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Abstract. In an era defined by vast volumes of digital text, the capacity to compare, interpret, and quantify textual 

similarity is a cornerstone of modern computational linguistics and natural language processing (NLP). Text 

similarity algorithms support critical applications in information retrieval, plagiarism detection, sentiment analysis, 

text summarization, and beyond. This paper provides a comprehensive survey and comparative analysis of 

established text similarity algorithms, including edit-distance-based metrics (Levenshtein and Damerau-

Levenshtein), character-based measures (Jaro and Jaro-Winkler), local sequence alignment (Smith-Waterman), 

vector-based semantic measures (Cosine similarity), and methods reliant on subsequence statistics (N-gram 

similarity). Each algorithm is analyzed in terms of its underlying theoretical foundations, computational 

complexity, performance characteristics, and domain-specific suitability. While traditional approaches excel in 

correcting typographical errors or identifying subtle lexical variations, more robust methods handle semantically 

rich corpora, larger text bodies, and intricate linguistic phenomena. Moreover, potential avenues for improvement 

are explored, including hybridization of existing approaches and the integration of emerging machine learning and 

deep neural models. This holistic examination aims to inform the selection and development of text similarity 

measures for diverse real-world applications and to guide future research directions in computational linguistics. 
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Primerjalna analiza algoritmov za podobnost besedil in 

njihove praktične uporabe v računalništvu 

Primerjava in merjenje podobnosti med digitalnimi besedili sta 

ključna za računalniško lingvistiko in obdelavo naravnega 

jezika. Algoritmi za podobnost se uporabljajo pri iskanju 

informacij, zaznavanju plagiatorstva, analizi sentimenta in 

povzemanju besedil. 

 Prispevek predstavlja primerjalno analizo uveljavljenih 

metod, kot so Levenshteinova razdalja, Jaro-Winkler, Smith-

Waterman, kosinusna podobnost in N-grami. Ocenjene so glede 

na teoretične osnove, računsko zahtevnost, učinkovitost in 

primernost za različna področja. Tradicionalne metode so 

učinkovite pri zaznavanju napak in leksikalnih razlik, 

naprednejše pa pri obravnavi semantično bogatih in daljših 

besedil. Raziskane so tudi možnosti izboljšav z združevanjem 

pristopov in uporabo metod strojnega učenja. Namen analize je 

usmerjati uporabo in nadaljnji razvoj teh algoritmov. 

 

1 INTRODUCTION 

Text constitutes a fundamental medium for 

communication, information dissemination, and 

knowledge representation in the digital age. As 

organizations and individuals produce and consume ever-

increasing amounts of textual data—from academic 

literature, social media posts, and news articles to 

corporate documents—automated techniques for 

analyzing and comparing textual content have become 

indispensable [1, 2]. Text similarity algorithms measure 

how closely related two or more texts are, capturing 

lexical, syntactic, and sometimes semantic characteristics 

[2]. These measures underpin a range of applications. 

One of the applications is in information retrieval and 

search engines development, and retrieving documents 

based on user queries and ranking results by relevance 

[3]. Text similarity helps identify documents that share 

contents or topics. Another application is during 

plagiarism detection and identifying unauthorized reuse 

of the textual material by measuring the closeness of 

documents and detecting passages that show a suspicious 

overlap [4]. Text similarity algorithms could be used for 

text summarization and paraphrase detection, while 

determining whether one summary accurately represents 

another text or whether two sentences express similar 

meanings [5]. Sentiment and topic analysis is also one of 

the typical implementations, where algorithms group 

texts into similar thematic clusters or compare user-

generated contents for a consistent emotional or topical 

alignment [6]. 

 Spelling correction and OCR post-processing as a last 

example of the usage implies correcting typographical 

errors or character recognition mistakes in digitized texts 

by comparing candidate strings to known words [7]. 

 This paper surveys key algorithms for text similarity, 

examining their theoretical underpinnings, strengths, and 

weaknesses. Traditional edit-distance-based methods 

measure literal character-level differences [4, 5, 8], while 

more advanced vector-based techniques capture semantic 
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relationships [9, 10]. By analyzing a range of approaches, 

the paper highlights how these methods complement one 

another and can be combined or extended [11, 12]. Future 

research could explore emerging trends such as neural 

embeddings (e.g., Word2Vec) [13] and advanced 

machine learning-driven approaches to further enhance 

the accuracy and robustness of text similarity measures. 

 

2 RELATED RESEARCH  

Research on text similarity algorithms has evolved 

significantly in recent years, driven by the growing need 

for automated text analysis across various domains such 

as information retrieval, plagiarism detection, and natural 

language understanding. Traditional approaches focused 

on edit-distance metrics and vector-based models. 

However, more recent studies have explored advanced 

statistical techniques, neural embeddings, and hybrid 

models that combine different similarity measures. 

  [15] provides a comprehensive analysis of document 

similarity algorithms, including statistical models, neural 

network-based approaches, and corpus-based methods. 

Their evaluation highlights the effectiveness of neural 

embeddings like Word2Vec and BERT in capturing 

semantic relationships in large textual corpora, 

outperforming traditional edit-distance measures for 

longer texts. [16] focuses on case-based reasoning (CBR) 

to identify the most similar textual documents. The 

researchers compare multiple similarity measures, such 

as the TS-SS metric, Euclidean distance, and cosine 

similarity, demonstrating that CBR-based approaches 

can improve the accuracy of text similarity assessments. 

[17] proposes an innovative method for extracting 

knowledge from textual datasets using the Spearmans 

rank correlation coefficient. The approach proves 

effective for grouping similar documents and extracting 

common features from text collections, offering a new 

perspective on similarity analysis. The research in hybrid 

similarity measurement techniques has gained attention 

in recent years. [18] presents a hybrid algorithm that 

integrates the semantic term similarity with TF-IDF to 

improve the text similarity assessment, proving to be 

more effective than traditional TF-IDF-based 

approaches. Another significant study [19] explores 

methods for computing legal document similarity by 

comparing various approaches, including citation 

network analysis and textual content similarity measures. 

Their findings indicate that hybrid techniques can 

significantly improve the accuracy in legal text retrieval. 

[20] introduces an aspect-based document similarity 

approach for research papers. The method enhances 

traditional similarity detection by considering specific 

sections and aspects of a document rather than evaluating 

the entire text uniformly. The results show that aspect-

based comparisons provide a more refined understanding 

of the textual similarity in academic research. 

 These advancements indicate a growing trend toward 

integrating traditional similarity measures with statistical 

inference and machine learning models. The adoption of 

neural embeddings and hybrid techniques offers a more 

nuanced understanding of the textual similarity, 

particularly for applications requiring deep semantic 

analysis. 

 

3 TEXT SIMILARITY ALGORITHMS 

This chapter describes five algorithms for measuring the 

text similarity used in the research. A detailed 

presentation is given of algorithms that use different 

approaches and techniques to solve the problem of 

determining the similarity of two texts. 

3.1 Edit-Distance-Based Measures: Levenshtein 

and Damerau-Levenshtein 

The Levenshtein distance quantifies the minimum 

number of the elementary operations—insertions, 

deletions, and substitutions—required to transform one 

string into another [4]. It can be defined using dynamic 

programming. For two strings 𝑎 and 𝑏 of lengths 𝑚 and 

𝑛,  distance 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is: 

 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{
 
 

 
 

max(𝑖, 𝑗)            𝑖𝑓min(𝑖, 𝑗) = 0,
 

 

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 
  (1) 

 

 The Levenshtein distance is invaluable for detecting 

minor textual variations, typographical errors, and 

spelling corrections [4, 5]. However, its character-level 

orientation makes it less effective for capturing semantic 

relationships in longer, and more complex texts [3]. 

 The Damerau-Levenshtein distance extends the 

Levenshtein metric by adding transposition as a fourth 

allowed operation [5]. This addition is motivated by the 

fact that certain common typing errors involve swapping 

adjacent characters. As a result, the Damerau-

Levenshtein distance can more closely align with the 

real-world human error patterns, reducing the cost when 

characters are simply reversed. Both metrics are widely 

used in contexts demanding fine-grained character-level 

comparisons [5]. 

 The similarity score can be converted from the edit 

distance using: 

 

𝑇𝑒𝑥𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝐿𝑜𝑛𝑔𝑒𝑠𝑡 𝑤𝑜𝑟𝑑 𝑙𝑒𝑛𝑔𝑡ℎ
              (2)  

3.2 Character-Based String Similarities: Jaro and 

Jaro-Winkler 

The Jaro similarity focuses on the number of matching 

characters and the number of permissible transpositions 

within a certain window [6]. It is particularly effective for 

comparing shorter strings, such as personal names, 

product codes, or short terms, where slight reorderings 

can occur. The resulting similarity score ranges from 0 to 

1, with 1 indicating identical strings.  
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 The Jaro similarity measurement formula: 

𝑠𝑖𝑚𝑗 = {

0,                                      𝑚 = 0,
1

3
(
𝑚

|𝑠1|
+
𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) ,𝑚 ≠ 0    

         (3) 

 The Jaro-Winkler similarity refines the Jaro measure 

by giving an increased weight to the  matching prefixes. 

This adjustment recognizes that errors often occur toward 

the end of words and that strings sharing a common start 

are more likely to be related [7]. These measures are 

commonly applied in record linkage, data cleaning, and 

de-duplication tasks. 

 The Jaro-Winkler similarity measurement formula: 

 

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙𝑝(1 − 𝑠𝑖𝑚𝑗)                            (4) 

3.3 Local Sequence Alignment: Smith-Waterman 

Similarity 

Originating from computational biology, the Smith-

Waterman similarity identifies locally optimal 

alignments between two sequences, maximizing the 

scoring scheme that rewards matches and penalizes 

mismatches and gaps [8]. Unlike the global alignment 

methods, Smith-Waterman focuses on the most similar 

substring pairs within the larger sequences, making it 

suited for detecting highly similar segments in extensive 

texts. 

 The Smith-Waterman algorithm uses a scoring matrix 

𝐻(𝑖, 𝑗): 

 

𝐻(𝑖, 𝑗) = 𝑚𝑎𝑥 {

0
𝐻(𝑖 − 1, 𝑗 − 1) + 𝑚𝑎𝑡𝑐ℎ/𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑠𝑐𝑜𝑟𝑒

𝐻(𝑖 − 1, 𝑗) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝐻(𝑖, 𝑗 − 1) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

          (5) 

 

 However, the Smith-Waterman computational cost 

can be significant. Despite this overhead, it is considered 

exceptionally accurate for identifying similar text 

regions, making it useful in plagiarism detection, legal 

text analysis, and any domain where a local similarity is 

more relevant than an overall string resemblance [8]. 

3.4 Vector-Space Model and Cosine Similarity 

The Cosine similarity represents documents as vectors in 

a high-dimensional feature space, where each dimension 

corresponds to a term weight (e.g., TF-IDF) [9]. By 

measuring the cosine of the angle between two vectors, it 

evaluates the similarity independently of the document 

length. The Cosine similarity is widely used in 

information retrieval, sentiment analysis, and text 

classification. 

 The Cosine similarity formula: 

  

Cosine Similarity =  cos 𝜃 =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
                (6) 

  

This vector-based approach transcends mere character 

overlaps, approximating the semantic relatedness when 

combined with appropriate feature extraction methods. 

Its computational complexity can vary, but with an 

efficient indexing and dimension reduction techniques, 

the cosine similarity remains scalable to very large text 

corpora [10]. 

3.5 N-gram Similarity 

N-grams are consecutive sequences of n characters or 

words extracted from a text [11]. The N-gram similarity 

estimates how often two texts share these subsequences. 

For the character-level n-grams, the methods capture the 

orthographic patterns; for the word-level n-grams, they 

reflect the lexical and syntactic similarity. 

 The N-gram similarity formula: 

 
2 ⋅∣ 𝑋 ∩ 𝑌 ∣

∣ 𝑋 ∣ +∣ 𝑌 ∣
                                   (7) 

 

 This approach is frequently employed in the 

plagiarism detection, OCR output correction, machine 

translation evaluation (e.g., BLEU score), and author 

style analysis. By varying n, the N-gram similarity can 

be tuned to emphasize shorter lexical matches or longer 

phrase-level correspondences [12]. 

4 WEB APPLICATION FOR CALCULATING 

THE TEXTUAL SIMILARITY  

In order to apply the textual similarity algorithms 

practically, a custom web application is developed, 

allowing users to compare texts using various algorithms. 

The application is designed to be user-friendly yet 

flexible enough to meet the needs of researchers and 

practitioners in Natural Language Processing (NLP). 

This custom developed application enables a real-time 

text comparison and a support for texts of varying 

lengths. 

4.1 Application Architecture 

The architecture of the web application is designed to 

enable modularity, scalability, and ease of maintenance. 

The application consists of three main parts: the user 

interface (Frontend Module), the server-side component 

(Backend Module), and the functionality of the text 

similarity algorithms (Algorithm Module). The user 

interface allows for an intuitive application management, 

while the server-side component processes requests and 

runs similarity algorithms. The implemented algorithms 

offer different methods for calculating the text similarity, 

providing users with flexibility in choosing the most 

suitable algorithm for their needs. The combination of 

these elements  ensures a high efficiency and reliability 

of the application. 

4.1.1 Frontend Module 

The user interface is the first point of contact for the user 

with the application. It is designed to be intuitive and 

easy to use, allowing users to easily find the required 

functionalities. The main feature of the user interface is 

enabling the input of texts to be compared. The text input 



154

  POLJAK, CRČIĆ, HORVAT 

 

Figure 1. Application architecture diagram. 

 

can be done manually in text fields or by uploading PDF 

files, where users can upload two PDF files, and the text 

will be automatically extracted. After the text input, the 

user selects an algorithm for a comparison, where one of 

the available similarity measurement algorithms can be 

chosen, or all algorithms at once. Finally, the comparison 

results are displayed through the user interface, either 

individually or for all algorithms in a table format, 

allowing users to easily analyze the similarity. 

 The user interface is developed using the HTML 

technology for the web application structure, CSS for 

styling, and JavaScript and jQuery for a dynamic content 

management and communication with the server-side 

system via AJAX requests. Bootstrap is used to ensure 

the responsiveness of the interface. 

4.1.2 Backend Module 

After the user enters all the input parameters, the system 

initiates the server-side, the backend module of the 

application. The initial request processing performs the 

input data validation and triggers the appropriate 

similarity measurement algorithms. The server-side 

component executes the implemented algorithms to 

calculate the similarity between two texts or two 

extracted textual contents from PDF files. After data 

processing, the server-side returns the results to the user 

interface in the form of a JSON response, which is then 

displayed in a visual format within the user interface. 

 The server-side component of the application is 

implemented using the Flask web framework for the 

Python programming language. Flask provides an easy 

way to manage the HTTP requests, handle different 

routes, and integrate with other services. The server-side 

also uses PyMuPDF for text extraction from PDF files 

and Psutil for measuring the resource consumption, such 

as the memory usage and processor time[14]. 

4.1.3 Algorithm Module 

The third module of the application, which contains the 

functionality of the text similarity algorithms, uses the 

implemented algorithms in the programming language 

and performs an actual comparison. Each algorithm is 

implemented as a separate function within the algorithm 

module, enabling an easy integration and maintenance. A 

total of seven algorithmic function combinations have 

been developed, based on the five algorithms described 

in Chapter 3. The functions used are: 

• Levenshtein Distance - measures the number of 

operations (insertions, deletions, substitutions) 

required to transform one string into another. 

• Damerau-Levenshtein Distance - an extension of the 

Levenshtein distance that includes transpositions 

(swapping adjacent characters). 

• Jaro Similarity - focuses on the match of characters 

and the number of transpositions between two strings. 

• Jaro-Winkler Similarity - an extension of the Jaro 

similarity that gives more weight to matching the 

initial segments of a string. 

• Smith-Waterman Similarity - an algorithm for local 

sequence alignment used to identify similar segments 

within longer texts. 

• Cosine Similarity - measures the similarity between 

two non-zero vectors in a multidimensional space 

based on the cosine of the angle between them. 

• N-gram Similarity - analyzes textual data based on 

overlapping n-grams (sequences of n consecutive 

elements). 

4.2 Application Functionalities 

The text similarity application is designed to provide an 

intuitive user experience and powerful analytical 

capabilities. The application user interface allows users 

to input textual data in two ways. The first method 

involves a direct manual entry of two texts. Users can 

directly enter two texts to be compared for the similarity 

into text fields within the application. This option is 

useful for a quick analysis of shorter texts or specific 

excerpts. The second method is uploading PDF files. 

Users can upload two PDF files through the user 

interface. The application uses the PyMuPDF library to 

extract a textual content from the PDF files, enabling the 

analysis of longer and more complex documents. The 

extracted texts are automatically populated into the 

corresponding text fields. 

 After entering or uploading the texts, users can select 

one of the available algorithms for a text comparison 

through a dropdown menu. The available algorithms 

include the Levenshtein distance, Damerau-Levenshtein 

distance, Jaro similarity, Jaro-Winkler similarity, Smith-

Waterman similarity, Cosine similarity, and N-gram 

similarity. This functionality provides users with the 

flexibility to choose the most suitable algorithm for their 

specific analysis needs. 

 The initial user interface of the application is shown in 

Figure 2. After the user enters the texts and selects an 

algorithm, the application performs the similarity 

calculation between the two texts. The application works 

by having the user interface send all the necessary 

parameters to the backend module. The backend module 

triggers the corresponding algorithm for calculating the 

similarity, processes the texts, and returns the result 
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Figure 1. User interface of the application. 

 

as a percentage (%) that is immediately displayed to the 

user within the application as a degree of the similarity 

between the two texts. This functionality allows users to 

quickly and accurately calculate the text similarity using 

different methods and algorithms. 

 The application also provides the functionality for 

measuring the performance of all available algorithms to 

compare their relative ratios. This feature allows users to 

analyze the efficiency of different algorithms in terms of 

the execution time and memory usage. In this process, the 

backend module runs all available similarity calculation 

algorithms. Each algorithm is executed separately, 

measuring the execution time and memory load. The 

performance results are displayed to the user in a table 

format, enabling an easy comparison of the performance 

of all available algorithms. This functionality offers users 

a detailed insight into the performance of different 

algorithms, helping them choose the most suitable 

algorithm for their needs. 

 The results of the similarity and performance 

calculations are displayed in a table format so that users 

can easily compare the performance of different 

algorithms (see Fig. 3). The results display the similarity 

scores and additionally, performance testing results, i.e., 

"benchmark" results. The similarity results refer to the 

similarity calculation for the selected algorithm from the 

dropdown menu. The result is shown as a percentage (%), 

allowing users to immediately see the degree of the 

similarity between the two texts. The additional 

performance testing results, i.e., "benchmark" results for 

all algorithms, display information about the algorithm 

name, similarity (%), execution time (seconds), and 

memory load (bytes). The table format allows users to 

easily compare the performance of different algorithms 

and make informed decisions about which algorithm to 

choose for specific analysis needs. 

4.3 Application Testing 

Testing is a crucial step in the software development to 

ensure the accuracy, reliability, and performance of the 

application. The application is tested using a variety of 

test cases that include diverse textual data. Each test case 

is designed to check specific functionalities of the  

 

Figure 2. Example overview of results within the application. 

 

application and the performance of the algorithms. The 

test cases cover examples of simple texts, similar texts 

with different formatting, texts with grammatical errors, 

completely different texts, and very long texts. 

 The testing results are compared with the expected 

outcomes to assess the accuracy and performance of the 

application. For each test case, the results are analyzed 

and compared with the predicted outcomes. The 

comparison of the expected and actual results is shown in 

Table 1. 

Table 1. Comparison of the expected and actual results 

Test case 
Expected 

result 

Actual 

result 
Comment 

simple texts high similarity 93% 
aligned with 

expectations 

similar texts with 

different 
formatting 

high similarity 89% 
aligned with 

expectations 

texts with 

grammatical 
errors 

medium 

similarity 
76% 

aligned with 

expectations 

completely 

different texts 
low similarity 12% 

aligned with 

expectations 

very long texts 
variable 

similarity 
40% 

depending on 
the specific 

content of the 

texts 

 

 The testing of the text similarity application is 

conducted systematically to ensure its accuracy, 

reliability, and performance. The test cases cover various 

scenarios, from simple texts to complex and very long 

documents. The comparison of the expected and actual 

results demonstrates a high accuracy of the algorithms. 

 

5 CONCLUSION 

The paper provides a comprehensive analysis of the text 

similarity algorithms, covering traditional edit-distance 

approaches, character-based similarity measures, vector-

space models, and hybrid methods. By integrating these 

methodologies, their theoretical foundations, 

computational efficiency, and application domains are 

explored. 
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 A custom web application is developed to implement 

and compare multiple text similarity algorithms in a real-

world environment. The application enables users to 

upload texts, select appropriate algorithms, and visualize 

results, thus providing valuable insights into the 

effectiveness and efficiency of different approaches. The 

performance testing demonstrates that while the classical 

methods like the Levenshtein distance are effective for 

minor text variations, more advanced vector-based and 

machine learning-driven approaches offer a superior 

semantic understanding and scalability. 

 Our future research will focus on enhancing hybrid 

approaches that combine character-level corrections with 

deep-learning models for the semantic similarity. 

Optimizing the algorithmic performance for large-scale 

datasets and exploring domain-specific adaptations can 

further improve the text comparison methodologies. 

Advancement of the text similarity techniques supports 

applications in natural language processing, information 

retrieval, and artificial intelligence-driven decision-

making, thus fostering a more accurate and meaningful 

text analysis. 
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