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Abstract. The work presents a radial keypoint detector, a new version of one of the self-similarity detectors
described in [14]. Several improvements are proposed to make the detector more efficient. We extend the
detected keypoints with a local region orientation allowing the keypoint invariance to the image plane rotation.
The radial detector is compared with the DoG detector at the theoretical level. In the experimental evaluation, the
radial detector is tested on full image sequences of the HPatches dataset. The radial detector gives competitive
repeatability and matching scores compared to the DoG detector which is one of the most popular keypoint
detectors.
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Radialni detektor značilnih točk

V delu predstavimo Radialni detektor, novo verzijo enega od
detektorjev samopodobnih značilnih točk opisanih v delu [14].
Predlagamo več izboljšav, ki zagotovijo večjo učinkovitost
detektorja. Detektirane značilne točke razširimo z orientacijo
lokalne regije, kar omogoča invariantnost na rotacijo slike.
Na teoretični ravni primerjamo Radialni detektor z detek-
torjem DoG. Radialni detektor eksperimentalno ovrednotimo
na podatkovni bazi HPatches slikovnih sekvenc. Rezultati, ki
jih dobimo za merjeno ponovljivost in ujemanje na podlagi
opisnika značilnih točk, so konkurenčni rezultatom, dobljenimi
z detektorjem DoG, ki je eden najbolj priljubljenih detektorjev
značilnih točk.

1 INTRODUCTION

A feature or keypoint detector is an algorithm which
identifies salient locations or keypoints in images. An
object or scene appearance in images changes due to dif-
ferent conditions when capturing images, e.g. a change
in illumination and a viewpoint or due to different image
deformations, e.g. a lossy image compression. We expect
that keypoints repeat in images of the same scene.
Different measures based on the image intensity in a
local neighbourhood of a keypoint form different de-
scriptors. Intensity variations near the keypoints should
make descriptors easily distinguished. Many computer
vision applications, such as camera calibration, scene
reconstruction [21], [6], object or scene recognition [19],
[15], [10], panorama creation [7], [4], robot navigation
[5], and object tracking rely on keypoint matching.

Computer vision researchers have developed many
different keypoint detectors. An extensive survey is
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made by Tuytelaars and Mikolajczyk in [22]. The Kadir
and Brady salient region detector [8] is inspired by the
information theory. The saliency of the location corre-
sponds to local complexity or unpredictability. SIFT [9]
detects blob-like keypoints. They are local extrema in the
scale-space obtained by image filtering with differences
of Gaussians. SURF [3], based on the Hessian matrix,
approximates the Gaussian filters with box filters which
enables fast computation of saliency maps using inte-
gral images, thus speeding up the keypoint detection.
The traditional Gaussian scale-space approach has its
limitations since it blurs the noise and fine details to
the same degree, reducing localization accuracy and
distinctiveness. The KAZE detector [1] uses nonlinear
diffusion filtering to encourage smoothing within a re-
gion instead of smoothing across boundaries. MSER or
Maximally Stable Extremal Regions proposed by Matas
et al. [13] detects regions where all pixels inside the
region have either higher or lower intensity than those on
its outer boundary. It belongs to a group of affine region
detectors, where we can find also the Harris and Hessian
affine [16] region detectors. SUSAN [20] is a simple
and efficient corner detector. It computes the fraction
of pixels within a neighbourhood, which have a similar
intensity to the centre pixel. Corners can then be lo-
calized by thresholding this measure and selecting local
minima. The FAST detector [18] builds on the SUSAN
detector. FAST evaluates only 16 pixels on a circle of
radius r = 3. If a set of the N contiguous pixels in the
circle are all brighter or all darker than the intensity of
the candidate pixel, then the candidate pixel is classified
as a corner. The algorithm computes the decision tree
by learning the distribution of the corner configuration
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from a training set of a specific environment. Unlike
FAST, the AGAST detector proposed by Mair et al.
[12] uses a binary decision tree which is generic and
does not have to be adapted to new environments.
The self-similarity detectors, proposed in [14], exploit
three complementary parts of the variance computed on
a local region. The three proposed saliencies, i.e. the
radial, tangential, and residual, are invariant to rotation,
photometric shift, and the magnitude of the local region
contrast, they are covariant with translation and scaling,
and are robust to intra-class variations. The detectors did
not get much popularity mainly due to a low computa-
tional speed, though a hardware solution would enable
fast computation. The algorithm also does not provide
the orientation of a local region. The computation of the
radial saliency alone can be speeded-up and in this paper
we explain the steps taken to achieve this goal. We also
use additional techniques to improve the quality of the
keypoint detection and extend the keypoints with a local
region orientation.

2 METHOD

The radial detector uses α effects which are one kind of
effects of the dependent effects model (DEM).

2.1 Local region represented by DEM

Circular local region P is transformed into rectangular
patch P by means of polar raster sampling. Samples
are taken at N angles,Φn = 2πn

N ;n = 0, 1, . . . , N − 1,
and M circles with radii rm = m;m = 0, . . . ,M − 1.
The intensity value from location (rm, φn) in P is
transformed to the m-th column and n-th row of P ,
where we denote it as Imn = I(m,n), as shown in
Fig. 1. Rectangle P is decomposed by DEM in the

Figure 1. Polar raster sampling of circular local region P .

following way. Let Cm and Rn denote the sums of
intensity values from the m-th column and n-th row
of P , respectively; i.e., Cm =

∑N−1
n=0 Imn, and Rn =∑M−1

m=0 Imn. The dependent effects model represents P
with three types of effects: radial or column effects αm,
tangential or row effects βn, and interaction effects γmn,
where m = 0, . . . ,M − 1; n = 0, . . . , N − 1. Each
element Imn of P can be written as the following linear

combination

Imn = I + αm + βn + γmn,

where I denotes the mean value of P , i.e.,

I =
1

MN
·
M−1∑
m=0

N−1∑
n=0

Imn,

while αm and βn denote deviations of the row and
column means from I:

αm =
1

N
· Cm − I, (1)

βn =
1

M
· Rn − I.

Interaction effects γmn are therefore computed as:

γmn = Imn − I − αm − βn.

2.2 Local region saliency

The radial detector uses α-effects of DEM. The total
variation of P represented by the total sum-of-squares

VPM×N =

M−1∑
m=0

N−1∑
n=0

(Imn − IM×N )2

can be described as a sum of two component variations
VPM×N = WPM×N + BPM×N . Here WPM×N tells how
much variation is there within each of the columns
of P , with columns being represented by the columns
means, while BPM×N tells how much variation is there
between the means of the columns of P . For a reader
who is unfamiliar with this technique, Fig. 3 illustrates
an example. When the variation within the columns of
P is small, P can be well approximated by means of
its columns. Remember that columns of P correspond
to circles of P (see Fig. 2). Saliency is defined by the
ratio:

SM×N =
BPM×N

VPM×N

(2)

with

BPM×N (M,N) = N

M−1∑
m=0

α2
m.

The values of saliency (2) lie on an interval from 0 to
1. Value 0 represents the situations where all variation
of P is due to the variation within the columns, while
value 1 the situations where all variation is due to the
variation between columns.
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Figure 2. Blob features obtained by the radial detector. The radial detector approximates local regions with the averages computed
for circles. (a) Original image with resolution (66×72) pixels, (b) Green circles denote detected features obtained for the region
sizes between 4 to 12 circles, (c) Reconstruction obtained with the feature approximations. The larger features are drawn before
the smaller and the less salient before the more salient. (d),(e) Features and their approximations.

Figure 3. Computation of VP and its two parts WP and BP .

2.3 Keypoint detection

For the keypoint detection, a stack of saliency maps
is computed:

S(x, y,m) =
N

∑m−1
i=0 α2

i (x, y)

VPm×N (x, y)

=

∑m−1
i=0 (Ci(x, y)− C(x, y))2

NVPm×N (x, y)
(3)

m = 0, . . . ,M.

Since
∑m−1
i=0 (Ci(x, y)−C(x, y))2 of (3) can be written

as

m−1∑
i=0

(Ci(x, y)− C(x, y))2 =

=

m−1∑
i=0

C2
i (x, y)−

(
∑m−1
i=0 Ci(x, y))2

m

and VPm×N (x, y) as

VPm×N (x, y) =

m−1∑
i=0

N−1∑
j=0

I2i,j(x, y)−
(
∑m−1
i=0 Ci(x, y))2

N ·m
,

the new saliency map S(x, y,m + 1) can be computed
by updating three sums at each image location:

m−1∑
i=0

Ci + Cm ,

m−1∑
i=0

C2
i + C2

m ,

and
m−1∑
i=0

N−1∑
j=0

I2i,j +

N−1∑
j=0

I2m,j .

Keypoints are local scale-space maxima detected in the
stack of the saliency maps (3). Maxima are detected by
comparing a pixel value to its 26 neighbors in a 3×3×3
volume of pixels in the stack.

3 ALGORITHM IMPROVEMENTS

Five improvements are introduced in the new version of
the algorithm.

3.1 Up-sampling and down-sampling

To increase the quality of the keypoint detection
for small keypoint radii, the image is first up-sampled
by using bi-cubic interpolation and saliency maps
S(x, y,m);m = 0, . . . ,M − 1 are computed for M =
11. The local scale space maxima are then located for
maps with m ≥ 5. For larger keypoints, to speed up
the computation, the up-sampled image is down-sampled
two times. For each of the dawn-sampled image, the
saliency maps are computed for eleven circles and the
keypoint detection is applied for the maps with m ≥ 6.
Before the saliency maps are computed, the image is
first smoothed with a Gaussian filter with small σ. In this
way, we acquire keypoints with radii from 2.25 pixels
to 21 pixels.

3.2 Computation of sums on circles

Transformation of a local region from the Cartesian
to the polar representation (Fig. 1) is time consuming.
Instead of addressing locations on circles to compute
sums Cm(x, y) and

∑N
j=1 I

2
m,j(x, y);m = 0, . . . ,M−1,

they are computed by convolving an intensity image
I(x, y) and image I(x, y).2 with convolution filters
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Am;m = 0, . . . ,M − 1. We have

Cm(x, y) = Am ∗ I(x, y),
N−1∑
j=0

I2m,j(x, y) = Am ∗ I.2(x, y);

m = 0, . . . ,M − 1.

Here * is the convolution operation in x and y and the
operation .2 squares the image intensity at each pixel in
the image. Filter Am(x, y) represents the m-th circle or
1-pixel wide annulus (see Fig. 4). The sum of weights
on the circle is for each filter equal to value N . Filters
Am;m = 0, . . . ,M−1 are generated in a double nested
loop (see Algorithm 1).

Figure 4. Filters Am(x, y);m = 1, . . . ,M − 1. The radial
detector uses 11 circles to compute the saliency maps. The
sum of the pixel weights is for each circle equal to N . The
first filter A0(x, y) with rm = 0, not shown in the image, just
multiplies the image intensity with N .

Result: Filters Am;m = 1, . . . ,M − 1
N = 720;
for m=1 to M-1 do
Am = zeros(2 ∗m+ 1, 2 ∗m+ 1);
c = m+ 1;
for n=1 to N do

r = m;
x = c+ round(r ∗ cos(2 ∗ π/N ∗ (n− 1)));
y = c+ round(r ∗ sin(2 ∗ π/N ∗ (n− 1)));
Am(x, y) = Am(x, y) + 1;

end
end

Algorithm 1: Generation of filters Am;m =
1, . . . ,M − 1, shown in Fig. 4.

3.3 Selecting keypoints with a large contrast
It is a common practice to apply a threshold on the

saliency maps for a keypoint selection. Only the local
scale-space maxima with a saliency value above the
pre-specified threshold value are considered as detected
keypoints. Another option is to sort the detected local
scale-space maxima according to their saliency in a de-
scending order and then take only the first n local scale-
space maxima as keypoints. Usually, a larger saliency
corresponds to a larger image contrast. In the case of
the saliency (3), this is not true. To exclude the local
extrema with a low contrast, which are more sensitive
to the noise than the extrema with a large contrast, the
radial detector applies a threshold on maps

Bnor(x, y,m) =

∑m−1
i=0 α2

i (x, y)

m ·N · I2nor
(4)

with

Inor =
1

3
(

∑Ncol
c=1 Îc
Ncol

+

∑Nrow
r=1 Îr
Nrow

+ Imax).

Here Îc and Îr are the maximal intensity values of the
c-th column and r-th row of the image, respectively,
and Imax is the maximal value of the image. Ncol and
Nrow are the number of columns and rows of the image.
Hence, only those local scale-space maxima obtained
on the saliency maps of (3) that have the value of (4)
above the threshold value are taken into account. The
same applies to the case of sorting. The local scale-
space maxima are sorted according to the values of (4).
Fig. 5 shows both maps S(x, y, 5) and Bnor(x, y, 5).

(a) (b) (c)

Figure 5. Saliency maps. (a) Original image, (b) Saliency map
S(x, y, 5) given by Eq. 3, (c) Saliency map Bnor(x, y, 5)

given by Eq. 4.

3.4 Eliminating the edge responses

The saliency measure (3) has a strong response also
along the edges. These locations are unstable to small
levels of the noise, therefore we would like to reject
keypoints at these locations. Here we use the same
technique as proposed in [9]. The two principal cur-
vatures computed at the keypoint location and scale
are considered: along the edge, the saliency will have
a small principal curvature, while across the edge, the
curvature is large, hence by checking for the ratio of the
principal curvatures, the keypoints along the edges are
discarded.

3.5 Orientation assignment

The invariance to the image plane rotation is achieved
by assigning an orientation to the keypoint. Here we
follow the approach proposed in [9], however we use
another type of the average image for gradient compu-
tation. A radius rm of the keypoint is used to select the
average image, Im(x, y) = 1

mN

∑m−1
j=0 Cj so that all

computations are performed in a scale-invariant manner.
For each image sample in the area of 3.5× rm around
the keypoint, the gradient magnitude, gmag(x, y), and
orientation, θ(x, y), is computed using the pixel differ-
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ences:

gx = Im(x+ 1, y)− Im(x− 1, y)

gy = Im(x, y + 1)− Im(x, y − 1)

gmag(x, y) =
√
g2x + g2y

θ(x, y) = tan−1(
gy
gx

).

An orientation histogram is then formed from the gra-
dient orientations of the sample points. The orientation
histogram has 36 bins covering the 360 degree range
of orientations. Each sample added to the histogram is
weighted by its gradient magnitude and by a Gaussian-
weighted circular window with a σ that is 1.5 times that
of radius rm of the keypoint. The dominant orientation
is determined by detecting the global maximum in the
histogram. Since the radial detector detects locations
with a radial and mirror symmetry, some local maxima
in the histogram can also be high, close to the value of
the global maximum. Therefore, any local maximum that
is within 80% of the global maximum is used to create a
keypoint with that orientation. For a better accuracy, the
same approach is used as in [9] to estimate the position
of the maxima. A parabola is fit to three histogram
values closest to the global or selected local maximum
to interpolate the position of the maximum.

4 A COMPARISON OF THE DOG
DETECTOR WITH THE RADIAL DETECTOR

To compare the detector based on the difference between
two Gaussian filters or DoG, which is a part of the SIFT
algorithm [9], with the Radial detector, we start with a
two-dimensional unit height Gaussian function

gK(x, y) = e
− x

2+y2

2σ2
K , (5)

which determines weighting of locations in a local
region. Let us divide weights of (5) into two parts;
the circular centre and its surrounding. This can be
accomplished by representing the centre with the two-
dimensional unit height Gaussian function with a K-
times smaller standard deviation

g(x, y) = e−
x2+y2

2σ2 (6)

and the surrounding by the difference between the two
unit-height Gaussian functions

gs(x, y) = e−
x2+y2

2σ2K2 − e−
x2+y2

2σ2 . (7)

Hence, σK = K · σ and gK(x, y) = g(x, y) + gs(x, y).
Fig. 6 shows the proposed decomposition. Let G(x, y)
and GK(x, y) denote two images obtained by convolv-
ing intensity image I(x, y) with filters (6) and (5),
respectively:

G(x, y) = g(x, y) ∗ I(x, y) (8)

Figure 6. Decomposition of unit-height Gaussian gK(x, y) into
centre g(x, y) and surrounding gs(x, y). From left to right:
gK(x, y), g(x, y), and gs(x, y) computed for σ = 3 and K =√
2.

and

GK(x, y) = gK(x, y) ∗ I(x, y). (9)

4.1 The DoG filter and α0 effect
Weighting functions (6) and (7) determine two zones

of a circular shape (see Fig. 6). Following the idea of
DEM, (8) and (9), can be used to compute two α effects
but this time with local region weighting as defined by
(6) and (7). Let wK , w, and ws be the normalizing
constants of the filters gK(x, y), g(x, y), and gs(x, y),
respectively:

wK =

∫ ∞
−∞

∫ ∞
−∞

gK(x, y)dxdy = 2πσ2K2,

w =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)dxdy = 2πσ2,

and

ws = wK − w = 2πσ2(K2 − 1).

Seeing G(x, y) as the weighted centre and GK(x, y)−
G(x, y) as the first annulus, two αG effects can be
computed by using the same idea as represented by
Eq. 1:

α0G(x, y) =
G(x, y)

w
− GK(x, y)

wK
, (10)

α1G(x, y) =
GK(x, y)−G(x, y)

ws
− GK(x, y)

wK
. (11)

G denotes that the region weighting is based on the
unit height Gaussian function. We can notice that the
α0G(x, y) effect given by Eq. 10 represents convolution
of intensity image I(x; y) by the DoG filter:

α0G(x, y) = −D(x, y) ∗ I(x, y)

with

D(x, y) =
K2g(x, y)− gK(x, y)

wK
.

Using Eqs. 10 and 11 and wK = K2 · w, the relation
between effects α1G(x, y) and α0G(x, y) can easily be
derived:

α1G(x, y) =
−1

K2 − 1
α0G(x, y).

Hence, by knowing α0G(x, y), we know α1G(x, y) as
well. For K =

√
2, we obtain α0G(x, y) = −α1G(x, y).

In this case, both regions, the centre and the surrounding,
are equally important. Following the above, we can
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conclude that the SIFT algorithm uses the α0G(x, y)
effect as a saliency measure for the keypoint detection.
SIFT uses only two αs, therefore the local scale space
maxima and minima represent locations with a dark
centre and light surrounding or reverse. The larger is
the contrast between the centre and the surrounding the
larger is the saliency. The region size is increased by
increasing parameter σ. The saliency maps (3) used by
the radial detector do not distinguish between the low
and high contrast regions, therefore we introduce an
additional measure (4). The radial detector enlarges the
local region by adding a new circle to the current local
region. The radial detector is slower to compute than
SIFT. Computation of saliency map S(x, y,m) requires
filtering of two images I(x, y) and I.2(x, y). Also,
filters Am;m = 0, . . . ,M − 1 are not separable as are
the Gaussian filters.

5 EXPERIMENTAL EVALUATION

Figure 7. Examples of image pairs from full-image sequences
in the HPatches dataset [2]: i fenis, i dome, i leuven, v there,
v graffiti, and v sunseason.

The radial detector is evaluated on the HPathes dataset
[2] which contains 57 sequences with linear and nonlin-
ear illumination changes and 59 sequences with view-
point changes captured on different scenes. The HPathes
dataset is built by including image sequences from
several pre-existing datasets and by many new image
sequences. Each image sequence consists of six images,
with the first one being reference, and the remaining
five containing different degrees of deformation in ques-
tion. The geometric transformations with respect to the
reference image are given in a form of homographies.
Examples of the image pairs are shown in Fig. 7.

In experimental testing we compare the radial with
the DoG detector. DoG is a part of SIFT and it is the
most often used keypoint detector. In the experimental
evaluation we use the protocol suggested in [17]. The
number of keypoints is limited to 3000. We compute
two metrics:

1) Repeatability score
It measures the ratio between the corresponding
keypoints and the minimum number of keypoints
visible in both images.

2) Matching score
Each keypoint is represented by the SIFT de-
scriptor. This allows us to find matches based on
the keypoint descriptor. A match is the nearest

neighbor in the descriptor space. If the match
is also a geometric correspondence, then it is a
correct match. The matching score is computed as
the ratio between the number of correct matches
and the minimum number of keypoints visible in
the pair of images.

Results for the illumination and viewpoint changes are
shown in Fig. 8 and Fig. 9, respectively. For both types
of changes, the radial detector outperforms the DoG
detector, as both tested metrics, e.g. the repeatability and
matching score, are higher for a large number of image
sequences. The DoG detector is usually better for the
image sequences with a substantial change in the scale.
The averages, computed over all image sequences, are
shown in Table. 1.

6 CONCLUSIONS

The radial detector is a new version of one of the self-
similarity detectors represented in [14]. The algorithm is
upgraded with different techniques that speed up com-
putation and eliminate the noise-sensitive keypoints. The
keypoints are extended with a local region orientation.
The experimental evaluation shows competitive results
compared to the DoG detector, which is one of the
most popular keypoint detectors. The radial detector is
publicly available [11].
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