers, called Latency-Rate (LR) servers. The behaviour
of anLR server is determined by two parameters – the
latencyand theallocated rate. Latency of anLR server
is the worst-case delay seen by the first packet of a busy
flow. That is the packet arriving when the flow’s queue is
empty.

The latency of a particular scheduling policy may depend
on its internal parameters: its transmission rate on outgo-
ing link, the number of flows sharing the link and their
allocated rates.

In this definition ofLR servers, there was no assumption
made on whether the server is based on a fluid model or
a packet-by-packet model. The only requirement is that
a packet is not considered as departing the server until its
last bit has departed. Therefore, packet departures must
be considered as impulses. The DRR algorithm satisfies
all of these assumptions.

The authors also developed and defined the notion of la-
tency of the scheduling algorithm and determined an up-
per bound on the latency for a number of schedulers that

belong to a class ofLR servers. This notion of latency is
based on the length of time it takes a new flow to begin
receiving service at its guaranteed rate.

Using the general idea of Stiliadis and Varma in [6] we de-
rive the upper latency bound for the DRR algorithm that is
different from theirs. It is also different from the bounds
derived in [7]. We show that our upper bound is mathe-
matically correct contrary to the ones derived in [6] and
[7]. A more detailed analysis is given in [1] and [2].

Let us first define active and busy periods of a flow.

Definition 1 An active period of a flow is the maximal
interval of time during which the flow has at least one
packet awaiting service or in service.

Definition 2 A busy period of a flow is the maximal time
interval during which the flow would be active if served
exactly at its reserved rate.

An active period reflects the actual behaviour of the
scheduler since the service offered to a flow varies de-
pending on the number of active flows. A busy period is
a mathematical construction that tells us how long a flow
would be active if served at exactly its reserved rate.

Let us define the following parameters:

αi start of a busy period for flowi
t > αi time instant such that flowi is

continuously busy during the time
interval (αi, t)

Ai(αi, t) arrivals from flowi during the time
interval (αi, t)

SENTi(αi, t)amount of service received by
flow i during time interval (αi, t)

Si(αi, t) number of bits belonging to packets
in flow i that arrived after timeαi

and are scheduled during the time
interval (αi, t)

τj starting time of thej-th busy period
of flow

τ∗
j time instant at which the last

bit of traffic, arrived during the
j-th busy period, leaves the server

S
j
i (τj , t) number of bits belonging to packets

in flow i that arrived at thej-th
busy period, i.e. in the time interval
(τj , t)

Note thatSi(αi, t) andSENTi(αi, t) are not the same.
During the given time interval, the scheduler may still
be servicing packets that arrived during a previous busy
period, and thusSi(αi, t) and SENTi(αi, t) are not
the same values. In fact the following must hold:
Si(αi, t) ≤ SENTi(αi, t).
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For Stiliadis and Varma a serverS belongs to a class of
LR servers if and only if for all time instantst afterαi:

S
j
i (αi, t) ≥ max{0, ri(t − αi − θi)} (4)

whereθi is the minimum non-negative number that satis-
fies the above inequality and represents an upper latency
bound.

The previous definition of latency is based on flow busy
periods. In practice it is easier to analyze scheduling al-
gorithms based on flow active periods. The following was
proven in [1] and [2]:

Lemma 1 Let(αi, t) indicate an interval of time in which
flow i is continuously busy. If the service offered to the
packets that arrived in the interval(αi, t) can be bounded
at every instant s,αi < s ≤ t as

Si(αi, s) ≥ max{0, ri(s − αi − θi)} (5)

then this server is aLR server with a latency less than or
equal toθi.

The following definition gives us a proper tool for the
analysis of the latency bound:

Definition 3 The latency of flowi is the minimal non-
negative constantθi that satisfies, for all busy periods of
the flow, the following inequality:

Si(αi, t) ≥ max{0, ri(t − αi − θi)} (6)

Definition 4 θ′i is the smallest non-negative constant
such that the following expression holds:

SENTi(βi, t) ≥ max{0, ri(t − βi − θ′i)} (7)

whereβiis an instant of time when flowi becomes active
andt > βi is the time instant such that flowi is continu-
ously active during the entire interval(βi, t).

Corollary 1 Even though(βi, t) may not be a continu-
ously busy period for flowi, the following holds:

θi ≤ θ′i (8)

i.e., latencyθi, as defined earlier, is bounded withθ′i, for
every flowi.

Theorem 1 The DRR scheduler belongs to the class of
the LR servers with an upper bound on latencyθi for
flow i given with the following expression:

θi ≤ θ′i ≤ Qi

(

1

ri

−
1

R

)

+

+ (Lmax − 1)

(

Qi

Fri

N +
1

ri

−
2

R

)

(9)

Proof 1 Since the latency of aLR server can be esti-
mated based on its behaviour in the flow active period,
see Corollary 1, we will prove the theorem by showing
that,

θi ≤ Qi

(

1

ri

−
1

R

)

+

+ (Lmax − 1)

(

Qi

Fri

N +
1

ri

−
2

R

)

(10)

This part of the proof is the same as in [7] and will not be
repeated here. So the reader should fill this gap with the
work in [7] until the following expression:

SENTi(βi, β
k
i ) ≥

QiR

F

[

(βk
i − βi) −

F − Qi

R

−
(N − 1)(Lmax − 1)

R
+

+
Lmax − 1

R

(

1 −
F

Qi

)]

(11)

This statement is true but the results following it in [7] are
not. Discussion is given in Comment 1.

Now, since it is proven in [5], thatri ≤ Qi

F
R, the factor

Qi

F
R in inequality (11) can only be replaced byri when

the expression in square brackets is greater than or equal
to zero. We do not know the exact value of that expres-
sion. To proceed correctly, we must dispart the expression
(11). We get:

SENTi(βi, β
k
i ) ≥

QiR

F
(βk

i − βi) − Qi +

+
QiR

F

Qi

R
−

−
QiN(Lmax − 1)

F
+

+
Qi(Lmax − 1)

F
−

− (Lmax − 1) (12)

We can now use the replacement only on the positive ele-
ments of the right side of the inequality. Doing so, we de-
crease the value of the right side of the inequality, and the
inequality still holds. However, when we use the replace-
ment on the negative elements, we increase the value of
the right side of the inequality, and the inequality does not
necessarily hold anymore. Applying the above methodol-
ogy, we get the following inequality:
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SENTi(βi, β
k
i ) ≥ ri(β

k
i − βi) − Qi +

+ Qi

ri

R

QiN

F
− (Lmax − 1) +

+
ri

R
(Lmax − 1) +

+ (Lmax − 1)
(ri

R
− 1

)

(13)

From the previous expression we get:

SENTi(βi, β
k
i ) ≥ ri

[

(βk
i − βi)

−Qi

(

1

ri

−
1

R

)

−

−(Lmax − 1)

(

Qi

Fri

N +
1

ri

−
2

R

)]

(14)

Let us now compare inequalities (7) and (14). Taking
into consideration thatθ′i is defined as the smallest non-
negative constant, that satisfies (7), and thatt in (7) is
replaced byβk

i we get the following inequality:

θ′i ≤ Qi

(

1

ri

−
1

R

)

+

+ (Lmax − 1)

(

Qi

Fri

N +
1

ri

−
2

R

)

(15)

whereθ′i is the minimal non-negative constant that satis-
fies the inequality (7). Finally, from the inequality (8) we
get our latency bound:

θi ≤ Qi

(

1

ri

−
1

R

)

+

+ (Lmax − 1)

(

Qi

Fri

N +
1

ri

−
2

R

)

(16)

Comment 1 Let us return for the moment to expression
(11) and the value of the expression in the square brackets
on its right side:

(βk
i − βi) −

F − Qi

R
−

(N − 1)(Lmax − 1)

R
+

+
Lmax − 1

R
(1 −

F

Qi

) (17)

To prove their Theorem 1 in [7], from the expression (17)
on, Kanhere and Sethu linearly used the inequalityri ≤
Qi

F
R. As already explained in the proof of our Theorem

1, this is not mathematically correct and cannot be done
in this way. We can make the replacement only on the
positive factors of the disparted version of the expression
(17).

For the validity of the proof in [7] it is necessary that the
expression (17) is always positive for every combination
of its parameters. Since this is not always satisfied, their
result is incorrect. The counter example goes like this:
for a chosen value of parametersR = 4000, N = 10,
Qi = 200, Lmax = 1500, k = 3, wherek represents
the number of rounds, the expression (17) has a negative
value of−3.023. For the calculation of timeβk

i − βi we
used the expression

k
F

R
+

(N − 1)(Lmax − 1)

R

since this interval represents the maximal possible
amount of time used for thek round-robin service rounds.

It can therefore be observed that the latency bound in [7]
will stand for the most of the values ofk andQi. How-
ever, it does not stand for everyk andQi, precisely it is
not going to stand when the small number of rounds in
round-robin servicing is observed or whenQi is a small
value. Since their latency bound does not stand for all
cases, it is not correct.

If we look deeper into this difference among the discussed
bounds, we can see that our bound gets relatively closer
to the one derived in [7] asri, and with that alsoQi, get
smaller. Clearly, this difference gets bigger asri andQi

get bigger.

6 Comparison of Latency Bounds

Table 1 shows latency bounds of various scheduling al-
gorithms. Although it is not easy and straightforward to
compare the latency bound of the DRR scheduler to the
latency bounds of other listed schedulers, the table can
give us a general idea of the latency bounds of the most
popular schedulers.

It is also not straightforward to compare the three different
latency bounds for the DRR scheduler. While the bound
derived in [6] has only three parameters (F , Qi andR),
the bound derived in [7] introduces additional two param-
eters (N andLmax), and our bound another one (ri). In
general, the bound from [7] is tighter than the one from
[6], and our bound is between the both. Some figures
comparing the bounds are available in [2].

7 Conclusion

Stiliadis and Varma in [6] defined a general class of sched-
ulers, called Latency-Rate (LR) servers. Using the gen-
eral idea of Stiliadis and Varma [6] and of Kanhere and
Sethu [7], we derived the upper latency bound for the
DRR scheduling algorithm. We show that our bound is
unique regardless of the approach used.
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GPS 0

FIFO ∞

PGPS =WFQ Lmax

R
+ Lmax

ri

Virtual Clock Fair Queuing Lmax

R
+ Lmax

ri

SCFQ
(N − 1)Lmax

R
+ Lmax

ri

Frame-based Fair Queuing Lmax

R
+ Lmax

ri

Weighted Round-Robin 1
R

(F − Qi + Lmax)

Elastic Round-Robin 1
R

((F − Qi) + (Lmax − 1)(N − 1))

DRR - as in [6] 3F − 2Qi

R

DRR - as in [7] 1
R

(

(F − Qi) + (Lmax − 1)
(

F
Qi

+ N − 2
))

DRR - our result Qi(
1
ri

− 1
R

) + (Lmax − 1)
(

1
ri

− 2
R

+
Qi

Fri
N)

)

Table 1. Comparison of latency bounds among different schedulers.Denotations used: transmission rate of an output link (R), total
number of active flows (N ), reserved rate of flowi (ri), weight assigned to each flowi (wi), quantum assigned to flowi (Qi ), Deficit
Counter of flowi (DCi), frame size (F ), maximum packet length (Lmax).

It should be noted that depite using the same ideas as Stil-
iadis and Varma, and Kanhere and Sethu, we made some
changes and corrections in the derivation leading to a new
and mathematically correct latency bound.
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