
ELEKTROTEHNIŠKI VESTNIK 92(3): 151-156, 2025

OVERVIEW PROFESSIONAL PAPER

Comparative Analysis of Text Similarity Algorithms and Their

Practical Applications in Computer Science

Josip Poljak1, Dražen Crčić1, Tomislav Horvat1

1 University North, Varaždin University Center, Jurja Križanića 31b, Croatia
E-mail: Drazen.Crcic@unin.hr

Abstract. In an era defined by vast volumes of digital text, the capacity to compare, interpret, and quantify textual

similarity is a cornerstone of modern computational linguistics and natural language processing (NLP). Text

similarity algorithms support critical applications in information retrieval, plagiarism detection, sentiment analysis,

text summarization, and beyond. This paper provides a comprehensive survey and comparative analysis of

established text similarity algorithms, including edit-distance-based metrics (Levenshtein and Damerau-

Levenshtein), character-based measures (Jaro and Jaro-Winkler), local sequence alignment (Smith-Waterman),

vector-based semantic measures (Cosine similarity), and methods reliant on subsequence statistics (N-gram

similarity). Each algorithm is analyzed in terms of its underlying theoretical foundations, computational

complexity, performance characteristics, and domain-specific suitability. While traditional approaches excel in

correcting typographical errors or identifying subtle lexical variations, more robust methods handle semantically

rich corpora, larger text bodies, and intricate linguistic phenomena. Moreover, potential avenues for improvement

are explored, including hybridization of existing approaches and the integration of emerging machine learning and

deep neural models. This holistic examination aims to inform the selection and development of text similarity

measures for diverse real-world applications and to guide future research directions in computational linguistics.

Keywords: text similarity algorithms, natural language processing, computational linguistics

Primerjalna analiza algoritmov za podobnost besedil in

njihove praktične uporabe v računalništvu

Primerjava in merjenje podobnosti med digitalnimi besedili sta

ključna za računalniško lingvistiko in obdelavo naravnega

jezika. Algoritmi za podobnost se uporabljajo pri iskanju

informacij, zaznavanju plagiatorstva, analizi sentimenta in

povzemanju besedil.

 Prispevek predstavlja primerjalno analizo uveljavljenih

metod, kot so Levenshteinova razdalja, Jaro-Winkler, Smith-

Waterman, kosinusna podobnost in N-grami. Ocenjene so glede

na teoretične osnove, računsko zahtevnost, učinkovitost in

primernost za različna področja. Tradicionalne metode so

učinkovite pri zaznavanju napak in leksikalnih razlik,

naprednejše pa pri obravnavi semantično bogatih in daljših

besedil. Raziskane so tudi možnosti izboljšav z združevanjem

pristopov in uporabo metod strojnega učenja. Namen analize je

usmerjati uporabo in nadaljnji razvoj teh algoritmov.

1 INTRODUCTION

Text constitutes a fundamental medium for

communication, information dissemination, and

knowledge representation in the digital age. As

organizations and individuals produce and consume ever-

increasing amounts of textual data—from academic

literature, social media posts, and news articles to

corporate documents—automated techniques for

analyzing and comparing textual content have become

indispensable [1, 2]. Text similarity algorithms measure

how closely related two or more texts are, capturing

lexical, syntactic, and sometimes semantic characteristics

[2]. These measures underpin a range of applications.

One of the applications is in information retrieval and

search engines development, and retrieving documents

based on user queries and ranking results by relevance

[3]. Text similarity helps identify documents that share

contents or topics. Another application is during

plagiarism detection and identifying unauthorized reuse

of the textual material by measuring the closeness of

documents and detecting passages that show a suspicious

overlap [4]. Text similarity algorithms could be used for

text summarization and paraphrase detection, while

determining whether one summary accurately represents

another text or whether two sentences express similar

meanings [5]. Sentiment and topic analysis is also one of

the typical implementations, where algorithms group

texts into similar thematic clusters or compare user-

generated contents for a consistent emotional or topical

alignment [6].

 Spelling correction and OCR post-processing as a last

example of the usage implies correcting typographical

errors or character recognition mistakes in digitized texts

by comparing candidate strings to known words [7].

 This paper surveys key algorithms for text similarity,

examining their theoretical underpinnings, strengths, and

weaknesses. Traditional edit-distance-based methods

measure literal character-level differences [4, 5, 8], while

more advanced vector-based techniques capture semantic
Received: 17 March 2025

Accepted: 28 April 2025

Copyright: © 2025 by the authors.

Creative Commons Attribution 4.0

International License

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

152

 POLJAK, CRČIĆ, HORVAT

relationships [9, 10]. By analyzing a range of approaches,

the paper highlights how these methods complement one

another and can be combined or extended [11, 12]. Future

research could explore emerging trends such as neural

embeddings (e.g., Word2Vec) [13] and advanced

machine learning-driven approaches to further enhance

the accuracy and robustness of text similarity measures.

2 RELATED RESEARCH

Research on text similarity algorithms has evolved

significantly in recent years, driven by the growing need

for automated text analysis across various domains such

as information retrieval, plagiarism detection, and natural

language understanding. Traditional approaches focused

on edit-distance metrics and vector-based models.

However, more recent studies have explored advanced

statistical techniques, neural embeddings, and hybrid

models that combine different similarity measures.

 [15] provides a comprehensive analysis of document

similarity algorithms, including statistical models, neural

network-based approaches, and corpus-based methods.

Their evaluation highlights the effectiveness of neural

embeddings like Word2Vec and BERT in capturing

semantic relationships in large textual corpora,

outperforming traditional edit-distance measures for

longer texts. [16] focuses on case-based reasoning (CBR)

to identify the most similar textual documents. The

researchers compare multiple similarity measures, such

as the TS-SS metric, Euclidean distance, and cosine

similarity, demonstrating that CBR-based approaches

can improve the accuracy of text similarity assessments.

[17] proposes an innovative method for extracting

knowledge from textual datasets using the Spearmans

rank correlation coefficient. The approach proves

effective for grouping similar documents and extracting

common features from text collections, offering a new

perspective on similarity analysis. The research in hybrid

similarity measurement techniques has gained attention

in recent years. [18] presents a hybrid algorithm that

integrates the semantic term similarity with TF-IDF to

improve the text similarity assessment, proving to be

more effective than traditional TF-IDF-based

approaches. Another significant study [19] explores

methods for computing legal document similarity by

comparing various approaches, including citation

network analysis and textual content similarity measures.

Their findings indicate that hybrid techniques can

significantly improve the accuracy in legal text retrieval.

[20] introduces an aspect-based document similarity

approach for research papers. The method enhances

traditional similarity detection by considering specific

sections and aspects of a document rather than evaluating

the entire text uniformly. The results show that aspect-

based comparisons provide a more refined understanding

of the textual similarity in academic research.

 These advancements indicate a growing trend toward

integrating traditional similarity measures with statistical

inference and machine learning models. The adoption of

neural embeddings and hybrid techniques offers a more

nuanced understanding of the textual similarity,

particularly for applications requiring deep semantic

analysis.

3 TEXT SIMILARITY ALGORITHMS

This chapter describes five algorithms for measuring the

text similarity used in the research. A detailed

presentation is given of algorithms that use different

approaches and techniques to solve the problem of

determining the similarity of two texts.

3.1 Edit-Distance-Based Measures: Levenshtein

and Damerau-Levenshtein

The Levenshtein distance quantifies the minimum

number of the elementary operations—insertions,

deletions, and substitutions—required to transform one

string into another [4]. It can be defined using dynamic

programming. For two strings 𝑎 and 𝑏 of lengths 𝑚 and

𝑛, distance 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is:

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

max(𝑖, 𝑗) 𝑖𝑓min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 (1)

 The Levenshtein distance is invaluable for detecting

minor textual variations, typographical errors, and

spelling corrections [4, 5]. However, its character-level

orientation makes it less effective for capturing semantic

relationships in longer, and more complex texts [3].

 The Damerau-Levenshtein distance extends the

Levenshtein metric by adding transposition as a fourth

allowed operation [5]. This addition is motivated by the

fact that certain common typing errors involve swapping

adjacent characters. As a result, the Damerau-

Levenshtein distance can more closely align with the

real-world human error patterns, reducing the cost when

characters are simply reversed. Both metrics are widely

used in contexts demanding fine-grained character-level

comparisons [5].

 The similarity score can be converted from the edit

distance using:

𝑇𝑒𝑥𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝐿𝑜𝑛𝑔𝑒𝑠𝑡 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ
 (2)

3.2 Character-Based String Similarities: Jaro and

Jaro-Winkler

The Jaro similarity focuses on the number of matching

characters and the number of permissible transpositions

within a certain window [6]. It is particularly effective for

comparing shorter strings, such as personal names,

product codes, or short terms, where slight reorderings

can occur. The resulting similarity score ranges from 0 to

1, with 1 indicating identical strings.

COMPARATIVE ANALYSIS OF TEXT SIMILARITY ALGORITHMS AND THEIR PRACTICAL APPLICATIONS… 153

 The Jaro similarity measurement formula:

𝑠𝑖𝑚𝑗 = {

0, 𝑚 = 0,
1

3
(
𝑚

|𝑠1|
+
𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) ,𝑚 ≠ 0

 (3)

 The Jaro-Winkler similarity refines the Jaro measure

by giving an increased weight to the matching prefixes.

This adjustment recognizes that errors often occur toward

the end of words and that strings sharing a common start

are more likely to be related [7]. These measures are

commonly applied in record linkage, data cleaning, and

de-duplication tasks.

 The Jaro-Winkler similarity measurement formula:

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙𝑝(1 − 𝑠𝑖𝑚𝑗) (4)

3.3 Local Sequence Alignment: Smith-Waterman

Similarity

Originating from computational biology, the Smith-

Waterman similarity identifies locally optimal

alignments between two sequences, maximizing the

scoring scheme that rewards matches and penalizes

mismatches and gaps [8]. Unlike the global alignment

methods, Smith-Waterman focuses on the most similar

substring pairs within the larger sequences, making it

suited for detecting highly similar segments in extensive

texts.

 The Smith-Waterman algorithm uses a scoring matrix

𝐻(𝑖, 𝑗):

𝐻(𝑖, 𝑗) = 𝑚𝑎𝑥 {

0
𝐻(𝑖 − 1, 𝑗 − 1) + 𝑚𝑎𝑡𝑐ℎ/𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑠𝑐𝑜𝑟𝑒

𝐻(𝑖 − 1, 𝑗) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝐻(𝑖, 𝑗 − 1) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 (5)

 However, the Smith-Waterman computational cost

can be significant. Despite this overhead, it is considered

exceptionally accurate for identifying similar text

regions, making it useful in plagiarism detection, legal

text analysis, and any domain where a local similarity is

more relevant than an overall string resemblance [8].

3.4 Vector-Space Model and Cosine Similarity

The Cosine similarity represents documents as vectors in

a high-dimensional feature space, where each dimension

corresponds to a term weight (e.g., TF-IDF) [9]. By

measuring the cosine of the angle between two vectors, it

evaluates the similarity independently of the document

length. The Cosine similarity is widely used in

information retrieval, sentiment analysis, and text

classification.

 The Cosine similarity formula:

Cosine Similarity = cos 𝜃 =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
 (6)

This vector-based approach transcends mere character

overlaps, approximating the semantic relatedness when

combined with appropriate feature extraction methods.

Its computational complexity can vary, but with an

efficient indexing and dimension reduction techniques,

the cosine similarity remains scalable to very large text

corpora [10].

3.5 N-gram Similarity

N-grams are consecutive sequences of n characters or

words extracted from a text [11]. The N-gram similarity

estimates how often two texts share these subsequences.

For the character-level n-grams, the methods capture the

orthographic patterns; for the word-level n-grams, they

reflect the lexical and syntactic similarity.

 The N-gram similarity formula:

2 ⋅∣ 𝑋 ∩ 𝑌 ∣

∣ 𝑋 ∣ +∣ 𝑌 ∣
 (7)

 This approach is frequently employed in the

plagiarism detection, OCR output correction, machine

translation evaluation (e.g., BLEU score), and author

style analysis. By varying n, the N-gram similarity can

be tuned to emphasize shorter lexical matches or longer

phrase-level correspondences [12].

4 WEB APPLICATION FOR CALCULATING

THE TEXTUAL SIMILARITY

In order to apply the textual similarity algorithms

practically, a custom web application is developed,

allowing users to compare texts using various algorithms.

The application is designed to be user-friendly yet

flexible enough to meet the needs of researchers and

practitioners in Natural Language Processing (NLP).

This custom developed application enables a real-time

text comparison and a support for texts of varying

lengths.

4.1 Application Architecture

The architecture of the web application is designed to

enable modularity, scalability, and ease of maintenance.

The application consists of three main parts: the user

interface (Frontend Module), the server-side component

(Backend Module), and the functionality of the text

similarity algorithms (Algorithm Module). The user

interface allows for an intuitive application management,

while the server-side component processes requests and

runs similarity algorithms. The implemented algorithms

offer different methods for calculating the text similarity,

providing users with flexibility in choosing the most

suitable algorithm for their needs. The combination of

these elements ensures a high efficiency and reliability

of the application.

4.1.1 Frontend Module

The user interface is the first point of contact for the user

with the application. It is designed to be intuitive and

easy to use, allowing users to easily find the required

functionalities. The main feature of the user interface is

enabling the input of texts to be compared. The text input

154

 POLJAK, CRČIĆ, HORVAT

Figure 1. Application architecture diagram.

can be done manually in text fields or by uploading PDF

files, where users can upload two PDF files, and the text

will be automatically extracted. After the text input, the

user selects an algorithm for a comparison, where one of

the available similarity measurement algorithms can be

chosen, or all algorithms at once. Finally, the comparison

results are displayed through the user interface, either

individually or for all algorithms in a table format,

allowing users to easily analyze the similarity.

 The user interface is developed using the HTML

technology for the web application structure, CSS for

styling, and JavaScript and jQuery for a dynamic content

management and communication with the server-side

system via AJAX requests. Bootstrap is used to ensure

the responsiveness of the interface.

4.1.2 Backend Module

After the user enters all the input parameters, the system

initiates the server-side, the backend module of the

application. The initial request processing performs the

input data validation and triggers the appropriate

similarity measurement algorithms. The server-side

component executes the implemented algorithms to

calculate the similarity between two texts or two

extracted textual contents from PDF files. After data

processing, the server-side returns the results to the user

interface in the form of a JSON response, which is then

displayed in a visual format within the user interface.

 The server-side component of the application is

implemented using the Flask web framework for the

Python programming language. Flask provides an easy

way to manage the HTTP requests, handle different

routes, and integrate with other services. The server-side

also uses PyMuPDF for text extraction from PDF files

and Psutil for measuring the resource consumption, such

as the memory usage and processor time[14].

4.1.3 Algorithm Module

The third module of the application, which contains the

functionality of the text similarity algorithms, uses the

implemented algorithms in the programming language

and performs an actual comparison. Each algorithm is

implemented as a separate function within the algorithm

module, enabling an easy integration and maintenance. A

total of seven algorithmic function combinations have

been developed, based on the five algorithms described

in Chapter 3. The functions used are:

• Levenshtein Distance - measures the number of

operations (insertions, deletions, substitutions)

required to transform one string into another.

• Damerau-Levenshtein Distance - an extension of the

Levenshtein distance that includes transpositions

(swapping adjacent characters).

• Jaro Similarity - focuses on the match of characters

and the number of transpositions between two strings.

• Jaro-Winkler Similarity - an extension of the Jaro

similarity that gives more weight to matching the

initial segments of a string.

• Smith-Waterman Similarity - an algorithm for local

sequence alignment used to identify similar segments

within longer texts.

• Cosine Similarity - measures the similarity between

two non-zero vectors in a multidimensional space

based on the cosine of the angle between them.

• N-gram Similarity - analyzes textual data based on

overlapping n-grams (sequences of n consecutive

elements).

4.2 Application Functionalities

The text similarity application is designed to provide an

intuitive user experience and powerful analytical

capabilities. The application user interface allows users

to input textual data in two ways. The first method

involves a direct manual entry of two texts. Users can

directly enter two texts to be compared for the similarity

into text fields within the application. This option is

useful for a quick analysis of shorter texts or specific

excerpts. The second method is uploading PDF files.

Users can upload two PDF files through the user

interface. The application uses the PyMuPDF library to

extract a textual content from the PDF files, enabling the

analysis of longer and more complex documents. The

extracted texts are automatically populated into the

corresponding text fields.

 After entering or uploading the texts, users can select

one of the available algorithms for a text comparison

through a dropdown menu. The available algorithms

include the Levenshtein distance, Damerau-Levenshtein

distance, Jaro similarity, Jaro-Winkler similarity, Smith-

Waterman similarity, Cosine similarity, and N-gram

similarity. This functionality provides users with the

flexibility to choose the most suitable algorithm for their

specific analysis needs.

 The initial user interface of the application is shown in

Figure 2. After the user enters the texts and selects an

algorithm, the application performs the similarity

calculation between the two texts. The application works

by having the user interface send all the necessary

parameters to the backend module. The backend module

triggers the corresponding algorithm for calculating the

similarity, processes the texts, and returns the result

COMPARATIVE ANALYSIS OF TEXT SIMILARITY ALGORITHMS AND THEIR PRACTICAL APPLICATIONS… 155

Figure 1. User interface of the application.

as a percentage (%) that is immediately displayed to the

user within the application as a degree of the similarity

between the two texts. This functionality allows users to

quickly and accurately calculate the text similarity using

different methods and algorithms.

 The application also provides the functionality for

measuring the performance of all available algorithms to

compare their relative ratios. This feature allows users to

analyze the efficiency of different algorithms in terms of

the execution time and memory usage. In this process, the

backend module runs all available similarity calculation

algorithms. Each algorithm is executed separately,

measuring the execution time and memory load. The

performance results are displayed to the user in a table

format, enabling an easy comparison of the performance

of all available algorithms. This functionality offers users

a detailed insight into the performance of different

algorithms, helping them choose the most suitable

algorithm for their needs.

 The results of the similarity and performance

calculations are displayed in a table format so that users

can easily compare the performance of different

algorithms (see Fig. 3). The results display the similarity

scores and additionally, performance testing results, i.e.,

"benchmark" results. The similarity results refer to the

similarity calculation for the selected algorithm from the

dropdown menu. The result is shown as a percentage (%),

allowing users to immediately see the degree of the

similarity between the two texts. The additional

performance testing results, i.e., "benchmark" results for

all algorithms, display information about the algorithm

name, similarity (%), execution time (seconds), and

memory load (bytes). The table format allows users to

easily compare the performance of different algorithms

and make informed decisions about which algorithm to

choose for specific analysis needs.

4.3 Application Testing

Testing is a crucial step in the software development to

ensure the accuracy, reliability, and performance of the

application. The application is tested using a variety of

test cases that include diverse textual data. Each test case

is designed to check specific functionalities of the

Figure 2. Example overview of results within the application.

application and the performance of the algorithms. The

test cases cover examples of simple texts, similar texts

with different formatting, texts with grammatical errors,

completely different texts, and very long texts.

 The testing results are compared with the expected

outcomes to assess the accuracy and performance of the

application. For each test case, the results are analyzed

and compared with the predicted outcomes. The

comparison of the expected and actual results is shown in

Table 1.

Table 1. Comparison of the expected and actual results

Test case
Expected

result

Actual

result
Comment

simple texts high similarity 93%
aligned with

expectations

similar texts with

different
formatting

high similarity 89%
aligned with

expectations

texts with

grammatical
errors

medium

similarity
76%

aligned with

expectations

completely

different texts
low similarity 12%

aligned with

expectations

very long texts
variable

similarity
40%

depending on
the specific

content of the

texts

 The testing of the text similarity application is

conducted systematically to ensure its accuracy,

reliability, and performance. The test cases cover various

scenarios, from simple texts to complex and very long

documents. The comparison of the expected and actual

results demonstrates a high accuracy of the algorithms.

5 CONCLUSION

The paper provides a comprehensive analysis of the text

similarity algorithms, covering traditional edit-distance

approaches, character-based similarity measures, vector-

space models, and hybrid methods. By integrating these

methodologies, their theoretical foundations,

computational efficiency, and application domains are

explored.

156

 POLJAK, CRČIĆ, HORVAT

 A custom web application is developed to implement

and compare multiple text similarity algorithms in a real-

world environment. The application enables users to

upload texts, select appropriate algorithms, and visualize

results, thus providing valuable insights into the

effectiveness and efficiency of different approaches. The

performance testing demonstrates that while the classical

methods like the Levenshtein distance are effective for

minor text variations, more advanced vector-based and

machine learning-driven approaches offer a superior

semantic understanding and scalability.

 Our future research will focus on enhancing hybrid

approaches that combine character-level corrections with

deep-learning models for the semantic similarity.

Optimizing the algorithmic performance for large-scale

datasets and exploring domain-specific adaptations can

further improve the text comparison methodologies.

Advancement of the text similarity techniques supports

applications in natural language processing, information

retrieval, and artificial intelligence-driven decision-

making, thus fostering a more accurate and meaningful

text analysis.

REFERENCES

[1] Manning, C. D., Schütze, H. “Foundations of Statistical Natural

Language Processing”, The MIT Press, 1999.

[2] Jurafsky, D., Martin, J. H. “Speech and Language Processing”, 2nd

edition, Pearson Prentice Hall, ISBN 978-0-13-187321-6, 2008.

[3] Navarro, G. “A Guided Tour to Approximate String Matching.”

ACM Computing Surveys, vol. 33, no. 1, 2001, pp. 31-88.

[4] Levenshtein, V.I. “Binary codes capable of correcting deletions,

insertions, and reversals.” Soviet Physics Doklady, vol. 10, no. 8,

1966, pp. 707-710.

[5] Damerau, F. J. “A technique for computer detection and correction
of spelling errors.” Communications of the ACM, vol. 7, no. 3,

1964, pp. 171–176.

[6] Jaro, M. A. “Advances in record-linkage methodology as applied

to matching the 1985 census of Tampa, Florida.” Journal of the
American Statistical Association, vol. 84, no. 406, 1989, pp. 414-

420.

[7] Winkler, W. E. “String comparator metrics and enhanced decision

rules in the Fellegi-Sunter model of record linkage.” Proceedings
of the Section on Survey Research Methods, American Statistical

Association, 1990, pp. 354-359.

[8] Smith, T. F., Waterman, M.S. “Identification of common

molecular subsequences.” Journal of Molecular Biology, vol. 147,

no. 1, 1981, pp. 195-197.

[9] Salton, G., Wong, A., Yang, C.S. “A vector space model for

automatic indexing.” Communications of the ACM, vol. 18, no. 11,

1975, pp. 613-620.

[10] Singh, J., Singh, L. “Cosine Similarity Algorithm for Natural
Language Processing.” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 7,

no. 7, 2017, pp. 1-5.

[11] Brown, T.G., Smith, J.L. “Analysis of Edit Distance Algorithms in
Text Processing.” Journal of Computer Science and Technology,

vol. 36, no. 4, 2021, pp. 755-772.

[12] Nguyen, T., Zhang, Y. “N-gram Based Text Analysis: A
Comparative Study.” Linguistics and Computational Models, vol.

8, 2023, pp. 210-230.

[13] Mikolov, T., Chen, K., Corrado, G., Dean, J. “Efficient Estimation

of Word Representations in Vector Space.” Proceedings of ICLR,

2013.

[14] Grinberg, M. “Flask Web Development: Developing Web

Applications with Python”, O’Reilly Media, 2018.

[15] Nicholas Gahman, Vinayak Elangovan “A Comparison of

Document Similarity Algorithms", International Journal of

Artificial Intelligence and Applications (IJAIA), Vol.14, No.2,

2023.

[16] Marko Mihajlovic, Ning Xiong "Finding the Most Similar Textual

Documents Using Case-Based Reasoning." arXiv preprint, 2019.

(https://arxiv.org/abs/1911.00262)

[17] Nino Arsov, Milan Dukovski, Blagoja Evkoski, Stefan Cvetkovski
"A Measure of Similarity in Textual Data Using Spearman's Rank

Correlation Coefficient." arXiv preprint, 2019.

(https://arxiv.org/abs/1911.11750)

[18] Huang, C.-H., Yin, J., & Hou, F. “Research on Text Similarity
Measurement Hybrid Algorithm with Term Semantic Information

and TF-IDF Method” International Journal of Intelligent Systems,

37(5), 1505-1521, 2022.

[19] Bhattacharya, P., Ghosh, K., Pal, A., & Ghosh, S. “Methods for
Computing Legal Document Similarity: A Comparative Study”.

International Journal of Legal and Information Technology, 28(3),

289-305, 2020.

[20] Ostendorff, M., Ruas, T., Blume, T., Gipp, B., & Rehm, G.
“Aspect-based Document Similarity for Research Papers”, Journal

of Information Science, 46(4), 544-560, 2020.

Josip Poljak is currently working as a Solution Architect and

Developer specializing in software development, system

architecture and the implementation of advanced technological

solutions. He holds a Bachelor’s degree in Computing and

Informatics from the University North, Croatia. With over ten

years of experience, he has been actively involved in designing

and developing software solutions, leading development teams,

and optimizing the system performance. His primary interests

are in the implementation and application of artificial

intelligence (AI) across various technologies and industries,

with a strong focus on natural language processing (NLP),

intelligent automation, and AI-driven decision-making

systems. Through his work, he aims to bridge the gap between

the traditional software engineering practices and the emerging

AI capabilities, enabling more efficient and intelligent solutions

in the digital world.

Dražen Crčić is currently working as a lecturer at the

University North, Croatia. He graduated from the Faculty of

Electrical Engineering and Computing, Zagreb. He has over 20

years of experience in the practical implementation of

information and communication technologies in

telecommunications, software development and data center

infrastructure deployment, both as an IT specialist and manager

in enterprise environments. His research interests are mainly in

the field of web technologies, information security and the

application of artificial intelligence tools.

Tomislav Horvat is currently working as an assistant professor

at the University North, Croatia. He received his Ph.D. degree

from the Faculty of Electrical Engineering, Computer Science,

and Information Technology, Osijek. His research interests are

predominantly in the application of artificial intelligence tools,

particularly in predictive modeling and outcome predicting

across various domains. With a strong background in the AI-

driven methodologies, he has contributed to several academic

projects and publications that explore innovative uses of

machine learning and data analytics to address complex

problems.

