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Abstract. The video-game industry has seen a rapid growth over the last decade. Thousands of video-games are
released and played by millions of people every year, creating a large community of players. Steam is a leading
gaming platform and social networking site allowing its users to purchase and store games. A by-product
of Steam is a large database of information about games, players, and gaming behavior. In the paper, we
investigate the relation between the game popularity and features that can be acquired through Steam. We
predict the popularity of Steam games in the early stages after their release and we use a Bayesian approach to
determine the impact of a game price, size, supported languages, release date, and genres on its player count.
We implement several models and show that a genre-based hierarchical approach achieves the best performance.
We further analyze the model and interpret its coefficients which indicate that games released at the beginning
of the month and games of certain genres correlate with the game popularity.
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Napovedovanje popularnosti videoiger na platformi
Steam

Industrija video iger je v zadnjem desetletju doživela izredno
hiter razvoj. Vsako leto je izdanih na tisoče video iger, ki
jih igrajo milijoni igralcev. Steam je vodilna igralna plat-
forma in socialno omrežje, ki uporabnikom omogoča nakup
in shranjevanje video iger. Podatki platforme Steam nam
omogočajo vpogled v igralne navade njenih uporabnikov in
popularnosti iger na platformi. V prispevku raziščemo razmerje
med različnimi lastnostmi iger na platformi Steam in njihovo
popularnostjo. Naloge se lotimo preko implementacije ra-
zličnih Bayesovskih napovednih modelov, s katerimi skušamo
razumeti kako pri dani igri njena cena, velikost, število jezikov,
žanr in druge lastnosti vplivajo na končno število igralcev.
Najbolj uspešne napovedi dosežemo z žanrskim hierarhičnim
modelom.

1 INTRODUCTION

Steam is a video-game digital distribution service owned
by the Valve Corporation. It is currently the most widely
used video-game platform on personal computers, hav-
ing published more than 8000 games in 2019 alone.*
Some of these games instantly reached a large commu-
nity of players, while many others remained unpopular.
It is difficult to fully understand how a game’s popularity
changes after its release, as this is affected by many
factors which are often difficult to measure or quantify.
For example, marketing and budget information may be
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of a great value for such a model but are generally
difficult to obtain. Furthermore, popularity heavily relies
on a great player experience, which is affected by many
factors, such as the complexity of the game story, graph-
ics, player interaction, etc. These attributes can only be
measured through some kind of operationalization, for
instance by analyzing reviews or observing the number
of Google searches for a game.

However, the basic properties of a game may also
affect its popularity. In the study, we focus on discov-
ering how such properties may improve chances for a
successful release of a game. For instance, we observe
the game price and reason whether it is more sensible
to release a game for free and reach many players, or
release it at a higher cost, which may indicate that the
game is of a higher quality. We also address questions
like how popularity differs among different genres and of
what genre a game should be to have chances to succeed.
Any kind of such information can help video-game
developers make design decisions about their games. We
approach this problem from a Bayesian perspective, as it
allows to compute robust uncertainty estimates that may
be highly relevant for making potential business deci-
sions. For example, if a model predicts the player count
with a high certainty, the developer may confidently
incorporate changes to the game development process.
However, if a model uncertainty is high, then it may be
better to further analyze the state of the development.

Below we briefly review some of the work analyzing
the success of the Steam games. In Section 2, we
describe the procedure of obtaining the Steam game
data and the preprocessing steps taken to improve its
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quality. In Section 3, we describe how the data was
transformed to be used in our models and describe the
models and the motivation behind them. In Section 4 we
list the quantitative results and provide visualizations of
the model performance and discuss effects of different
features on generated predictions. In Section 5 we review
the key points of the paper and give some directions for
our future work.

1.1 Related Work

The game popularity can be defined and measured
in numerous ways. The simplest and most intuitive
operationalization of the game popularity is the number
of players in a period of time since a game is played
by more players if they know about it. Budiarto et
al. [1] use four other metrics and combine them to
calculate the game popularity: user count, unique page
views, average time on the page, difference of the unique
page views, and average time on the page from the
day before. They gather this information using data
from the Google Analytics platform, which is updated
daily. They also emphasize that the player count is the
primary explanatory variate for understanding the game
popularity, which is why we use it as the only target
variable.

Ahn et al. [2] characterize popular and unpopular
games by observing game reviews obtained from Steam.
They identify different types of reviews that are as-
sociated with the popularity of a game. This reveals
what users like and what makes them dislike a game. If
certain reviews associated with a low popularity appear
on Steam, one can then take an action to improve the
game. Lin et al. [3] close the gap between the domain of
game reviews and the domain of app reviews and predict
when negative reviews are most likely to be posted. This
helps understand the player satisfaction with the game
and explain the popularity of the game. Since not many
reviews are posted for unpopular games and because of
possible bias or misleading reviews, we do not use them
in our analysis.

Sometimes we are only concerned about a specific
property of a video-game and want to explore how it af-
fects its popularity. Lin et al. [4] analyze the advantages
of early-access games, where players can purchase and
play a game before its official release. In an early-access
stage, the average rating of the reviews is much higher
than later, suggesting that players are more tolerant of
imperfections in early-access games. Therefore, it is
reasonable to make the game accessible early, as positive
reviews may attract more players later. We follow this
fact in our analysis and generalize it to consider not only
the early-access tag, but also other game tags (mainly
genres).

2 DATASET

We use several data sources to collect diverse informa-
tion about the Steam games. To capture the most recent
state of the video-gaming market, we focus only on the
games released after 2015.

In the next sections, we list the sources of our
collected data and provide a short account on how the
data is collected and processed.

2.1 Data Collection
The data is collected from several sources: Steam,

SteamSpy [5], and SteamDB [6].
SteamSpy and SteamDB are independent sources un-

affiliated with Steam itself, but offer data that cannot
be acquired through Steam, e.g. SteamDB collects and
stores the past numbers of concurrent players, while
Steam only offers the current number of concurrent
players. We scrape the data over the course of one week
in mid December 2020 using the relevant APIs for each
data source. To make sure that our scraper functions
correctly, we manually verify the scraped information on
a small random sample by checking if what we retrieve
matches the data displayed on websites.

Steam official API allows us to access the list of all
items available in the Steam store. However, in addition
to games, the list also includes various other items,
like additional downloadable content or even non-game
software. API does not provide an easy way to filter
such items. To address the issue, we use a SteamSpy
listing of standalone games. After obtaining the list
of standalone games, we use Steam API to get all
the relevant information for each individual game. The
data are obtained for each game including a list of
genres, developers and publishers, game price, release
date, number of supported languages, and description
of the system requirements. The final step in our data
collection is providing the history of concurrent player
counts from SteamDB. Here, we provide the daily player
count history for the games released after 2015.

2.2 Data Preprocessing
To make the collected data usable for our analysis

and modeling, the data are preprocessed and cleaned.
The first modifications are related to the price and
system requirements. Steam provides the game prices
in different currencies. We convert the prices to Euros
and apply the static conversion rates: 1 USD = 0.82
EUR and 1 GBP = 1.09 EUR (rates of November 2020).
The system requirements are retrieved as unstructured
text data. We extract the storage requirements from
the text data and convert them to MB. We perform a
manual inspection and remove the game selection with
unreasonably high storage requirements (e.g. HuH?: and
the Adventures of something which requires 9000 GB of
storage). Our experiments are performed on a dataset of
8000 games.
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3 METHODOLOGY

In this section, we present our feature engineering pro-
cess, the collected raw features and provide an additional
insight and statistical information about both the raw
and engineered features. Afterwards, we present our
predictive models and explain our choice of priors.

3.1 Feature Engineering
We operationalize the response variate as a median

player count in the second month after a game release.
This is regarded as the game future player count. We
consider the game median player count in the first
month after its release as the main explanatory variate.
Analogously this is regarded as the game past player
count. We also construct features by considering specific
information about the game.

Contrary to the past player count, which is a reflection
of the game performance after it has already been
released, some information is known at the moment of
the release and plays its role when a player decides to
buy a game. For instance, a player might opt not to buy
a certain game due to its price. The game properties we
use as features are the game price, number of supported
languages, and game storage requirements.

There are different motivations for considering the
game price as an explanatory variate. The simplest
one is that cheaper games are generally more popular
since more people can afford them. This is already
suggested in [7] related to the price dynamics of video-
game consoles. Policy simulations show that Nintendo
could have won the commercial sales competition with
Sony by reducing the cost of its products, thus reaching
a larger user base. The reason for our including the
number of supported languages is similar. We expect
that games with a larger number of supported languages
reach a larger player base. We show the distribution of
the top supported languages in Figure 1.
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Figure 1.: Support of the most popular languages. As
seen, English is by far the most supported language.
Note that one game can support more languages.

The game storage requirement is another analyzed
feature. In [8], Limelight Networks reinforces the need
of including this feature. The data based on worldwide

survey results reports that 87 percent of players find the
process of downloading games frustrating. Larger games
may therefore suffer in popularity due to their longer
download times as well as the longer download times of
their potential updates. Oppositely, a larger storage size
may indicate that a game has more playable content,
resulting in a longer player engagement. The storage
size can also indicate the general scale and budget of
the game, since larger games tend to come from more
prestigious studios.

Lastly, we construct different temporal features from
the release date timestamp. For each game, we extract
the release year value and information about the actual
release day, both on a yearly as well as monthly basis.
We denote these features as a release day and monthly
release day, respectively. To illustrate, that a game is
released on March 2, 2020, it would have the release
year value of 2020, the release day value of 62, since
it is released on the sixty-second day of the year, and a
monthly release day value of 2, since it is released on the
second day of the month. The motivation behind these
features is to capture different seasonalities present in
the player behavior or particular to the Steam platform
or to capture the effect of different commercial years
on the game popularity. Specifically, the release day (an
integer between 1 and 366) is included to capture the
yearly seasonality related to possible annual online sales,
holiday purchases, increase in gaming in a particular
season, etc. Past studies observe a statistically significant
impact of seasonality on the monthly playtime [9]. The
monthly release day (an integer between 1 and 31) is
included to capture the monthly seasonality, such as the
inclination to purchase or play games after receiving a
monthly paycheck.

3.2 Data Insights
In this section, we present a few insights into the data

which are important for explaining our modeling. We
cover the variates present in the data, show some of their
properties and determine correlations between them and
the response variate.

3.2.1 Basic Numeric Variates: The three basic nu-
meric variates are the number of the supported lan-
guages, storage requirements and price. We show a few
statistics in Table 1. All of them are heavily skewed
towards 0 as most games will not have support for many
languages, are not large, not particularly expensive or are
actually attained for free. We can also observe outliers
present in all variates by noting their high standard
deviations. This is particularly notable in the case of
storage requirements.

3.2.2 Genres, Developers, and Publishers: Besides
the numeric variates, we also deal with the following
categorical variates: game genres,* developers, and pub-

∗We follow the Steam broader definition of the word genre which
includes the information such as early-access.
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Table 1.: Numeric variates statistics.

Name mean median stdev min max

Number of languages 4.800 2.000 5.500 1.000 29.000
Storage requirements (GB) 4.600 1.000 10.100 0.001 256.000
Price (EUR) 9.920 6.750 12.390 0.000 325.910

lishers. These variables have a common property. A
game can have more than one of them and vice versa (i.e.
a many-to-many relationship). Due to this, they require
transformations to be usable in our models.

In our dataset, there are 33 genres, over 19000 de-
velopers, and over 23000 publishers. A large number
of developers and publishers relative to the number of
games is not a good sign for using them as features in
our model. This means that most of them have probably
not made many games and thus it is very hard to learn
anything about them. In fact, over 15000 developers and
18000 publishers have made only one game. Over 18000
developers and 22000 publishers have made less than
five games, leaving us with very few of those who have
made more games and will bring a benefit if they are
added into our models. Another possibility is to group
small developers and publishers, but this would bring a
significant confusion in the model, and as the cardinality
would still remain fairly high, we decide not to use them.

Oppositely, the genres are more useful. The distri-
bution of the number of games belonging to genres is
still skewed since there are many genres with a small
number of games, but not as extremely as in the cases of
developers and publishers. There are also only 33 genres,
so cardinality is not a problem and utilizing genres in
our models is thus much easier. To see how the different
genres connect, we visualize the counts of games and
the connections between genres in Figure 2. We observe
that indie, action, casual, and adventure games are the
most common. Interestingly, two clusters emerge, i.e.
the actual games and game-related utilities. They have
only one common genre, i.e. an early-access. From the
opacity of the edges (i.e. the proportion of games the
genres share relative to the total number of games that
belong to those genres), we can see which genres have
more in common.

3.2.3 Player Counts: We are interested in the dis-
tribution of our target variable, the median count of
players in the second month after a game release. It
relates heavily to our main predictor, the median player
count of the first month. When visualized, they both
appear to be similar to the power law distribution, which
is often the case with the popularity of the online me-
dia [10]. We simplify the visualization by transforming
the relevant data into the difference between the player
counts of the first and second months of the game –
more specifically, the difference between their medians.

We show a histogram of the differences between the
medians in Figure 3. We can observe that most games
do not see large changes in the number of players since
most of the mass is near zero and that most games lose
players as the distribution turns more towards the left.
The median of the differences is −2 and the mean is
−187 as it is more affected by the outliers. We also
generate equivalent plots for the third, fourth, and fifth
month after the release, which all appear very similar to
Figure 3.

We visualize the connection between the main predic-
tor and the target (median player counts of the first two
months) in Figure 4. As seen, the trend is almost linear.
The Pearson’s correlation coefficient between them is
0.998. This means that a model that predicts only the
first month median can be a decent baseline. Besides the
general linear correlation of the median player counts,
there are also some games that open with nearly zero
players in their first month and slowly increase and an
inverse behavior, where some games drop to zero players
in their second month. We also compute the Pearson’s
correlation coefficients for each predictor and the target.
They are all very low, i.e. from −0.026 to 0.011,
meaning that there is a very little linear correlation
between them. However, they may still affect the target
in a non-linear manner.

3.3 Feature transformations

The features of the past median player count, price,
number of supported languages, and storage require-
ments are transformed using the below equation:

f(x) = log
(1 + x

x

)
, (1)

where x is the input feature and x is the mean of
the feature in the training set. This approach is useful
because our feature values are on average relatively
small, but contain very large outliers (for example, the
average value of the past median player count is roughly
1000, while its extremes range from 1 to 3,000,000).
By adding 1 to our feature value, we avoid possible
log-transformation problems in the following step. By
dividing with the feature mean, we transform the raw
feature value into a multiplier of the average observed
value. Following the above, this would transform our
extreme values into 3000 and 0.001 multiplier values,
respectively. Finally, a log-transformation is performed
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Figure 2.: Network plot of the game genres. The nodes represent the genres and the edges the games of both
genres. The opacity of the edge is the proportion of the games the connected genres share. The node size is the
number of the games in a genre.

Figure 3.: Difference between the main predictor and the
target, i.e. the medians of the second and first months.
The y-axis is in a log scale.

Figure 4.: Correlation between the main explanatory
variate and target, i.e. medians of the second and first
months. The blue line shows the trend and the dots are
the games. Both axes are in the log scale.

to reduce the magnitude of our multipliers and make our
features easier to model.

The value of the release year is treated as a categorical
variable. Since outliers are not possible in the context of
temporal features, we simply perform scaling, so both
the release day and monthly release day are moved to
the [0, 1] interval. Afterwards, we replace both values
with a tuple in the following manner:

x 7→ [sin(2πx), cos(2πx)].

The replacement is performed due to the cyclical
nature of the temporal features. It ensures that the games
released at the beginning of the year and the games
released at the end of the year have similar release day
values.

3.4 Models
Given the vector of the explanatory variates for each

game, we build a model predicting its median number
of players in the second month after release. Given
the transformed features, we construct a final feature
vector containing all attributes, except for the genres,
publishers, and developers. Given the final feature vector
xi of the i-th game, we model its target number of
players yi.

3.4.1 Normal model: We transform the target in the
same manner as we do for the majority of the other
features, using the transformation in Equation 1. We
model the transformed real-valued target as

f(y)|β0, β, σ2 ∼ N(β0 + βTx, σ2),



156 DE LUISA, HARTMAN, NABERGOJ, PAHOR, RUS, STEVANOSKI, DEMŠAR, ŠTRUMBELJ

β ∼ Cauchy(0, 5),

σ ∼ Half-Cauchy(0, 5).

For β, we introduce Cauchy(0, 5) as a weakly-
informative and zero-centered prior for not knowing
neither the positive nor the negative feature effect, and as
a wider-tailed distribution allowing for less penalization
of larger parameters. The uncertainty in this model is
assumed not to vary with different inputs and is mod-
eled with input-invariant parameter σ having a similar
weakly-informative Half-Cauchy(0, 5) prior.

3.4.2 Folded normal model: We empirically deter-
mine that the normal model is sometimes unstable. As
a possible solution, we do not transform the target as in
Equation 1 and instead keep it in its original form. Using
a normal distribution is no longer suitable, because its
support is over the entire real line, whereas our target
is now non-negative. To account for this, we look for a
distribution that assigns a nonzero density to all points
in [0,∞). Having a nonzero density at zero, we consider
games with no players.

The folded normal distribution is one such candidate.
It is based on the normal distribution, but only has
support on the non-negative reals with a positive density
at zero. It generalizes the half-normal distribution in
allowing the point with the highest density to be different
from zero.

Given that (i) our transformed target measurements is
non-negative, (ii) games with no players are possible,
(iii) unpopular games are more probable, and (iv) most
probable prediction is not necessarily zero for every
game in our dataset, we incorporate the folded normal
distribution to model our prediction uncertainty for each
game. Formally, probability density function (PDF) fFN
of folded normal distribution FN(µ, σ2) parametrized
with µ ∈ R and σ2 ∈ R+ is defined as:

fFN (x|µ, σ2) =
1√
2πσ2

(
e−

(x−µ)2

2σ2 + e−
(x+µ)2

2σ2

)
=

=fN (x|µ, σ2) + fN (−x|µ, σ2),

where fN (x) is PDF of the normal distribution and x is
an arbitrary non-negative real. We transform the location
parameter with near-linear function h(x) = log(1 + ex)
for a better model convergence and we model target y
as

y|β0, β, σ2 ∼ FN(log(1 + eβ0+β
Tx), σ2),

β ∼ Cauchy(0, 5),

σ ∼ Half-Cauchy(0, 5).

We use the same priors on β and σ as for the normal
model, following the same reasoning.

In the preliminary testing, we find the varying order of
magnitude of the target to be problematic. Targets range
from zero to more than a million players, which may

lead to convergence difficulties during model training.
As a solution, we replace target y with log(1 + y).
This keeps the target on the same interval, but makes
its distribution significantly less skewed. Our model is
thus trained with the transformed target†, however, we
may still transform the target back to the original space
to simplify the interpretation.

3.4.3 Hierarchical folded normal model: As said
above, the publisher and developer variables are un-
suitable for the model because of the large number
of unique values and difficulties in meaningfully trans-
forming them. On the other hand, the genre variable is
more manageable. If a game belongs to some particular
genres, then their general properties can be used to
further improve predictions for the game. We implement
this idea by adding a hierarchical component to the
folded normal model.

We associate the distinct β0 coefficients to different
genres. If β0,j denotes the corresponding coefficient
of genre j and β0,Gi = 1

|Gi|
∑
j∈Gi β0,j denotes the

coefficient mean over genres in genre set Gi of game
i, then the proposed target attribute of the hierarchical
model is:

yi|β0,Gi , β,xi, σ
2 ∼ FN(log(1 + eβ0,Gi

+βTxi), σ2),

β0,j |β0, σβ,0 ∼ N(β0, σβ,0),

β0, β ∼ Cauchy(0, 1),

σβ,0 ∼ Half-Cauchy(0, 1),

σ ∼ Half-Cauchy(0, 5).

We link the individual genre-specific coefficients
in a hierarchical structure by imposing β0,j |β0,
σβ,0 ∼ N(β0, σβ,0). Similarly as above, we im-
pose Cauchy(0, 1) priors on β0 and β, and a
Half-Cauchy(0, 1) prior on σβ,0. Again, we use log(1+
y) as the target.

3.4.4 Heteroscedastic models: The predictive vari-
ance plays an important role because it estimates the
uncertainty in our predictions. The shared variance after
transforming the target indicates how much the predicted
player count will vary when considering the order of
magnitude. For example, suppose we transform the
target with log(1+y) and observe σ2 = 1. Now consider
two games with 10 and 104 predicted players each,
and use a base-10 logarithm for ease of understanding.
Generally speaking, this particular variance implies that
the predicted player count will vary somewhere between
1 and 100 for the first game. The count will vary
between 103 and 105 for the second game. This shows
how uncertain the model is relative to the prediction
magnitude.

†We say that log(1 + y) is distributed according to the folded
normal, where y is the player count.
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Though this approach is generally useful, a single
scalar is not very flexible and may yield unreasonably
high uncertainty estimates for some games with many
players. It is better to consider features of each game and
use them to compute its particular variance. With this
approach the model provides better results for individual
games and is still flexible enough to learn a single shared
scalar if needed. We refer to models which make use of
this idea as heteroscedastic.

We thus replace the σ2 parameter of all the three
models with the function of the game features. More
precisely, we use eγ0+γ

Tx for the normal and the folded
normal model, and eγ0,Gi+γ

Txi for the hierarchical
normal model with γ0,j |γ0, σγ,0 ∼ N(γ0, σγ,0). This
approach yields three new models with an attribute-
dependent variance. The priors for the γ coefficients
are the same as those for the β coefficients in the
homoscedastic models. The heteroscedastic hierarchical
folded normal model is the most complex of the three.
We show it in Figure 5.

Folded normal

FN
(
µi

(
β̃0, β

)
, σi (γ̃0, γ)

)
Normal

N(γ0, σγ,0)

∼
Normal

N(β0, σβ,0)

∼

Cauchy

Cauchy(0, 1)

∼
Half-Cauchy

Half-Cauchy(0, 1)

∼

Figure 5.: Heteroscedastic hierarchical folded
normal model where for conciseness we write:
µi(β̃0, β) = log

(
1 + e

1
|Gi|

∑
j∈Gi

β0,j+β
Txi

)
and

σi(γ̃0, γ) = e
1
|Gi|

∑
j∈Gi

γ0,j+γ
Txi .

4 RESULTS

4.1 Visual check of the predictive distributions
By sampling from the posterior, we compute different

game-specific parameters µ and σ which correspond to
a distribution that describes the median player count

for that game. We show some predictions with the
heteroscedastic hierarchical folded normal model in Fig-
ure 6.

Dark Souls™ III Redirection Subnautica

0 30000 60000 90000 0.0 2.5 5.0 7.5 10.0 0 20000 40000
Median player count

D
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Figure 6.: Predicted median player count distributions
using the hierarchical folded normal. Vertical lines are
the targets. Dark SoulsTM has the highest overall budget,
followed by Subnautica, and Redirection. Based on these
examples, the model performs well for the games with
such differences.

4.2 Model comparison

We evaluate and compare the models performance
with an approximation of the leave-one-out cross-
validation (LOOCV) technique, the Pareto smoothed
Importance sampling leave-one-out information criterion
(PSIS-LOOIC), first presented by Vehtari et al. in 2016
[11]. We decide use the LOOCV technique instead of a
simple holdout estimation to get more accurate results.
LOOCV is an exhaustive model evaluation technique. It
requires refitting the model once per each data instance
(infeasible on a big dataset like ours). Therefore, we
approximate it with LOOIC, i.e. a fast, robust and stable
model evaluation method, based on the log-likelihood of
the posterior at the actual target, and designed specifi-
cally for Bayesian models.

For each data instance, LOOIC approximates the
expected log-predictive density (elpd) of the model fitted
on the dataset from which the selected game would
be removed.* The LOOIC value is then computed as
LOOIC = −2 · elpd to get on the deviance scale.
The principal advantage that LOOIC provides is its low
time complexity. While LOOCV requires refitting the
model N times (with N the size of the dataset), LOOIC
requires only one evaluation of the model. We show
the models performances over time in Figure 7. All
the models exhibit a similar (and expected) behavior,
with their performance dropping when predicting player
counts further in the future. We present a proper pair-
wise comparison between the models in Figure 8. The
heteroscedastic hierarchical model (which is the most
complex one) turns out to be the best performing model.
The other models might provide viable alternatives if a
faster fitting process is used.

∗PSIS-LOOIC is thoroughly described by Vehtari et al. (2016) [11]
and Vehtari et al. (2002) [12].
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Figure 7.: LOOIC estimated for multiple predicted
months. For each model-predicted month pair, we show
the LOOIC estimate and its standard error. The perfor-
mance of the models expectedly drops over time, with
the greatest decrease between the 2nd and 3rd month
(notice that the lower the LOOIC estimate is the better is
the model performing). We include multiple models on
this plot to give the reader the idea of their performances,
but no conclusion about which one is better should be
made from it.

4.3 Coefficient interpretation

We analyze the posterior distributions of the sampled
coefficients. Because different features use somewhat
different scales, we do not claim that a certain feature
is more important in predicting the outcome than the
other.† However, we quantify the contribution of each
feature towards the computed parameters of the folded
normal distribution. We focus on the heteroscedastic
folded normal model. The posterior for this model is
presented in Table 2. Since the hierarchical variant of
the model has a very similar posterior, we only analyze
the genre-specific intercepts.

First, we consider the main non-negative features,
i.e. the price, number of supported languages, system
requirements, and median player count. It should be
noted that the folded normal model and its hierarchical
variant use the exponential of the dot product to compute
the transformation-specific parameter (the mean and the
variance). We use an intercept term as a reference, so
each coefficient individually affects the dot product in an
additive manner. Since the four considered features are
all transformed using log

(
1+x
x

)
= log(1 + x)− log(x),

coefficient βi causes one of the following changes in the
computed parameter:
• if βi < 0, the dot product value is decreased by
|βi| log(1 + x), then increased by |βi| log(x);

• if βi > 0, the dot product value is increased by

†We further analyzed these features to see if they could be trans-
formed to a common distribution, which would make the posteriors
of the coefficients easier to compare. Since no pair of features could
meaningfully be transformed to distributions of similar shapes, we
concluded that pairwise comparisons would likely be unreliable and
did not pursue this any further.

|βi| log(1 + x), then decreased by |βi| log(x);
• if βi = 0, then there is no change in the dot product

value.

Note that x > 1 for all four features, so each log(x)
term is strictly positive. We can treat all such terms as
constants and focus only on |βi| log(1 + x), which are
different across games.‡ We show their contributions in
Figure 9. The median player count feature is associated
with an increase in the mean and variance parameters,
but is omitted for a clearer visualization. Its contribution
is larger than that of the other three features, which is
evident from the above shown side-by-side correlation
plot with the target (Figure 4).

The temporal features also affect the computed pa-
rameters. In a similar manner as above, we examine
the impact of the release day feature on the computed
parameters in Figure 10.

The posterior for the monthly release day coefficient
is negative for the mean, which suggests that releasing
a game later in the month decreases the number of
players. According to the model, releasing the game on
the 31st day of a month is associated with an expected
decrease of the folded normal mean by −0.682, which
is non-negligible considering the contributions of other
features. We did not find a clear explanation for this
phenomenon, however we still use the feature as it
improves model predictions.

The heteroscedastic folded normal uses individual β0
and γ0 intercepts to compute its mean and variance
parameters. On the other hand, the hierarchical variant
considers β0 and γ0 parameters for each genre indi-
vidually, then computes the average over all of the
game’s genres. Each genre thus influences predictions to
a different degree. A visualization of these coefficients
is presented in Figure 11.

Since we do not use a GLM in its proper sense, we
cannot state how the model predictions behave after we
change some of the input features. To provide some
intuition, we show such changes for a particular game
in Figure 12.

5 CONCLUSION

We implement and evaluate models to predict the pop-
ularity of games on Steam in early stages after their
release and analyze the effect of several other features.
We represent the game popularity with a number of
persons playing a game over time.

We manually collect the game data from different
sources and construct various features through different

‡If we explicitly account for the four feature means x by subtract-
ing them from the base intercept, we arrive at an adjusted intercept β̃0
with mean 1.443 and 90% confidence interval (CI) (1.326, 1.555).
The corresponding result for the variance is γ̃0 with mean −0.670
and 90% CI (−0.714,−0.425).
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Figure 8.: Distribution of the LOOIC differences between the models. We compute the differences by subtracting the
pointwise LOOIC estimations of the compared models. We obtain the distributions by bootstrapping the computed
differences. Each model should be compared only with that line’s reference model (multiple models are shown
simultaneously just for convenience). For a selected model and the reference to which we compare it, the percentage
of the area under its density curve that lies on the left of the x = 0 line is the confidence with which we can claim
the selected model is better than the reference. For example, from the visualization, we can conclude that irrespective
of the predicted month, the heteroscedastic hierarchical model is almost surely the best one. Furthermore, we can be
almost sure that the difference between the heteroscedastic folded normal and heteroscedastic hierarchical models
LOOIC is at least 200.

Feature
Intercept
Price
Number of languages
Storage requirements
Median players feature
Day of month
Day of year, cosine
Day of year, sine

µ q5 q95
β0 7.583 7.539 7.627
β1 −0.001 −0.002 0.000
β2 −0.039 −0.049 −0.029
β3 0.013 0.000 0.027
β4 0.988 0.982 0.994
β5 −0.022 −0.030 −0.016
β6 0.055 0.041 0.070
β7 −0.005 −0.018 0.010

µ q5 q95
γ0 −0.259 −0.316 −0.203
γ1 −0.002 −0.003 0.000
γ2 −0.068 −0.082 −0.054
γ3 −0.026 −0.044 −0.007
γ4 0.102 0.094 0.110
γ5 −0.060 −0.070 −0.051
γ6 0.057 0.037 0.076
γ7 0.068 0.049 0.088

Table 2.: Coefficients to compute the mean (using βi) and variance (using γi) of the folded normal distribution. The
columns represent the posterior mean, the 5th, and 95th percentiles. The 90% confidence intervals for the price,
storage requirements, and the day of the year (sine component) include 0, so their contribution to the mean and
the variance is probably negligible.

transformations. Our main prediction target is the me-
dian player count in the second month after a game re-
lease. Our experiments show that the models prediction
performance for later periods of time decreases. Since
our main aim is to understand the features effect, our
focus is mostly on the second month target which is
the easiest to model. We also notice that models not
using the median player count of the first month as a
feature do not converge, probably because the model
predicts the player counts in absolute terms and requires

a good starting point, which is then shifted to obtain
the prediction. This issue could be resolved by using
additional features to identify the starting point or by
redesigning the model to predict relative changes in
the player count as a percentage instead of an absolute
value. There is no guarantee that such approach would
solve all the problems, because some games would still
experience unexpectedly quick changes in the number
of players, but it could serve as a good starting point.

We evaluate Bayesian normal, folded normal, and
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Figure 9.: Parameter contribution plot for three of the four main features. The median player-count feature is
omitted for an easier visualization. The parameter contribution is computed by multiplying the parameter with x,
which is a feature in the original space, i.e. before the log(1+x) transformation. Each feature is represented by its
mean contribution and a 90% confidence interval across different values. The left plot shows that as the number
of the languages increases, the dot product, and thus the mean of the folded normal, decrease. On the other hand,
increasing the storage is associated with an increase in the dot product and consequently the mean. On the right
plot, we see that all three features cause a drop in the variance. The price feature has an almost negligible effect
on the computed parameters.
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Figure 10.: Parameter contribution plot for the release-day feature. The plot on the left represents the parameter
contribution in log-space, whereas the plot on the right is its transformation to the original space with the actual
player counts. Releasing a game around January is associated with the highest increase in the mean parameter,
whereas releasing it around July is associated with the highest decrease. In log-space (i.e. referring to the folded
normal parameters), the variance parameter follows a similar pattern, shifted a few months backwards. In the original
space (i.e. considering actual player counts), the mean and the variance are aligned. We can see that the highest
contribution is roughly between October and January, and the lowest roughly between May and August. A seasonal
behavior is observed for movie releases [13], where the peak release counts occur before holidays. Our data includes
the total player counts from all countries where Steam is available, so national holidays do not present a significant
contribution. A possible explanation for the peak is that publishers release games before the globally celebrated
New Year’s holidays, so the games are available during large sales and thus gain more visibility.
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Figure 11.: Visualization of the genre-specific intercepts for computing the mean (left) and variance (right) of
the heteroscedastic hierarchical folded normal model. Dashed lines represent the [q5, q95] interval for the non-
hierarchical heteroscedastic folded normal posterior. Some genres were skipped due to high-variance posteriors.
The left plot indicates that RPG and indie games tend to a smaller intercept, whereas sports, racing, simulation,
and possibly casual games attain a higher intercept. In the right plot, we see that most genres are similar to the
regular model. The exceptions are free to play games, which have a significantly smaller variance and thus result
in more stable predictions. The predictions for adventure games are also more stable with this model, whereas the
variance of predictions for indie games is somewhat greater. In conclusion, the heteroscedastic hierarchical model
estimates the folded normal mean more precisely for these genres, because their distributions are clearly different
from the regular model and also achieve a reasonably small variance. The model also helps by reducing variance in
free to play game predictions. From a simple visual check, the variance of other genres revolves around the regular
model’s variance and does negatively affect predictive performance by comparison.
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Figure 12.: Intuition of how changing the feature values affects the predicted distributions for the Subnautica game.
WA heteroscedastic hierarchical folded normal model is used for predictions. Listed as triples, decreased, original,
and increased feature values are (1, 18, 29) for the number of languages; (20000, 27143, 40000) for the past median
player count; (0 EUR, 21.2 EUR, 60 EUR) for the price; (10 GB, 20 GB, 100 GB) for the storage requirements.
In this example, changing the number of languages and the storage has a very small effect on the generated
distributions. Changing the price results in noticeably different predictions. As said above, the target variable is
heavily correlated with the past median player count feature, so the changes in the generated distributions are the
largest here.
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hierarchical folded normal models in both the homo- and
heteroscedastic variants for this task. We augment the
baseline, i.e. the first month median player count with
other features and then examine their impact based on
their posterior distributions. The heteroscedastic hierar-
chical model achieves the best performance with respect
to LOOIC. The most important predictor in each model
is the median player count, which makes sense as it
is also a strong baseline. However, adding additional
features improves the models and enables analyzing and
interpreting their effect.

We see a great potential for future work in the area,
especially in its analyzing. Gathering and adding more
game features will improve the models substantially and
will make it easier as Steam will gather and offer more
data.

Another similar improvement would be to perform a
thorough analysis of the missing values of player counts
and incorporate them into the models. A more complex
and difficult goal to attain would be to model the player
counts from and to any arbitrary pair of points in time.
This would enable a much deeper level of understanding
how the play popularity changes over time.

A possible enhancement likely to improve the model-
ing approach would be adding other popularity-related
features such as Twitch views, Google searches, reviews,
etc. To fully utilize reviews, it is also possible to use
natural language processing to extract certain features.
Seeing that predicting a game’s popularity accurately
would be very valuable for publishers or even streamers,
we see a possible practical application for predictive
models in this area.
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