
ELEKTROTEHNIŠKI VESTNIK 90(3): 111-116, 2023

ORIGINAL SCIENTIFIC PAPER

A performance comparison of caching systems in the .NET 6

framework

Amar Ćatović, Denis Čeke, Nevzudin Buzađija

Dept. of software engineering, University of Zenica, Bosnia and Herzegovina
E-mail: amar.catovic2018@size.ba

Abstract. In applications whose databases have millions of rows, caching is essential to speed up the server

response. The paper focuses on a new approach to testing the cache systems in the .NET 6 framework. In this

paper, a system is created that uses Redis, MongoDB and SQL Server and an in-memory database as cache stores

to evaluate their performance and scalability. A performance comparison of these cache systems provides

detailed insights into the best practices for designing and implementing them in .NET 6 development

environment. The results of this paper may be useful to developers working on similar projects to those who want

to implement a caching system.

Keywords: caching, .NET framework, Monte Carlo analysis, Redis, MongoDB

Primerjava zmogljivosti sistemov za predpomnjenje v

okolju .NET 6

V aplikacijah, kjer vsebujejo baze podatkov zelo veliko vrstic,

je predpomnjenje bistveno za pospešitev odziva strežnika. V

prispevku predstavljamo nov pristop k testiranju

predpomnilniških sistemov v okolju .NET 6. Realizirali smo

sistem, ki uporablja Redis, MongoDB in SQL Server ter

zbirko podatkov v pomnilniku kot predpomnilnike za oceno

njihove zmogljivosti in razširljivosti. Primerjava zmogljivosti

teh sistemov predpomnilnika tako zagotavlja podroben

vpogled v najboljše prakse za njihovo načrtovanje in izvedbo

v razvojnem okolju .NET 6. Rezultati tega dokumenta so

lahko koristni tako za razvijalce, ki se ukvarjajo s podobnimi

projekti, kot tiste, ki želijo izdelati sistem predpomnjenja.

1 INTRODUCTION

In the today's digital world, users expect a very fast

web application performance. But, as the number of

users and application complexity increase, so does the

demand for computing resources which results in slow

response times and reduced application performance. A

way to solve the problem is to use the data caching

methods.

Caching is a technique used to store the frequently

accessed data in the cache memory to reduce the

number of requests sent to the server and thus to shorten

the application response time. Caching makes websites

faster, especially the popular ones that have very high

requests per minute for some resources [1]. While

caching is a well-proven technique, designing and

implementing an effective caching system can be a

challenge for development teams. The .NET 6

framework is one of the most popular frameworks for

the software development worldwide due to its

versatility and ease of use [2].

In most cases when implementing a caching system

development teams need to experiment with multiple

caching systems to find the one that suits them and the

client's requirements. The paper researches and

compares various caching systems and provides a

valuable insights and recommendations for developers

who want to implement caching in the .NET 6

framework by providing a new approach to be used in

comprehensive applications. Hopefully, the paper will

contribute to the progress of assessment of caching

methods in the development of the .NET 6 applications

and will identify opportunities for a further research and

development in area. The paper is organized as follows.

“Related work” surveys the related work. Section III

describes a test application implemented for exploratory

testing. Section IV shows the Monte Carlo analysis

results. Section V draws conclusions.

2 RELATED WORK

Caching has become an important technique for

improving application performance and scalability. In

the context of the .NET programming environments,

there is little research available related to caching. In

this part of the paper, improvements and solutions to

various problems in the field of caching in the .NET

programming languages are listed. The term caching is

for most people means the data stored in some

temporary memory, ready to be returned as a result to

Received 22 May 2023

Accepted 14 June 2023

112 ĆATOVIĆ, ČEKE, BUZAĐIJA

the method caller. However, the input data from the

same methods can also be cached. This creates a new

approach to caching that runs into the problem of

chained calls. If methods whose input data are to be

called one after the other, and it happens that one of

those methods has no cached input data, a lot of time is

lost to return the result to the same method. This

introduces the PACMan method which executes all

methods in parallel and waits for the turn of the methods

whose input data are not cached [3]. Although the input

caching is rarely used, one of the most widely used

cache systems is the distributed cache system. The most

famous caching system, Redis, implements a distributed

cache system architecture. Although the distributed

cache systems have many advantages, such as enabling

a data access and writing to the memory at the same

time by multiple applications, the main disadvantage of

this architecture is scalability. The distributed cache

systems are limited by the memory and processing

power of the server they run on. The distributed cache

systems are meant to be used for caching the data of a

reasonable size, while those for caching very large

amounts of the data should be avoided [4]. The problem

that comes with the distributed cache system

architectures is complex to solve. Some developers

make Redis scalable by adding a new server when the

other servers are at their limit. This results in a network

of Redis servers running on different servers. If it is not

possible to store a large amount of the data on a certain

server, the same data is separated on several servers.

Although this solves the problem of scalability, there is

a problem of the complexity of the implementation of

the algorithm that, based on the data on the

configuration of all servers, and based on the metadata

about each key, will retrieve the data and combine them

into one whole [5]. The distributed cache systems are

better used when development teams do not need to

store huge amounts of the data in the cache. The SQL

Server can accept huge amounts of the data needed for

caching and, in combination with cloud services, it can

provide development teams with a solution for caching

large amounts of the data, while storing the frequently

used data in an in-memory database [6]. One of the

common problems with the in-memory databases is that

their contents are emptied when the server shuts down.

The problem can be solved by moving the content from

the in-memory database into the primary database used

by the application, whether it is a SQL or NoSQL

database, and updating the content automatically every

five minutes [7]. This would tie the in-memory database

to the primary database, causing a data validity problem

when the server is restarted. The problem is solved by

calling the handlers of the caching methods that call the

methods to initialize the data in the memory when the

server is started. It takes longer to start the server, but

the data in the cache corresponds to the real data from

the database [8]. The in-memory databases implement

different search algorithms. For the most part, these are

algorithms that search a large set of the cached data to

return a matching record. The .NET framework offers

its own caching tools, including the method response

rescue technique. The method response can be cached

for a period set by the developer. By overloading the

response caching attribute method, one can

programmatically remove the method cached response,

if the developer knows that some other called method

will change the actual state in the database, making the

method cached response obsolete [9]. This is one of the

more innovative approaches in programming the cache

solutions in the .NET programming environment. When

implementing a cache system, it is possible that a

particular cache system occupies a lot of the RAM. The

problem of the RAM management is one of the key

issues for a caching system that keeps the cached data in

the memory. Such caching system should always

analyze the free RAM space and based on the data,

decide to move the less-used data to the physical data

storage [10]. This allows the server to use the remaining

memory smoothly and allows the application to run

smoothly, without a drop in the performance. Multi-

tenant applications present a challenge when it comes to

caching and refreshing the data. Clients rely on the

development teams to build a solution for refreshing

cached data. The development teams must consider the

data passed by the users of the application, and based on

it, refresh the data in the cache memory. The technique

of storing the write time metadata in the cache helps

developers to decide to refresh the cache, and they can

put the same metadata in the name of the cache key for

the application tenant or in a special place in the cache

system [11]. By testing the data in the cache to see if it

matches the current state in the database, it solves the

problem of the outdated data in the cache, which

refreshes the data depending on the time it was placed in

the cache. The background service is programmed to

call the data caching method at equal time intervals and

retrieve the data from the database. If the database is

overloaded at the time when the background service

needs to be executed, the background service monitors

the database load and executes the query when the

database load falls below a certain value. The data is

then compared, and if the cache contains the outdated

data, the background service refreshes the cache [12].

Caches must be able to quickly return the result when

they are overloaded, so it is a challenge for the

development teams to find a cache system that can

respond to the high workload of their applications.

Redis is an ideal solution for the .NET 6 applications

due to its fast response time for large data retrieval

requests and is recommended as the primary cache

system over others [13]. With regard to the previous

claims, the paper investigates and examines the

performance of the most used methods for caching in

the .NET 6 programming environment. Redis is

mentioned the most in the literature. Many authors just

claim that Redis is the best cache system for

applications in the .NET development environment.

Because of its popularity, it is used for testing in paper.

PERFORMANCE COMPARISON OF CACHING SYSTEMS IN .NET 6 FRAMEWORK 113

Also, another method that was chosen for testing,

slightly less popular than Redis, is MongoDB. Although

the same database is popular for web application

development, it can also be used as a caching database.

The author finds that MongoDB is as good as Redis,

and its speed is at the same level. Caching in the SQL

Server is less popular, and there are not many papers on

the subject. This is the reason for testing caching using a

SQL Server database and an in-memory database as the

primary cache system, rather than a cache system for a

smaller amount of the data.

3 TEST APPLICATION

To demonstrate all the caching systems application

is created that is a simple clone of the Stack Overflow

website [14]. The application is implemented using the

.NET 6 API and the Angular development framework,

which calls the .NET 6 API and renders the results in a

table. The application uses the Stack Overflow 2010

database [15], which has over three million records in

the Posts table. The application has a simplified user

interface that allows users to view the ten most popular

posts on the platform and uses the caching systems to

speed up the data retrieval process. The website has two

main views: a navigation bar that allows users to select

the caching system they want to use, and a content view

that displays the ten, most popular posts. The navigation

bar offers two options: the first enables the user to

retrieve the data directly from the database, and the

second one enables the user to retrieve the data from the

selected database cache. Such application provides an

experimental testing ground for different caching

systems. The testing process is simplified with a smaller

application and the results can be easily observed and

analysed. The application provides a practical use case

for implementing caching systems in a professional

environment. The ability to manually add new posts and

update the number of users who have favoured a certain

post also enables for testing the cache invalidation

methods. The cache invalidation checks are critical to

maintaining the data consistency and accuracy. The

application consists of: navigation menu, navigation

buttons such as: Home – takes the user to the page

where the posts are displayed without using the caching

method, Redis – takes the user to the page where the

posts are displayed using the Redis caching method;

Mongo – takes the user to the page where the posts are

displayed using the MongoDB caching method; SQL

Cache – takes the user to the page where the posts are

displayed using the SQL caching method; In-memory

cache – takes the user to the page where the posts are

displayed using the in-memory cache method of

caching; Add post – takes the user to the page where the

new post is added, Table for displaying the ten most

popular posts. The table shows the name, creation date,

number of views and the number of users who marked

the post as favorite.

Figure 1. Adding a new post.

4 RESULTS

To demonstrate all caching systems, the author of this

paper created an application that after performing the

Monte Carlo analyzes [16] for all caching systems,

results are compared and recommendations are made as

to which caching system to use in different scenarios.

An insights is also given in how to configure a caching

system to maximize its performance and minimize its

impact on other parts of the system, such as CPU or

primary database.

Table 1. Conditions for the first case of the Monte Carlo

analysis of the cache system when simulating the tolerance of

the inconsistent data.

The

maximum

number of

requests a

cloud

server can

handle per

minute (in

thousands)

Availabl

e local

funds

per

caching

system

(in

thousand

s of

BAM

Maximu

m

acceptab

le

number

of

requests

with

inconsist

ent data

The

maximu

m

number

of

processi

ng CPU

metrics

that can

be used

on the

server

(in

thousand

s)

100 1 1000 377

Table 1 gives the conditions for the first case of the

Monte Carlo analysis of the cache system when

simulating the tolerance of the inconsistent data. The

Monte Carlo analysis was used in this case to find the

maximum number of requests that a cloud server can

handle per minute, without having many responses

containing the inconsistent data.

114 ĆATOVIĆ, ČEKE, BUZAĐIJA

Figure 2. Graph of the results of the first case the Monte

Carlo analysis of the cache system when simulating the

tolerance of the inconsistent data

In Figure 2, the efficient Redis cache system handles 33

thousand requests per minute with an error of only 3%.

The number of the CPU metrics is here significantly

higher than other caching systems, and the cost of

monthly expenses is 125 BAM. Considering that the

MongoDB and SQL Server have similar response rates

with the inconsistent data, while being able to handle

significantly fewer calls per minute, Redis outperforms

them, and is an ideal system for caching applications

that have a high traffic.

Table 2. Conditions for the second case of the Monte Carlo

analysis of the cache system when simulating the tolerance of

the inconsistent data.

The

maximum

number of

requests a

cloud

server can

handle per

minute (in

thousands)

Availabl

e local

funds

per

caching

system

(in

thousand

s of

BAM

Maximu

m

acceptab

le

number

of

requests

with

inconsist

ent data

The

maximu

m

number

of

processi

ng CPU

metrics

that can

be used

on the

server

(in

thousand

s)

100 1 50000 377

In the second case of the Monte Carlo analysis of the

cache system when simulating the tolerance of the

inconsistent data, the conditions of which are shown in

Table 2, the maximum acceptable number of the

requests with the inconsistent data is increased, so that

the maximum number of requests the cloud server can

handle per minute per system is obtained.

Figure 3. Graph of the results of the second case the Monte

Carlo analysis of the cache system when simulating the

tolerance of inconsistent data

Figure 3 shows that all cache systems have a very large

number of requests per minute with almost the same

CPU metrics and similar cost. The difference in the

number of the inconsistent data is considerable. The

Redis cache system can handle the fewest calls per

minute compared to the MongoDB and SQL Server, but

the number of inconsistent data is significantly lower,

making it a preferable choice for development teams

designing an application that needs to handle a very

high number of the requests per minute.

Table 3. Conditions for the first case the Monte Carlo analysis

of the cache system when simulating the tolerance of the

number of the CPU metrics.

The

maximum

number of

requests a

cloud

server can

handle per

minute (in

thousands)

Availabl

e local

funds

per

caching

system

(in

thousand

s of

BAM

Maximu

m

acceptab

le

number

of

requests

with

inconsist

ent data

The

maximu

m

number

of

processi

ng CPU

metrics

that can

be used

on the

server

(in

thousand

s)

100 1 50000 500

Table 3 shows the conditions for the first case of the

Monte Carlo analysis of the cache system when

simulating the tolerance of the number of the CPU

metrics. The Monte Carlo analysis is used to find the

ideal configuration for the CPU metrics that the cloud

server can handle.

PERFORMANCE COMPARISON OF CACHING SYSTEMS IN .NET 6 FRAMEWORK 115

Figure 4. Graph of the results of the first case of the Monte

Carlo analysis of the cache system when simulating the CPU

metric tolerance

Figure 4 shows the results of the Monte Carlo analysis

of the cache system when simulating the tolerance of

the CPU metrics. All cache systems reach the maximum

theoretical number of calls per minute that a cloud

server can handle per minute. The Redis cache system

though the most expensive, is the best choice; when the

number of the calls to the server per minute reaches the

theoretical limit, it returns a very small number of the

inconsistent data. In such cases, MongoDB can use as

an alternative. Development teams decide on allowing a

maximum theoretical number of calls to the server per

minute, leaving more CPU space for the application and

in paying 90 BAM less per month compared to the

Redis cache system.

Table 4. Conditions for the second case Monte Carlo analysis

of the cache system when simulating the tolerance of the

number of CPU metrics.

The

maximum

number of

requests a

cloud

server can

handle per

minute (in

thousands)

Availabl

e local

funds

per

caching

system

(in

thousand

s of

BAM

Maximu

m

acceptab

le

number

of

requests

with

inconsist

ent data

The

maximu

m

number

of

processi

ng CPU

metrics

that can

be used

on the

server

(in

thousand

s)

100 1 50000 150

If the number of CPU metrics for processing is reduced,

as in the conditions shown in Table 31, the simulation

results shown in Figure 5 are obtained.

Figure 5. Graph of the results of the second case of the Monte

Carlo analysis of the cache system when simulating the CPU

metric tolerance

The monthly costs and the number of the CPU metrics

are similar for all caching systems, while the MongoDB

and SQL Server have 7k calls per minute more than the

Redis cache system. However, the Redis cache system

is an absolute winner given the very small number of

the results with the inconsistent data and it is the best

choice for development teams because when

configuring a server in the cloud that has somewhat

weaker CPU resources, it gives a very good maximum

number of calls to the server with very small results

with the inconsistent data.

5 CONCLUSION

The analysis of the Monte Carlo simulations shows that

the Redis caching system is the recommendable choice

for development teams designing applications that

require a very large number of users making many

requests to the server per minute. The Redis cache

system produces significantly fewer results with the

inconsistent data compared to its competitors and is

ideal for server configurations with a high or low CPU

processing power. It's easy to integrate and configure

and also very well documented. The only drawback of

the Redis cache system is that the monthly costs are

slightly higher compared to its competitors. For many

start-up companies it is better to use the cheaper

alternative. MongoDB is an ideal alternative because it

doesn't use a lot of processing power. Its biggest

drawback is that it will return a slightly larger number

of results with the inconsistent data. The SQL Server is

not recommended to be used as a cache system,

although its monthly costs are significantly lower than

competitors, and the number of the CPU metrics is very

low. The SQL Server returns results with a large amount

of the inconsistent data, and is recommended to be used

as a primary, relational database. The in-memory

database was not the subject of a Monte Carlo analysis

since it is not commercial, but it is recommended for

placing some intermediate data in the cache or creating

one’s own cache system that, by design, accommodates

a smaller amount of the data.

116 ĆATOVIĆ, ČEKE, BUZAĐIJA

REFERENCES

[1] B. Obraczka, G, Obraczka, and Katia Obraczka. "World wide web
caching: Trends and techniques." IEEE Communications

magazine 38.5 (2000): 178-184.

[2] Stack overflow 2022 developer survey,

https://survey.stackoverflow.co/2022/

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S.
Kandula, S. Shenker, and I, Stoica. "PACMan: Coordinated

Memory Caching for Parallel Jobs." NSDI. Vol. 12. 2012.

[4] R. Pablo, C. Spanner, and E. W. Biersack. "Analysis of web

caching architectures: Hierarchical and distributed caching."
IEEE/ACM Transactions On Networking 9.4 (2001): 404-418.

[5] S. Chen, X. Tang; H. Wang, H. Zhao, and M. Guo. "Towards

scalable and reliable in-memory storage system: A case study

with Redis." 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 2016.

[6] P.A. Larson, J. Goldstein, and J. Zhou. "MTCache: Transparent
mid-tier database caching in SQL server." Proceedings. 20th

International Conference on Data Engineering. IEEE, 2004.

[7] J. Hasan, and K. Tu "Caching ASP. NET Applications."

Performance Tuning and Optimizing ASP. NET Applications
(2003): 167-205.

[8] J. Lindstrom, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila.

"IBM solidDB: In-Memory Database Optimized for Extreme

Speed and Availability." IEEE Data Eng. Bull. 36.2 (2013): 14-
20.

[9] A. Freeman. "Caching." Pro ASP. NET 4.5 in C# (2013): 487-

514.

[10] A. Gut, L. Miclea, I. Hoka, and D.C. Duma. "Custom technique

for handling data caching in ASP. NET 2.0." 2008 IEEE
International Conference on Automation, Quality and Testing,

Robotics. Vol. 3. IEEE, 2008.

[11] R. Zong. "Complex data collection and reconstruction analysis of

English information display platform based on ASP. NET." 2022
International Conference on Sustainable Computing and Data

Communication Systems (ICSCDS). IEEE, 2022.

[12] K. Kristians, and M. Uhanova. "Performance Comparison of Java

EE and ASP. NET Core Technologies for Web API
Development." Appl. Comput. Syst. 23.1 (2018): 37-44.

[13] I. Galović. "Izrada web trgovine pomoću ASP. NET CORE i

Angulara.". University of Zagreb. Faculty of Organization and
Informatics. Department of Theoretical and Applied Foundations

of Information Sciences, 2022.

[14] Stack overflow, https://stackoverflow.com/

[15] B. Ozar. How to Download the Stack Overflow Database,

https://www.brentozar.com/archive/2015/10/how-to-

download-the-stack-overflow-database-via-bittorrent.
(accessed 08.05.2023).

[16] R. L. Harrison. "Introduction to monte carlo simulation." AIP

conference proceedings. Vol. 1204. No. 1. American Institute of

Physics, 2010.

Amar Ćatović is a head of a technical team. He is a software

engineer at Isatis d.o.o, Sarajevo, Bosnia and Herzegovina. He

is also a graduate student at University of Zenica. His current

research focuses in software engineering.

Denis Čeke is an Associate Professor, Department of

Software Engineering, Polytechnical Faculty, University of

Zenica. His research interests include Machine Learning,

Internet of Things and very large databases

Nevzudin Buzađija is an Associate Professor, Department of

Software Engineering, Polytechnical Faculty, University of

Zenica, Bosnia and Herzegovina. He is the vice deen and head

of Department of Software Engineering. He wrote four books

and has many articles published in the field of software

engineering.

https://survey.stackoverflow.co/2022/
https://stackoverflow.com/
https://www.brentozar.com/archive/2015/10/how-to-download-the-stack-overflow-database-via-bittorrent
https://www.brentozar.com/archive/2015/10/how-to-download-the-stack-overflow-database-via-bittorrent

