
ELEKTROTEHNIŠKI VESTNIK 91(3): 95–107, 2024
ORIGINAL SCIENTIFIC PAPER

A Comprehensive analysis of Deployment
Optimization Methods for CNN-Based Applications on
Edge Devices

Qi Li1,†, Zhenling Su1,†, Lin Meng2,‡
1Graduate School of Science and Engineering, Ritsumeikan University,
1-1-1 Noji-higashi, Kusatsu, Shiga, Japan 525-8577
2College of Science and Engineering, Ritsumeikan University,
1-1-1 Noji-higashi, Kusatsu, Shiga, Japan 525-8577

† These authors contributed equally to this work.
‡ menglin@fc.ritsumei.ac.jp

Abstract. The development of the promising Artificial Intelligence of The things (AIoT) technology increases
the demand for implementing Convolutional Neural Networks (CNN) algorithms on the edge devices. However,
implementing huge CNN-based applications on the resource-constrained edge devices is considered challenging.
Therefore, several CNN optimization methods are integrated into the deployment tools of the edge devices.
Since this field evolves rapidly, relevant tools adopt non-uniform deployment optimization flows, and the
optimization details are poorly explained. This fact hinders developers from further analyzing the bottlenecks of
the CNN-based applications on the edge devices. Hence, the paper comprehensively analyzes the deployment
optimization methods for the CNN-based applications on the edge devices. Optimization methods are classified
into the Hardware-Agnostic and Hardware-Specific methods. Their ideas and processing details are analyzed,
and some suggestions are proposed according to the deployment experiments with different architecture models.

Keywords: Convolutional neural networks; edge device deployment; model pruning; deployment optimization
methods; quantization; channel pruning; knowledge distillation

Analiza optimizacijskih metod za izvedbo konvolucijskih
nevronskih mrež v vgrajenih sistemih

Z razvojem umetne inteligence na vgrajenih sistemih inter-
neta stvari narašča povpraševanje po izvedbi konvolucijskih
nevronskih mrež (CNN) v napravah z omejenimi viri. Orodja
za implementacijo nevronskih mrež vključujejo različne op-
timizacijske metode. Zaradi hitrega razvoja na tem področju
ni enotnih in dobro razloženih optimizacijskih postopkov
za vgrajene sisteme, kar otežuje analizo ozkih grl aplikacij
umetne inteligence. Prispevek celovito analizira optimizacijske
metode izvedb nevronskih mrež vgrajenih sistemov. Metode
optimizacije smo analizirali in razvrstili v strojno neodvisne
in strojno specifične metode. V zaključku podajamo predloge
implementacij z različnimi arhitekturnimi modeli.

1 INTRODUCTION

The Artificial Intelligence of Things (AIoT), a promising
integrated technology that combines artificial intelli-
gence and the Intelligence of Things, plays an increas-
ingly significant role in every aspect of life [1][2]. CNNs
are highly regarded among the artificial intelligence
technologies due to their impressive performance in
a variety of applications such as object recognition

Received 16 April 2024
Accepted 3 June 2024

[3][4][5], healthcare [6][7], image generation[8] and
anomaly detection [9][10][11]. The recent trend is to
deploy CNN-based applications to the edge devices to
achieve faster feedback [12].

Reducing the latency of huge CNN-based applications
on the edge devices has been considered important and
challenging [13]. Optimization is commonly required
before deploying CNN-based applications on the edge
devices. As a result, a wide range of deployment op-
timization methods have been integrated into the of-
ficial deployment tools of each device. We divide the
CNN deployment optimization methods into Hardware-
Agnostic methods and Hardware-Specific methods. The
Hardware-agnostic methods, such as channel pruning,
knowledge distillation, etc., can be widely used on
most edge platforms. They are characterized by the
compatibility with other optimization methods.

The other optimization methods consider the hardware
architecture and specifically ameliorate the CNN algo-
rithm. They are defined as the Hardware-Specific meth-
ods. Such methods take the hardware level knowledge
deeply into account. For example, they are concerned
with reducing the cost of the memory access. The
development speed gap between processors and DRAM



96 LI, SU, MENG

memory is huge [14] [15]. When instructions reference
the memory, the system response is significantly delayed
due to the slow memory speed [16]. At this point,
reducing the memory access cost in applications is no
less important than reducing the computation cost.

Accordingly, the Hardware-specific methods com-
monly insert multiple processes in the CNN algorithms
to achieve targets such as data reuse and transmis-
sion cost reduction. Understanding the details of these
deployment flows is critical to analyzing a specific
behavior and bottlenecks of CNN algorithms on the edge
devices.

However, mastering the existing deployment flows can
be challenging. The mainstream deployment process can
be summarized as (1) adopting mature CNN libraries
such as PyTorch and TensorFlow to design and train
models, (2) converting them into the computation graph
format with interoperability between different frame-
works, (3) utilizing the deployment tool of the target
device to optimize the computation graph and gener-
ate executable code. Since CNN and AIoT have been
rapidly developing in recent years, related deployment
tools are not mature, deployment optimization flows are
constantly changing, and relevant documents may not
explain the optimization process in detail, which hinders
the development of the AIoT technology.

Therefore, the paper comprehensively analyzes the
deployment optimization methods for the CNN-based
applications on the edge devices. The analyzed methods
consist of the Hardware-Agnostic methods, including
model pruning, knowledge distillation, neural architec-
ture search, and the Hardware-Specific methods, includ-
ing computation graph optimization, image-to-column,
data reuse, and quantization. The paper not only explains
the deployment process of a platform but also analyzes
the optimization strategy across multiple platforms. Its
aim is to help relevant application developers to further
analyze the bottlenecks of the CNN algorithms on the
devices.

The paper is organized as follows: Section 2 re-
views of the mainstream CNN models briefly. Section
3 describes the Hardware-Agnostic methods. Section
4 presents hardware-specific methods and deployment
details. Section 5 deploys models with different architec-
tures are deployed on the edge devices, and offers some
suggestions for the model design. Section 5.3 offers
conclusions. Figure 1 shows an overview of the paper.

2 CNN MODELS

We first explore the background of the CNN models.
CNNs are made of several layers stacked one on top of
the other. Each layer accepts the previous CNNs layer
output and transfers the processed data to the following
layer. The output of each layer is called a feature
map. Its elements are called activations. CNNs mainly

comprise convolutional (Conv ) layers which specialize
in capturing local features.

Let ⊛ be the convolution operation, b the bias, W
the filter, k the size of the filter kernel, h, and w the
height and width of the input feature map. With the
input feature map MIn at channel {0, ..., C}, the output
feature map at the ith channel of the Conv layer is:

MOut
i =

∑C
mMIn

m ⊛Wi + b (1)

M⊛W =
∑h−k−1

p

∑w−k−1
q M(p,q) ·W (2)

Since computing one output feature map requires
many matrix multiplication operations on all input fea-
ture maps, the Conv layer is resource-consuming [17].

There is a trend in recent studies that the proposed
model architectures are based on one or two block
structures, such as SqueezeNet [18], EfficientNet [19]
and GoogLeNet [20]. Each block structure consists of
multiple layers in a defined sequence. Several model
variations are generated by adjusting the channel number
and inserting the block structures. Among them, the
deeper and wider variant is used for high-precision
tasks, whereas the compact variant is preferred for a
lightweight deployment. With this approach, the pro-
posed model can be applied to different circumstances.
In the next section, the common CNN models VGG
[21], ResNet [22], MobileNetV2 [23] and their block
structures are introduced.

2.1 VGG
The model of the VGG series achieves excellent

results in the 2014 ImageNet Large Scale Visual Recog-
nition Challenge competition. The main contribution of
the VGG series is demonstrating that increasing the
depth of the model improves the performance. In this
work, 3 × 3 Conv kernels are adopted instead of the
large-size kernels, which increases the model depth and
reduces the parameters.

The VGG blocks are the main component of the VGG
model and are shown in Figure 2. The VGG block
consists of two Conv-BN-Act structures and one pooling
layer. The Conv-BN-Act structure is composed of one
Conv layer, one Batch Normalization (BN) layer [24],
and one activation layer in sequence. In the VGG block,
Conv layers are set up as 3×3 kernels with one-pixel
padding and no bias. Thus, the feature maps remain the
same size in the VGG block before the pooling layer,
with only the dimensions being increased.

Two other VGG block structures differ only by the
number of the Conv-BN-Act structures. They contain
three and four Conv-BN-Act structures, respectively.

The VGG model has three linear layers for classi-
fication at the end. Regarding the width, each VGG
block has twice the number of the output channels as the
previous one, i.e. up to 512. Therefore, the channel is
increased when the feature map size is reduced. Several



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 97

Figure 1. Overview of the paper.

Figure 2. Diagram of common block structures.

model designs reference the Conv-BN-Act structure and
VGG architecture.

2.2 ResNet

The success of the VGG series proves the perfor-
mance of the deep models. However, the deep mod-
els are hindered by the gradient vanishing problem
[25][26][27]. To mitigate the Vanishing Gradients prob-
lem, He et al. [22] propose a residual connection and
the ResNet models (See Figure 2).

The residual block consists of the main path and the
residual connection. The main path is a sub-network
composed of three Conv-BN-Act structures. The first
and third Conv-BN-Act structure employ 1×1 ker-
nels for the feature dimension adjustment. The second
Conv-BN-Act structure extracts the feature information,
equipped with a 3×3 kernel. As a result, the second
Conv layer has more Floating Point Operations (FLOPs)
than the others. The residual connection adds the input
directly to the output of the main path.

In the residual block, the residual connection and the

main route converge before the last ReLU layer. Let
x denote the input of the residual block, f() and R()
the processing of the main path and ReLU, respectively.
Then, final output H(x) of the structure can be com-
puted as:

H(x) = R(f(x) + x) (3)

Introducing residual connections mitigates the conver-
gence difficulties of deep models training [28]. There-
fore, residual connections are common in the following
model design.

2.3 MobileNetV2
MobileNetV2 is proposed by Sandler et al. [23]. It

designed for the CPU-based device inference such as
the edge devices. The main proposal for MobileNetV2
is the inverted residual block (IR block) structure shown
in Figure 2.

The IR block is designed to reduce FLOPs and
improve the inference speed. Its structure is very similar
to the residual block, and both consist of three Conv



98 LI, SU, MENG

��������	
���� ��
������	
���� �
��	��	
����

�

�

�
�

�
�

Figure 3. Model pruning methods.

layers with kernels of 1×1, 3×3, 1×1. Note that the
feature dimension is first expanded and then compressed.
The second Conv layer adopts a grouped convolution
where each filter processes only one input feature map,
defined as a Depthwise Separable Convolution (Dwise).
It is designed to achieve a high recognition performance
with low FLOPs. Dwise has a good separability, which
is friendly to the CPU. However, accelerating Dwise
requires an exceptional support which is introduced in
Section 4.1.3.

The activation layer adopts ReLU6 instead of ReLU in
the IR block. ReLU is discarded at the last Conv-BN-Act
structure, indicating that the block channel compression
process is linear.

3 HARDWARE-AGNOSTIC METHODS

Due to the constraints of the hardware resources of
edge devices and the prevalent redundancy problem of
deep learning models, it is challenging to deploy CNN
models directly on edge devices. CNN optimization
provides handles to solve the problem and has attracted
an extensive focus. Currently, there are many optimiza-
tion methods for CNN, but only some of the schemes
are designed for the hardware deployment. Low-rank
decomposition schemes, for example, are algorithmic-
level optimization tools that mathematically reduce the
number of the parameters in the model and simplify
the computational process [29]. This optimization is
hardware-independent and does not directly target the
utilization of hardware resources. The chapter focuses on
model optimization schemes that are weakly correlated
with hardware, including three main approaches: model
pruning, knowledge distillation and neural architecture
search (NAS).

3.1 Model Pruning
As one of the most frequently used model optimiza-

tion methods, model pruning mainly aims to streamline
CNN by pruning unimportant parameters. It generally
consists of four steps: (1) Identifying redundant parame-
ters, (2) Evaluating the importance, (3) Pruning the low-

impact parameters, and (4) Model fine-tuning. Pruning
CNNs can achieve compactness of the model parameters
and directly improve the inference efficiency on hard-
ware. From the perspective of the pruning granularity,
pruning can be divided into two types: coarse-grained
and fine-grained.

Coarse-grained pruning removes individual weights
from the model with no regard to where the weights are
located in the model or which particular filter, neuron,
or layer they belong to. The method causes the weight
matrix to become sparse. Thus, an ordinary hardware
may not be able to accelerate these sparse computations
efficiently. Conversely, fine-grained pruning simplifies
the model structure by removing all the Conv filters,
neurons, channels, or even layers. After pruning using
this method, the model is more compact and easily
accelerated on hardware. Specifically, the optimization
of the CNN models can be further broadly classified into
the following types: weight pruning, channel pruning,
and layer pruning.

Weight pruning: Weight pruning reduces the com-
plexity and computational requirements by removing
the connections with less weight in the model. LeCun
et al. [30] propose to utilize the information of the
second-order derivatives of the objective function to
determine the importance of each weight in the model
and then remove the redundant parameters. Ultimately, it
improves the generalizability and the speed of running
the model. To prune the model while maintaining the
accuracy, Han et al. [31] filter the model from the dense
to the sparse layers by training to eliminate connections
below a weight threshold. The model is retrained to
adjust the remaining connection structure, thus restoring
the model accuracy. To address the problem of a limited
energy supply in the edge devices, Yang et al. [32] pro-
pose an energy-aware pruning technique that prioritizes
the pruning of the energy-dense layers and improves
the weights to achieve an optimal energy reduction.
Eventually, significant energy savings are demonstrated
in models such as AlexNet and GoogLeNet.

Channel pruning: Compared to weight pruning,



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 99

channel pruning focuses more on unimportant or redun-
dant channels in the model. The method not only reduces
the number of the non-zero parameters of the model but
also the computational complexity. After channel prun-
ing, the model is more suitable for running on resource-
constrained edge devices. Before channel pruning, it is
crucial to identify the importance of the channels. Polyak
et al. [33] propose pruning the input channels based on
their contributing variance to reduce the computational
complexity of the filters with no significant loss of the
accuracy. While traditional studies tend to focus on
the analysis of filter weights, He et al. [34] advocate
the exploitation of the redundancy within the feature
map. It first performs channel selection via LASSO
regression and then reconstructs the feature map using
linear least squares. The method, which relies on tensor
factorization to improve the feature map reconstruction,
is accomplished to accelerate models such as VGG and
ResNet with a minimal loss of the accuracy.
Layer pruning: Unlike channel pruning, which re-

duces the complexity by reducing the width of the
layers, layer pruning removes the entire redundant lay-
ers. In general, layer pruning reduces the depth of the
model, which is more friendly to the deployment and
acceleration of the model on the edge device, because
CNN executes each layer sequentially during inference.
However, hardware parallel processing can accelerate
different channels running on the same layer. Therefore,
fewer layers tend to result in a faster execution. But
the model performance should not be neglected. To
maximize the model resource use, a combination of
the layer pruning and filter pruning is employed by
Jordao et al. [35]. The importance of each CNN layer
is assessed by using partial least squares, which allows
for the pruning of CNNs to a resource-efficient depth
while taking into account the constraints on the model
size. Although pruning the layers reduces the model
complexity, it destroys the model correlation to some
extent. Therefore, Li et al. [36] propose a hardware-
adaptive model optimization method for hardware char-
acteristics and model layer redundancy. The method
fully utilizes the parallel processing capability of the
hardware and achieves significant pruning effects in both
model parameters and FLOPs.

3.2 Knowledge Distillation
In contrast to pruning, which focuses on a systemati-

cal removal of unimportant weights, channels, or layers,
the main aim of the knowledge distillation approach is to
compress and transfer knowledge from a larger, complex
model (teacher) to a smaller, more compact model
(student). It focuses on how the student model is trained,
specifically using the teacher model soft outputs to guide
the student model training, ultimately effectively com-
pressing the knowledge into a more resource-efficient
framework. The concept of knowledge distillation is first

introduced by Buciluǎ et al. [37] and popularized by the
Hinton team [38]. They demonstrate the performance of
knowledge distillation in improving task such as speech
recognition, showing great potential for deploying high-
performance models in resource-limited environments.

To further improve the performance of the student
models across various datasets and CNN architectures,
Zagoruyko et al. [39] suggest combining activation-
based attention mechanisms with knowledge distillation.
Ultimately, consistent improvements are shown across
various datasets and CNN architectures. Chen et al.
[40] introduce a trainable framework for a multi-class
object detection using knowledge refinement and cue
learning. It addresses the challenge of maintaining the
accuracy while compressing the model to improve the
speed. Unlike the traditional approach, which focuses
on the size of the neuron response, Heo et al. [41] are
more concerned with whether the neuron is activated or
not. They propose a novel model activation loss transfer
method that focuses on emphasizing the boundary of the
neuron transfer activation between the teacher model and
the student model. They also propose an alternative loss
similar to the hinge loss of SVM that allows the student
model to learn the activation boundary successfully.

3.3 Neural Architecture Search

NAS designs the neural network architectures au-
tomatically to optimize the performance for specific
tasks. NAS focuses on discovering the optimal network
structure from a broad search space, using algorithms to
evaluate and select the best performance model. This is
not the case with the traditional compression methods,
which typically reduce the size and computational re-
quirements of pre-designed models through techniques
such as pruning and knowledge distillation. NAS sim-
plifies and improves the model development process by
automating architectural decisions. It is first proposed by
Zoph et al. [42] and its performance is verified on two
datasets, CIFAR10 [43] and Penn Treebank language
modeling.

With limited computational and storage resources in
the edge devices, many studies have maximized the
search for compliant CNN architectures using NAS
variants by balancing the two evaluation criteria of
the performance and latency. He et al. [44] present an
AutoML for the model compression that utilizes rein-
forcement learning to automatically compress models,
improving the accuracy and speed on resource-limited
devices without human intervention. Anderson et al. [45]
combine NAS and hardware architecture information
to improve the performance on keyword recognition
tasks on the edge devices. In 2019, the EfficientNet is
presented by Tan et al. [19]. The method utilizes NAS
to develop a new baseline network and simultaneously
balances the depth, width, and resolution of the network



100 LI, SU, MENG

through composite coefficients, which ultimately sig-
nificantly improves the model efficiency and accuracy.
The following year, the team builds on EfficientNet
by introducing a weighted bidirectional feature pyramid
network for enhanced multi-scale feature fusion, as well
as a novel composite scaling method that uniformly scale
the network dimensions [46]. The final results show
that EfficientNet achieves higher accuracy and efficiency
under various resource constraints.

4 HARDWARE-SPECIFIC METHODS

In this section, the Hardware-Specific methods are pre-
sented. They are designed by device developers based on
the architecture of the processors. CNN algorithms are
modified to achieve an efficient inference on the device,
the modification methods are specialized for a certain
kind of hardware. Some of the common methods are
analyzed and details of their modification are explained.

4.1 Computation Graph Optimization

In most of the development processes for the CNN-
based applications, CNN models are first designed
on desktop computers and then implemented on the
edge devices. Many mature software frameworks are
on desktop computers, such as TensorFlow [47], Py-
Torch [48], and MXNet [49]. Because of the memory
and power constraints and difference in architectures,
these frameworks are unsuitable for the edge devices.
Therefore, the deployment is to convert the CNN from
a software framework to the corresponding framework
of the device. In the process, the CNN algorithm is
first mapped to a computation graph, with each layer
operation viewed as a node and the data as an edge,
then the computation graph is optimized. Common graph
optimization methods are introduced in the following
sections.

4.1.1 Batch Normalization Fusion: The BN layer is
a common component of the CNN models, usually in-
serted following the Conv layer to normalize the output
feature map, which reduces optimization difficulties. Let
γi and βi denote the weight and bias of the BN layer
on the ith channel, µB and σB are the batch mean
and variance, ϵ is an arbitrarily small constant. For the
ith channel input Mi, the output of the BN layer is
computed as:

BN(Mi) = γi
Mi − µB√

σ2
B + ϵ

+ βi (4)

During inference, µB and σB are the constant values.
Therefore, the BN layer is considered as a linear process
and can be fused into the previous or next node, typically
Conv and linear nodes. Equation 5 shows the updated
weight Ŵ and bias b̂ of the fused node. After updating,
the BN nodes are deleted with no harm.

Ŵi =
γiWi√
σ2
B + ϵ

,

b̂i = βi −
γiµB√
σ2
B + ϵ

.
(5)

4.1.2 Activation Layer Fusion: The activation layers
are typically fused at the output with preceding complex
nodes, such as Conv , Dwise , and pooling nodes. For
example, the most common ReLU node is converted to
the max operations and performed before saving the
calculation results to the memory.

4.1.3 Depthwise Separable Convolution Optimiza-
tion: The Dwise layer is a special case of Conv ,
which divides the convolution into multiple groups,
each processing only one input feature map. In the
traditional convolutional, calculating each activation in
the output feature map requires partial feature maps
on all input channels. When the memory capacity is
not enough, the feature map should be read multiple
times, which leads to an extra memory access cost. Each
convolutional task of a Dwise node is independent and
has the desired parallelism. Therefore, there is a higher
degree of freedom when it comes to memory scheduling
and core task allocation. As a result, many deployment
tools design operators specifically for the Dwise nodes
to take advantage of its separability.

4.2 Image to Column
The Conv layer is recognized as a part of CNN that

consumes the most computational power and resources
[50]. Specifically, convolution extracts features by slid-
ing multiple convolution kernels over the input feature
map and performing a weighted summation operation
on each local region [51]. The method requires frequent
memory accesses to read the input data and weights and
store the output, resulting in a significant latency.

Image to column (im2col ) is a proposal to solve
the problem. Different from traditional Conv , im2col
realizes Conv by a dot product [52]. Specifically, the
input feature maps and filter are unfolded (See Figure 4).
Computing an output activation requires multiple sub-
matrices with the same coordinates taken from all input
feature maps. Each sub-matrix has the same size k×k as
the convolution kernel. In im2col , each sub-matrix is the
loaded and expanded to a vector by the input channel,
and the input vector buffer of size k × k × channel
is obtained. Let the input buffer corresponding to the
output (x, y) be denoted as im2col(x, y). Similarly, the
filter on the N th input channel is expanded to the vector
by the input channel, and a weight buffer F (N) is
obtained.

Consequently, the activation (x, y) of the N th output
feature map is calculated as:

O(x, y)N = dot(F (N), im2col(x, y)) (6)



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 101

Figure 4. Image to column: converts convolution to matrix multiplication to speed up computation.

With this approach, convolution is converted to a dot
product between im2col(x, y) and F (N). The Arith-
metic Logic Unit (ALU) can simply load the corre-
sponding elements from im2col(x, y) and F (N) and
perform a Multiply-Accumulate (MAC) operation. The
entire process has no branch operations or memory
accesses; the computation is intensive, thus the execution
is efficient.

To summary, the function of im2col is to store the
required data in the continuous memory during the
calculation. The approach facilitates a direct loading of
the data in the desired format at one time, effectively
reducing the number of the memory accesses and thus
reducing the computation time. Moreover, the access of
im2col is regular, so it can be combined with SIMD
instructions to realize an efficient parallel computation.

4.3 Date Reuse

As mentioned above reducing the memory access is
important for the edge devices. To further reduce the
number of the memory accesses, increasing the data
reuse rate is effective [53]. An approach is to keep the
same amount of the input and weight data in the cache.
It is easy to notice that when computing the output with
input coordinates of (x, y) and (x + 1, y), the weight
matrices are the same. Therefore, the weight cache can
be reused.

To provide a clear explanation, the inputs and weights
are processed by im2col . The im2col(x, y) input,
im2col(x + 1, y) and weights F (N), F (N + 1) are
loaded to the cache, the O(x, y)N , O(x + 1, y)N ,
O(x, y)N+1 and O(x + 1, y)N+1 activations can be
calculated. Four MAC operations are accomplished with
four load causing by data reuse; the load efficiency is 1
MAC/load. When the number of both input buffers and
weight buffers is increased to four, the load efficiency

reaches two MAC/load. Note that the input buffer here
corresponds to different coordinates, and the weight
buffer corresponds to different channels. If the number
of buffers continues to increase proportionally, the load
efficiency is even higher. In contrast, if the input buffer
is seven and the weight buffer is one, the load efficiency
is only one MAC/load.

In practice, the cache is insufficient to keep so much
data in many edge devices. Therefore, the deployment
tool would schedule data loads based on the size of the
cache and memory to achieve a high load efficiency.

4.4 Quantization

Quantization is a mature CNN acceleration technique.
CNNs parameter are typically saved in the 32-bit floating
point (FP32) during training. In quantization, parameters
are stored with a lower bit precision, such as 16-
bit integer (INT16) and 8-bit integer (INT8). Since
the data precision is reduced, the memory overhead
of the parameter storage and the computational cost
of the matrix multiplication are significantly reduced.
Also, CNNs are demonstrated robust to quantization, so
they can be quantified with a minor performance loss
[54]. Hence, quantization is widely used in the CNN
deployment processes. This section concentrates on a
common quantization approach and the fundamentals of
running quantified models on fixed-point accelerators.

In the quantization, the weights and activations of the
model are mapped to a low-precision fixed-point quanti-
fied representations, usually INT8. Then, the quantified
representations are stored and computed on the device
to achieve acceleration. There are many proposals for
quantization. A uniform affine quantization is presented
as an example [55], as it is the most common. The
method is defined by three quantization parameters:
scale factor s, zero point z, and bit width bit. Scaling



102 LI, SU, MENG

Figure 5. Diagram of the INT8 data MAC operation. a{1,2,3,4} denotes products stored in the same accumulator.

factors and zeros are employed to transform the floating-
point values into integer values, where the scaling factor
is a floating-point number and the zero point is an integer
to determine the zero in the quantified representation.

The quantization process is explored based on these
quantization parameters. The section shows an example
of the inference of the INT8 quantified data on a 32-
bit device. The convolution operation is simplified to
multiple MAC operations. Given weight W and input
activation I , output activation A is computed as:

A =
∑
m

Wm · Im + b (7)

Then taking activation as an example, mapping I to
the integer value Iint is:

Iint = clamp(
I

si
+ zi; 0, 2

bit − 1) (8)

The clamp operation is defined as:

clamp (x; a, c) =


a, x < a,

x, a ≤ x ≤ c,

c, x > c.

(9)

Commonly, the quantization parameters for weights
and activations are separate [56], they are sw and zw for
Wint. The scheme gives granularity to the quantization,
and increasing the granularity reduces the accuracy loss
due to quantization. According to Equation 8, the quan-
tization parameters are computed on the whole tensor.
Thus, the approach does not lead to a huge computation
cost. Similarly, the quantization parameters are separated
for each layer.

Now, the intermediate result of output activation Aint

is obtained as:

Aint = Wint · Iint. (10)

Equation 10 is the main computation task on the
devices. The calculations can be performed with fixed
points. Thus, the cost of the memory access during
reading and storage is low.

When SIMD (Single Instruction, Multiple Data) in-
structions are integrated into the device instruction
set, the MAC executed per cycle can be significantly
increased. Figure 5 shows the details of the MAC
operations and the acceleration effect of the SIMD
instructions. Obtaining each product requires one cycle
to perform the multiplication of two INT8 data. Utilizing
the SIMD instructions, four INT8 data can be stored in a
32-bit register, and four MAC operations are performed
in one cycle. As a result, the MAC operation accelerate
by 4×. Fortunately, nowadays, many CPU architectures
support the SIMD instruction.

However, the difference between Aint and the correct
activation A is huge. Aint should be de-quantified. Let
Â, Ŵ and Î denote the de-quantification representations
of Aint, Wint, Iint, which are approximate to the actual
value. According to Equation 8, the de-quantification
representations can be written as:

Î = si(Iint − zi) ≈ I (11)

Ŵ = sw(Wint − zw) ≈ W (12)

Â =
∑
m

Ŵm · Îm + b ≈ A (13)

Combining the Equations 11 and 12, Ŵm · Îm is
calculated as:



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 103

Figure 6. Diagram of the quantified model inference. sliz
l
i are the quantization parameters of the lth layer

Ŵ Î = sw(Wint − zw)sx(Iint − zx)

= swsxWintIint − swzwsxIint − swsxzxWint

+ swzwsxzx (14)

Each value in the third and fourth term is determined
before compilation, The compiler can pre-compute its
result and combine it with the bias of the layer, so no
added computational costs. The second term depends
on unknown input Iint, i.e. an additional term should be
computed in the inference. In the first term, all Aint are
multiplied by the same floating point number, so it is
computed after Aint are summed:

Â =
∑
m

Ŵm · Îm + b

= swsx
∑

Aint − swzwsx
∑

Iint + b (15)

As seen, a significant number of the intermediate
calculations are accumulated in Equation15, leading to a
high risk of overflowing Aint. Therefore Aint should be
stored at INT32. Similarly, the bias is stored in INT32.

The activation Â stored in the accumulator should be
stored in the memory before it is used by the next layer.
To reduce the data transmission cost, Â is re-quantified
to the low-precision. Since Si is different for each layer,
this step should be performed based on the quantization
parameters of the next layer. In practice, de-quantization
and re-quantization are combined into one process.

The Figure 6 shows the flow of the quantified model
inference: (1) load the INT8 activations Iint and INT8
weights Wint from the memory and compute Aint. (2)
de-quantify Aint by combining Iint and the quantization
parameters sliz

l
iz

l
w of this layer, then re-quantify to

INT8 by quantization parameters s(l+1)
i z

(l+1)
i of the next

layer. (3) store the INT8 activations in the memory.

5 MODEL DESIGN ANALYSIS

The mature CNN deployment acceleration methods mit-
igate part of the resource-constrained problem on the

edge devices. However, real-time CNN-based applica-
tions are still a challenge for the edge devices. Many
studies focus on designing models with the low latency
and high accuracy. In this section, we explore the rela-
tionship between the model architecture and accuracy,
model FLOPs, and latency.

5.1 Experimental Method
A basic CNN framework with a reference to ResNet

and MobileNetV2 (See Table 1). It consists of three
parts: In-conv, Blocks and Classify. The In-conv contains
a Conv-BN-Act structure where ReLU is employed as
an activation layer. The Block consists of four block
structures stacked on top of each other. The block
structure is selected from the VGG block, residual block
and IR block introduced in Section 3. The channels of
each alternative block structure are carefully tuned so
that models generated from the three block structures
have similar FLOPs. Adjustments of the width and depth
take place in the Block part. When the depth is increased
by 1, each block structure is duplicated and inserted
behind itself. The width is the scaling factor applied to
the output channel number of each convolutional layer in
the block structure. Regardless of the depth, the feature
map size reduction occurs at the beginning and middle of
the Block part. The Classify part consists of one average
pooling layer and one linear layer that classifies the
output of the Block part. The models are generated based
on a preset width, depth, and selected block structure.

In the experiments, multiple sets of the width and
depth are applied. Models are generated with three block
structures, respectively, and the accuracy and latency of
the models are measured. The models with their width
and height set to one are considered the baseline models.

5.2 Experimental Configuration
Training configuration: CIFAR10 is adopted as

an experimental dataset. CIFAR10 contains 50000 train-
ing images and 10000 test images with the size of 32
× 32. The training process consists of five epochs of
warm-up and 800 epochs of training. The cosine learning
rate schedule is employed with an initial value of 0.02,
momentum of 0.9, and weight decay of 0.0005. The



104 LI, SU, MENG

Table 1. Proposed CNN framework. [3×3,16] denotes a convolutional layer with kernel size 3 and output channel
16.

Name Output size Architecture
VGG block Residual block IR block

In-conv 32×32 Conv-bn-ReLU, [3×3,16], stride=1

Block 1 16×16 [3×3,16]
[3×3,16]

[1×1,24] [1×1,128]
× Depth [3×3,24] × Depth [3×3,128] × Depth

[1×1,80] [1×1,32]

Block 2 16×16 [3×3,16]
[3×3,16]

[1×1,24] [1×1,128]
× Depth [3×3,24] × Depth [3×3,128] × Depth

[1×1,80] [1×1,32]

Block 3 8×8 [3×3,32]
[3×3,32]

[1×1,48] [1×1,192]
× Depth [3×3,48] × Depth [3×3,192] × Depth

[1×1,128] [1×1,64]

Block 4 8×8 [3×3,32]
[3×3,32]

[1×1,48] [1×1,192]
× Depth [3×3,48] × Depth [3×3,192] × Depth

[1×1,128] [1×1,64]

Classify 1×1 Average pool
Linear

88

90

92

94

Ac
cu
ra
cy

(%
)

VGG block
Residual block
IR block

1 1.5 3
Width

12

28

44

60

76

FL
OP

s(
M

)

VGG block
Residual block
IR block

(a) Width adjustment results.

88

90

92

94

Ac
cu

ra
cy
(%

)

VGG block
Residual block
IR block

1 2 4
Depth

12

18

24

30

36

FL
OP

s(
M
)

VGG block
Residual block
IR block

(b) Depth adjustment results.

Figure 7. Results of the accuracy analysis experiments. The legend indicates the adopted block structure.



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 105

Table 2. Latency of the models with the same FLOPs on experimental platforms. (↑) indicates the percentage
increase in the latency compared to the baseline model.

Block Depth Width FLOPs Latency(ms)

(M) FPGA (↑) GAP8 (↑) CPU (↑)

VGG
1 1 11.35 0.11 10.29 2.12
4 1 25.82 0.15 (38.5%) 24.34 (136.6%) 5.86 (177.1%)
1 1.6 25.15 0.20 (79.8%) 27.83 (170.5%) 2.87 (35.8%)

Residual
1 1 11.43 0.22 12.43 2.92
3 1 29.88 0.43 (96.3%) 30.00 (141.3%) 7.07 (141.9%)
1 1.7 29.93 0.31 (43.3%) 30.53 (145.5%) 3.88 (32.8%)

IR
1 1 11.85 0.21 10.21 3.58
2 1 20.82 0.33 (60.4%) 17.30 (69.4%) 6.49 (81.5%)
1 1.4 20.12 0.26 (23.2%) 15.80 (54.8%) 4.27 (19.3%)

models generated with each setting are trained four times
from the initial. The one with the highest accuracy is
taken as the result.
Deployment details: All the training processes

are performed on Nvidia GeForce GTX 3080 Ti GPU
and Intel i9-10900 CPU by PyTorch.

Regarding, the latency measurement, the generated
models are implemented on GAP8 [57], Field Pro-
grammable Gate Array (FPGA) ZCU102, and desktop
CPU i7-9700. The official deployment flow of each
device is adopted in the experiments. GAP8 is an IoT
application processor based on the RISC-V and PULP
platform [58], developed by GreenWaves Technologies,
which is featured by a low power consumption and
parallel processing. For the deployment on GAP8, the
generated models are quantified to INT-8 and compiled
by NNTOOL and AutoTiler [59], then simulated on
GVSoC [60]. The measured working time of the cluster
cores is taken as the latency.

For the deployment on FPGA ZCU102, the gener-
ated models are quantified to INT-8 and compiled into
the Xmodel with the Vitis-AI deployment environment
[61]. It includes optimized IP cores, AI Quantizer for
quantifying CNNs, and AI Compiler for optimizing and
compiling CNNs computation graph. In the experiments,
the software execution time of ZCU102 is regarded as
the latency of the CNN application.

For the Intel i7-9700 desktop CPU platform, the
generated models are implemented by PyTorch without
Quantization. The latency is measured by the PyTorch
Profiler. After 50 times of warm-up, each model per-
forms 50 times of inference, and the average latency is
adopted.

5.3 Experimental Result

First, the relationship between the accuracy and model
architecture is explored. Figure 7a shows the change in
the accuracy and FLOPs when increasing the width of
the three baseline models to 1.5, 3, and Figure 7b shows

the change in the accuracy and FLOPs when adjusting
the depth of the three baseline models to 2, 4.

As seen, increasing both the width and depth of the
model improves the accuracy. The effect of the depth
on the accuracy is more obvious. In the model with IR
block, the accuracy is improved from 89.80% to 94.61%,
while the the adjustment of width improves only by
92.85%. In terms of the FLOPs, except for the VGG
block, the FLOPs of the models with the depth of 2 are
only about 1/4 of the FLOPs with the width of 3, while
they have a similar accuracy.

It is worth noting that the accuracy of the model with
the VGG block decreases instead after adding depth.
This is due to the gradient vanishing problem explored
above.

Next, the relationship between the latency and model
FLOPs is explored. The width and height of the three
baseline models are increased, so that the adjusted
models have close FLOPs. The models are implemented
on FPGA ZCU102, GAP8, and desktop CPU, and the
inference latency is measured.

Table 2 shows the latency of each model and the
increased percentage compared to the baseline model.
For CPU, the models with an increased depth have much
more latency than the models with an increased width,
up to a 177.1% increase in the latency compared to the
baseline model. Moreover, for the models adopting the
Residual block and IR block, creasing depth results in
increased latency on all platforms except GAP8. For the
model with VGG blocks, increasing the width results in
increased latency on FPGA and GAP8, while the results
are reversed on CPU.

Despite the lack of experimental results on more
platforms with more model architectures, our observa-
tions demonstrate the following: (1) For models with
residual connections, increasing the number of the block
structures improves the accuracy. (2) There is no direct
relationship between FLOPs of the model and its la-
tency, the model latency on the devices should not be
analyzed based only on FLOPs, but also on the model



106 LI, SU, MENG

architectures.

CONCLUSION

With the rapidly development of AIoT and CNN tech-
nologies, the demand for implementing CNN applica-
tions on the edge devices is rising. Since the CNN algo-
rithms are considered huge for the edge devices, several
CNN optimization methods are integrated into the device
deployment tools. Due to the rapid development, the
optimization process adopted by the deploy tools is non-
uniform, and the details are poorly explained. Hence,
the paper provides a comprehensive analysis of the
deployment optimization methods for the CNN-based
applications on the edge devices. The paper analyzes the
Hardware-Agnostic methods, including model pruning,
knowledge distillation, neural architecture search and
the Hardware-Specific methods, including computation
graph optimization, image to column, data reuse quan-
tization. Based on the results of training and deploy-
ment of several architectural models, suggestions for the
model design are presented.

REFERENCES

[1] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey
of recent advances in edge-computing-powered artificial intelli-
gence of things,” IEEE Internet of Things Journal, vol. 8, no. 18,
pp. 13849–13875, 2021.

[2] Z. Ward, J. Miller, J. Engel, M. A. S. Masoum, M. Shekaramiz,
and A. Seibi, “Fuzzy-based image contrast enhancement for wind
turbine detection: A case study using visual geometry group
model 19, xception, and support vector machines,” Machines,
vol. 12, no. 1, 2024.

[3] X. Yue, H. Li, and L. Meng, “An ultralightweight object detection
network for empty-dish recycling robots,” IEEE Transactions on
Instrumentation and Measurement, vol. 72, pp. 1–12, 2023.

[4] X. Yue and L. Meng, “Yolo-msa: A multi-scale stereoscopic
attention network for empty-dish recycling robots,” IEEE Trans-
actions on Instrumentation and Measurement, 2023.

[5] X. Yue, H. Li, M. Shimizu, S. Kawamura, and L. Meng, “Yolo-
gd: A deep learning-based object detection algorithm for empty-
dish recycling robots,” Machines, vol. 10, no. 5, 2022.

[6] Y. Ge, Z. Li, X. Yue, H. Li, Q. Li, and L. Meng, “Iot-based
automatic deep learning model generation and the application
on empty-dish recycling robots,” Internet of Things, p. 101047,
2023.

[7] J. Ren, H. Li, A. Wang, K. Saho, and L. Meng, “Radar-based gait
analysis by transformer-liked network for dementia diagnosis,”
Biomedical Signal Processing and Control, vol. 91, p. 105986,
2024.

[8] B. Lyu, X. Yue, and L. Meng, “Japanese literature organization
and spatiotemporal database system creation for natural disaster
analysis,” Heritage Science, vol. 12, p. 14, Jan 2024.

[9] Z. Li, Y. Ge, X. Wang, X. Yue, and L. Meng, “Industrial anomaly
detection via teacher student network,” in 2023 International
Conference on Advanced Mechatronic Systems (ICAMechS),
pp. 1–5, IEEE, 2023.

[10] I. Bae and S. Lee, “A multi-input convolutional neural network
model for electric motor mechanical fault classification using
multiple image transformation and merging methods,” Machines,
vol. 12, no. 2, 2024.

[11] E. Kim, S. Jung, M. Kim, J. Kim, B. Kim, J. Kim, and S. Kim,
“Anomaly detection using puzzle-based data augmentation to
overcome data imbalances and deficiencies,” Machines, vol. 11,
no. 11, 2023.

[12] S. Mittal, “A survey on optimized implementation of deep learn-
ing models on the nvidia jetson platform,” Journal of Systems
Architecture, vol. 97, pp. 428–442, 2019.

[13] Veeramanikandan, S. Sankaranarayanan, J. J. P. C. Rodrigues,
V. Sugumaran, and S. Kozlov, “Data flow and distributed deep
neural network based low latency iot-edge computation model
for big data environment,” ENGINEERING APPLICATIONS OF
ARTIFICIAL INTELLIGENCE, vol. 94, SEP 2020.

[14] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of
accelerator architectures for deep neural networks,” Engineering,
vol. 6, no. 3, pp. 264–274, 2020.

[15] J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2011.

[16] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Impli-
cations of the obvious,” ACM SIGARCH computer architecture
news, vol. 23, no. 1, pp. 20–24, 1995.

[17] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie,
and L. Farhan, “Review of deep learning: Concepts, cnn archi-
tectures, challenges, applications, future directions,” Journal of
big Data, vol. 8, pp. 1–74, 2021.

[18] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size,” CoRR,
vol. abs/1602.07360, 2016.

[19] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” in Proceedings of the 36th
International Conference on Machine Learning, ICML, Long
Beach, California, USA (K. Chaudhuri and R. Salakhutdinov,
eds.), vol. 97, pp. 6105–6114, 2019.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[21] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), Oct 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings
of Machine Learning Research, (Lille, France), pp. 448–456,
PMLR, 07–09 Jul 2015.

[25] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE transactions
on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence
and Statistics (Y. W. Teh and M. Titterington, eds.), vol. 9
of Proceedings of Machine Learning Research, (Chia Laguna
Resort, Sardinia, Italy), pp. 249–256, PMLR, 13–15 May 2010.

[27] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Efficient Back-
Prop, pp. 9–50. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998.

[28] A. E. Orhan and X. Pitkow, “Skip connections eliminate singu-
larities,” 2018.

[29] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression
and hardware acceleration for neural networks: A comprehensive
survey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532,
2020.

[30] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,”
Advances in neural information processing systems, vol. 2, 1989.

[31] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in neural
information processing systems, vol. 28, 2015.



A COMPREHENSIVE ANALYSIS OF DEPLOYMENT OPTIMIZATION METHODS... 107

[32] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5687–5695, 2017.

[33] A. Polyak and L. Wolf, “Channel-level acceleration of deep face
representations,” IEEE Access, vol. 3, pp. 2163–2175, 2015.

[34] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE inter-
national conference on computer vision, pp. 1389–1397, 2017.

[35] A. Jordao, M. Lie, and W. R. Schwartz, “Discriminative layer
pruning for convolutional neural networks,” IEEE Journal of
Selected Topics in Signal Processing, vol. 14, no. 4, pp. 828–
837, 2020.

[36] H. Li and L. Meng, “Hardware-aware approach to deep neural
network optimization,” Neurocomputing, vol. 559, p. 126808,
2023.

[37] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model com-
pression,” in Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
pp. 535–541, 2006.

[38] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[39] S. Zagoruyko and N. Komodakis, “Paying more attention to at-
tention: Improving the performance of convolutional neural net-
works via attention transfer,” arXiv preprint arXiv:1612.03928,
2016.

[40] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning
efficient object detection models with knowledge distillation,”
Advances in neural information processing systems, vol. 30,
2017.

[41] B. Heo, M. Lee, S. Yun, and J. Y. Choi, “Knowledge transfer via
distillation of activation boundaries formed by hidden neurons,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 3779–3787, Jul. 2019.

[42] B. Zoph and Q. V. Le, “Neural architecture search with rein-
forcement learning,” arXiv preprint arXiv:1611.01578, 2016.

[43] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

[44] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc:
Automl for model compression and acceleration on mobile de-
vices,” in Proceedings of the European conference on computer
vision (ECCV), pp. 784–800, 2018.

[45] A. Anderson, J. Su, R. Dahyot, and D. Gregg, “Performance-
oriented neural architecture search,” in 2019 International Con-
ference on High Performance Computing & Simulation (HPCS),
pp. 177–184, IEEE, 2019.

[46] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and
efficient object detection,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 10781–
10790, 2020.

[47] M. Abadi, “Tensorflow: learning functions at scale,” SIGPLAN
Not., vol. 51, p. 1, sep 2016.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[49] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems,”
CoRR, vol. abs/1512.01274, 2015.

[50] H. Li, Z. Wang, X. Yue, W. Wang, H. Tomiyama, and L. Meng,
“An architecture-level analysis on deep learning models for low-
impact computations,” Artificial Intelligence Review, vol. 56,
no. 3, pp. 1971–2010, 2023.

[51] Z. Li, H. Li, and L. Meng, “Model compression for deep neural
networks: A survey,” Computers, vol. 12, no. 3, p. 60, 2023.

[52] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neu-

ral network kernels for arm cortex-m cpus,” arXiv preprint
arXiv:1801.06601, 2018.

[53] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini,
D. Rossi, E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-
threshold risc-v core with dsp extensions for scalable iot endpoint
devices,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[54] M. Horowitz, “1.1 computing’s energy problem (and what we can
do about it),” in 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pp. 10–14,
2014.

[55] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van
Baalen, and T. Blankevoort, “A White Paper on Neural Network
Quantization,” arXiv e-prints, p. arXiv:2106.08295, june 2021.

[56] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang,
“Deep learning on mobile and embedded devices: State-of-the-
art, challenges, and future directions,” ACM Computing Surveys
(CSUR), vol. 53, no. 4, pp. 1–37, 2020.

[57] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg,
and L. Benini, “Gap-8: A risc-v soc for ai at the edge of the
iot,” in 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pp. 1–4,
IEEE, 2018.

[58] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini,
“Mr.wolf: An energy-precision scalable parallel ultra low power
soc for iot edge processing,” IEEE Journal of Solid-State Cir-
cuits, vol. 54, no. 7, pp. 1970–1981, 2019.

[59] GreenWaves-Technologies, “Nntool.” https://github.com/
GreenWaves-Technologies/gap_sdk/tree/master/tools/nntool.

[60] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and
D. Rossi, “Gvsoc: A highly configurable, fast and accurate full-
platform simulator for risc-v based iot processors,” in 2021 IEEE
39th International Conference on Computer Design (ICCD),
pp. 409–416, 2021.

[61] V. Kathail, “Xilinx vitis unified software platform,” in Proceed-
ings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’20, (New York, NY, USA),
p. 173–174, Association for Computing Machinery, 2020.

Qi Li is a Ph.D. student at the Graduate School of Science and
Engineering at Ritsumeikan University, Japan. He received his master’s
degree in engineering from Ritsumeikan University. His research
interests include computer architecture, deep learn model compression,
Internet of Things (IoT) and smart edge computing. He is a student
member of IEEE.

Zhenling Su is a Ph.D. student at the Graduate School of Science and
Engineering at Ritsumeikan University, Japan. His research interests
include computer architecture, compact Artificial Intelligence (AI)
model design, and High-Performance Computing (IHPC), especially
in edge devices. He is a student member of IEEE.

Lin Meng is a professor at the College of Science and Engineering
at Ritsumeikan University, Japan. He received his Ph.D. from the
Graduate School of Science and Engineering at Ritsumeikan Uni-
versity in 2012. In 2015, he was a visiting scholar in the Dept. of
CSE at the University of Minnesota, Twin Cities, USA. His research
interests include Computer Architecture, Parallel Processing, IHPC,
FPGA-based Accelerator Design, AI, IoT and more. He is a senior
member of IEEE and a member of ACM, IPSJ, IEICE, and IEE.


