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Abstract. Deep learning is a revolutionizing artificial intelligence, and over the next several decades, it will change 

the world radically. Many challenging computer vision tasks, such as detection, localization, recognition, and 

segmentation of objects in an unconstrained environment, are being efficiently addressed by various types of deep 

neural networks. In the paper semantic segmentation is used to separate a portrait in a video from the background. 

Semantic segmentation is a task of clustering together parts of an image which belong to the same object class. The 

aim of the paper is to build four different deep learning models that will be able to segment a portrait from a webcam 

video in real time and to compare them. Two different deep learning architectures and two different datasets are 

used. They are both with over 30,000 human portrait images. Our models are trained using TensorFlow which is a 

novel framework for deep learning and Keras which is a neural network library. Architecture 1 is capable of 

processing 256×256 RGB images at 12-14 FPS, and Architecture 2 is capable of processing 128×128 RGB images 

at 15-18 FPS. Our approach achieves a great performance in terms of both the accuracy and efficiency. 
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Segmentacija slik v resničnem času v okolju TensorFlow 

 

Globoko učenje močno vpliva na razvoj umetne inteligence. Z 

globokimi nevronskimi mrežami rešujemo številne zahtevne 

naloge s področja računalniškega vida, kot so odkrivanje, 

lokalizacija, razpoznavanje in segmentacija objektov v 

neomejenem okolju. V tem prispevku uporabljamo semantično 

segmentacijo za izločitev portreta v videoposnetku. V postopku 

semantične segmentacije združimo dele slike, ki pripadajo 

istemu razredu predmeta. Predstavljeni so štirje modeli 

globokega učenja, ki segmentirajo portret iz videoposnetka s 

spletne kamere v resničnem času. Uporabili smo dve različni 

arhitekturi globokega učenja in dva različna nabora podatkov, 

oba z več kot 30.000 portretnimi slikami. Pri učenju modelov 

smo uporabili program TensorFlow in knjižnico nevronskih 

mrež Keras. 

 

1 INTRODUCTION 

Computer vision is a science of understanding or 

manipulating images and videos [1]. It has a lot of 

applications, including autonomous driving, industrial 

inspection, and augmented reality. The use of deep 

learning for computer vision can be categorized into 

multiple categories: classification, detection, 

segmentation, and generation, both in images and videos. 

Deep learning is a collection of techniques from Artificial 

Neural Network (ANN) which is a branch of machine 

learning. Artificial neural networks are a computational 

model that is based on how the brain is believed to work 

[4]. Artificial neurons are based on the structure of the 

biological neuron and use mathematical functions with 

real values to simulate their behavior. Such artificial 

neurons are called perceptrons. An artificial neuron or 

perceptron takes several inputs and performs a weighted 

summation to produce an output. The weight of the 

perceptron is determined during the training process and 

is based on the training data. A perceptron can only learn 

simple functions by learning the weights from examples. 

The process of learning the weights is called training. 

The advancements in computer vision with deep 

learning have been constructed and improved with time, 

particularly over one neural network i.e. Convolutional 

Neural Network (CNN). CNN [6] is a go-to deep learning 

architecture for computer vision tasks, such as the image 

segmentation. CNNs have even been extended to the 

field of video analysis. The CNNs building blocks are 

filters i.e. kernels. They are used to extract the relevant 

features from the input using the convolution operation. 

CNNs have weights, biases and outputs through a 

nonlinear activation [1]. Regular neural networks take 

inputs and neurons are fully connected to the next layers. 

Neurons within the same layer don't share any 

connection. If regular neural networks are used for 

images, they will be very large in the size due to a huge 

number of neurons, resulting in overfitting. An image can 

be considered as a volume with dimensions of the height, 

width and depth. A depth is a channel of an image, which 

is red, blue and green. The CNN neurons are arranged in 

a volumetric fashion to take advantage of the volume. 

CNN is a single most important component of any deep 

learning model for computer vision. It won't be an 
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exaggeration to say that it will be impossible for any 

computer to have vision with no CNN. 

Semantic image segmentation of a high accuracy and 

efficiency using CNNs has been a popular research topic 

in computer vision. Semantic segmentation [2] is a task 

of doing a pixel-wise classification. In semantic 

segmentation, each pixel is classified into one of the 

predefined sets of classes such that pixels belonging to 

the same class belong to a unique semantic entity in the 

image. Creating training data for segmentation tasks is 

expensive. The semantic segmentation dataset requires 

specialized software annotators that are very patient and 

extremely accurate of their work [4]. In fact, the process 

of labeling with a pixel-level accuracy is perhaps a most 

time-consuming process among all of the annotation 

types. For this reason, the number of the semantic 

segmentation datasets is low and their number of images 

is limited. 

TensorFlow is an end-to-end open source platform for 

machine learning [5]. It has a comprehensive, flexible 

ecosystem of tools, libraries and community resources 

that inspires researchers to promote the state-of-the-art in 

machine learning and developers to build and deploy 

machine learning-powered applications. The GPU 

support exists for specific NVIDIA cards, using the 

related version of the CUDA toolkit [7]. TensorFlow 

comes with a strong support for machine learning and 

deep learning, and the flexible numerical computation 

core is used across many other scientific domains. The 

core of TensorFlow is implemented in the C++ 

programming language, and the main programming 

language is Python. 

TensorFlow uses Keras as a high-level API for its 

library [3]. It is commonly called tf.keras. Keras is a 

popular choice of a deep learning library since it is highly 

integrated into TensorFlow, which is known in 

production deployments for its reliability. The release of 

TensorFlow 2.0 has introduced several changes to the 

framework: from defaulting to eager execution to a 

complete APIs cleanup [4]. Keras is not a high-level 

wrapper around a machine learning framework 

(TensorFlow, CNTK, or Theano); instead, it is an API 

specification used for defining and training machine 

learning models. The TensorFlow eager execution is an 

imperative programming environment that evaluates 

operations immediately, without building graphs: 

operations return concrete values instead of constructing 

a computational graph to run later [5]. TensorFlow 2.0, 

with its focus on an eager execution, allows the user to 

design a better-engineered software. 

In the paper, TensorFlow 2.0 is used following the 

Keras API specification. The main programming 

language is Python 3. Four different deep learning 

models are built able to segment a portrait from a 

webcam video in real time. A combination of two 

architectures and two datasets is used. For both 

architectures, Convolutional Neural Networks are 

employed. In Architecture 1, the inputs and outputs are 

the RGB images of the size of 256×256. It is based on the 

U-net architecture and uses residual blocks with depth-

wise separable convolutions. In Architecture 2, inputs 

and outputs are the RGB images of the size of 128×128. 

It is based on the MobileNet-v2 architecture. Training is 

evaluated on a CPU and GPU – nVIDIA Quadro 

M1000M. 

 

2 METHODS 

Real-time portrait segmentation as a specialized 

segmentation problem attracts more and more attention, 

since for web and mobile applications the background 

editing is very important (e.g. blurring, replacement, etc.) 

on portrait images and videos (see Figure 1). In this 

section, two datasets and structure of two architectures 

used for real-time portrait segmentation are introduced. 

 
 

a) Original image b) The mask c) Original image after 

background replacement 

Figure 1. Use of portrait segmentation on an image. 
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2.1 Dataset 

The dataset is probably the most critical part of the entire 

machine learning pipeline [4]. Its quality, structure, and 

size are the key to the success of deep learning 

algorithms. A dataset is nothing more than a collection of 

data. Formally, a dataset can be described as a set of pairs 

(ei,li), where ei is the ith example and li is its label, with a 

finite cardinality: 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 = {(𝒆𝒊, 𝒍𝒊)}𝒊=𝟏
𝒌  

 

A dataset has a finite number of elements. Our machine 

learning algorithm loops over this dataset several times, 

trying to understand the data structure, until it solves the 

task it is asked to address. For training and testing our 

models, two datasets are used. The first is the 

“AISegment” [8] portrait dataset. This dataset is 

currently the largest portrait matting dataset, containing 

34,427 images and corresponding matting results. 

Images are collected from Flickr, Baidu and Taobao and 

are scaled to 600×800. The corresponding matting files 

are in the png format, which extracts the alpha map 

(mask) from the png image before training. Some sample 

portrait images are shown in Figure 2. To improve the 

generality of the trained model, several data 

augmentation methods are used to supplement the 

original training dataset, leading to better segmentation 

results. To increase the accuracy of the model in different 

conditions, cold and warm filters are applied on some 

images with the help of the Python script. The run-time 

augmentation methods used in our experiments for both 

datasets include shift, zoom and horizontal flip and are 

applied by a Keras data generator and a preprocessing 

module. 

 

Figure 2. Sample portrait images from Dataset 1. 

The second dataset contains 32,711 images and 

corresponding masks. Images are scaled to 256×256 and 

masks are in a binary format for two segmentation classes 

(foreground and background). This dataset is different 

from the first because it contains the same image five 

times with different data augmentation methods applied. 

Those data augmentation methods are: blur, crop and 

amplified light. Some sample portrait images from this 

dataset are shown in Figure 3. For both datasets, images 

are divided into two groups. One is a training set with 

80% of the images and the other is a validating set with 

20% of the images. The training set is a subset used to 

train the model and the validation set is a subset used to 

measure the model performance during training and also 

to perform a hyper-parameter tuning/search. 

 

 

Figure 3. Sample portrait images from Dataset 2. 

 

2.2 Architecture 1 

The first architecture used for real-time portrait 

segmentation is based on the U-Net architecture. The U-

Net architecture is designed for semantic segmentation 

and is based on a fully convolutional network [9]. Our 

architecture includes two modules, i.e. the encoder and 

decoder module. RGB images of the size of 256×256 are 

used as inputs. The encoder module extracts features 

from a raw RGB image. It is constructed by combining, 

activated traditional convolution layers and residual 

blocks with depth-wise separable convolution layers. 

The depth-wise separable convolution [10] is a variation 

of the traditional convolution used to improve the 

efficiency. It performs a depth-wise spatial convolution 

followed by a point-wise convolution to mix together the 

resulting output channels. The activation layers use the 

‘ReLU’ activation function, enabling an easier training 

and better performance. The number of filters, learned 

by the convolutional layers is 8, 32, 64 and 128. The 

kernel size is 3×3, the stride is 2×2 reducing the size of 

the output volume (down-sampling) by 2× as a 

replacement to max pooling. To reconstruct the spatial 

information, a decoder module is used. It contains 

transposed convolution layers for up-sampling the 

feature maps by 2×. The decoder uses residual blocks too, 

and keras Add layers instead of concatenating. Our model 

is implemented using TensorFlow and Keras API. The 
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Adam optimizer is used to minimize the loss calculated 

by the binary cross-entropy loss function with the batch 

size of 64 and weight decay of 1e-3 during training. The 

initial learning rate is 0.001, and to reduce it when the 

metric stops to improve, the ReduceLROnPlateau 

callback is used. To visualize the architectures, 

TensorBoard is used. Architecture 1 is shown in Figure 4. 

 

 
Figure 4. Architecture 1. 

2.3 Architecture 2 

Architecture 2 used for real-time portrait segmentation is 

also based on U-Net, but as a backbone for the encoder 

module the MobileNet-v2 architecture is used [10]. 

MobileNets are a family of neural network architectures 

released by Google to be used on machines with a limited 

computing power. They strive to provide the state-of-the 

art accuracy, while requiring as little memory and 

computing power as possible. This makes them a very 

fast family of networks used for image processing. Our 

encoder module uses 3×3 depth-wise separable 

convolutions, width multiplier of 0.5 which 

proportionally decreases the number of filters in each 

layer, linear bottlenecks and shortcut connections. The 

RGB images of the size of 128×128 are used, as inputs 

and ‘imagenet’ weights pre-trained on ImageNet. 

Keeping the U-shape architecture to reconstruct spatial 

information, a decoder module with UpSampling2D + 

Conv2D layers for up-sampling the feature maps is used. 

The decoder contains batch normalization layers that 

normalize their inputs, dropout layers with the rate of 0.5 

to avoid overfitting and activation layers with a ‘ReLU’ 

activation function. Architecture 2 uses concatenate 

layers in decoder, unlike Architecture 1 which uses Add 

layers. Our model is implemented using TensorFlow and 

Keras API. The Adam optimizer is used to minimize the 

loss calculated by a binary cross-entropy loss function 

with the batch size of 32 and weight decay of 1e-3 during 

training. The initial learning rate is 0.001. To reduce it 

when the metric stops to improve, the 

ReduceLROnPlateau callback is used. Architecture 2 is 

shown in Figure 5. 

 

 
Figure 5. Architecture 2. 

 

3 RESULTS 

Training and testing are performed on a single machine 

running a 64-bit GNU/Linux with seven-core Intel® 

6700HQ CPU @ 2.60GHz and GPU NVIDIA Quadro 

M1000M. Both architectures use the U-Net based 

architectures to generate sharp segmentation boundaries, 

depth-wise separable convolutions to gain the running 

speed, and activation layers using the ‘ReLU’ activation 

function to improve the performance and simplify 

training. Both datasets are large (over 30,000 images), 

and of a good quality and structure. Figure 6 shows 

several difficult portrait segmentation results, obtained 

with a model trained on Dataset 1. 
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3.1 Accuracy Analysis 

The accuracy is a ratio between the number of correct 

predictions and the number of all predictions made. The 

accuracy is used to measure the segmentation 

performance. These metrics are used during the training 

phase to measure the model performance and monitor 

how the training proceeds by checking the validation and 

training accuracy to detect if the model either overfits or 

underfits the training data. Using Dataset 1, the training 

accuracy achieved with Architecture 1 is 98.23% and the 

validation accuracy is 97.71%. For Architecture 2, the 

achieved training accuracy is 97.17% and validation 

accuracy is 96.72%. Using Dataset 2, the training 

accuracy achieved with Architecture 1 is 98.00% and 

validation accuracy is 96.84%. For Architecture 2 the 

achieved training accuracy is 97.15% and validation 

accuracy is 95.97%. Dataset 1 gives slightly better 

results. The models trained on Architecture 2 achieve 

higher training accuracy faster, because of using 

MobileNetV2. This is why in Epoch 1, the accuracy for 

Architecture 2 is about 94% and for Architecture 1 about 

82%. After 10-15 epochs, the accuracy for Architecture 1 

increases. The accuracy graph is shown in Figure 7. 

 

Figure 6. Segmentation results of challenging portrait 

images: a) original image; b) after segmentation on 

Architecture 1; c) after segmentation on Architecture 2. 

Figure 7. Validation accuracies. 

 

3.2 Loss Analysis 

The loss function quantifies how “good” or “bad” a deep 

learning neural network learns to map a set of inputs to a 

set of outputs from training data. The loss function has an 

important job in that it must faithfully distill all aspects 

of the model down into a single number in such a way 

that improvements in that number are a sign of a better 

model. The cross-entropy loss is minimized where 

smaller values represent a better model than larger 

values. In the paper a binary cross-entropy loss function 

is used. Using Dataset 1, the training loss achieved with 

Architecture 1 is 0.0302 and the validation loss is 0.0451. 

For Architecture 2, achieved the training loss is 0.0390 

and the validation loss is 0.0571. Using Dataset 2, the 

training loss achieved with Architecture 1 is 0.0401, and 

the validation loss is 0.0496. For Architecture 2 achieved 

the training loss is 0.0432 and the validation loss is 

0.0585. Following the above the combination of 

Architecture 1 and Dataset 1 gives the best results. The 

loss graph is shown in Figure 8. 

 
Figure 8. Validation losses. 

3.3 Speed Analysis 

The efficiency is a very important issue for portrait 

segmentation in general. For the speed at which images 

are shown, the models trained on Dataset 1 give slightly 

better results. Our models are tested using a Python script 

and also a browser using TensorFlow JS. Regarding the 

results obtained using the Python script, the model 

trained on Architecture 1 and Dataset 1 is capable of 

processing 256×256 RGB images at 12-14 FPS, and the 

model trained on Architecture 2 and Dataset 1 is capable 

of processing 128×128 RGB images at 15-18 FPS. The 

speed comparison for these architectures and datasets is 

shown in Table 1. 

Table 1. Speed comparisons 

Architecture Dataset Python script Browser 

1 1 12-14 FPS 5-7 FPS 

2 1 15-18 FPS 5-8 FPS 

1 2 11-12 FPS 5-7 FPS 

2 2 14–17 FPS 5-7 FPS 
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Our method is compared with the representative semantic 

segmentation method DeepLab [11]. DeepLab uses the 

PASCAL VOC 2012 dataset consisting of 20 foreground 

object classes and one background class resulting in 

10,582 training images. The DeepLab models segment 

objects like a person, airplane, train, background on an 

image, etc. They adopt the simplest form of piecewise 

training and decoupling the DCNN and CRF training 

stages, when the unary terms provided by DCNN are 

fixed. They obtain the highest accuracy using the 

DeepLab-MSc-CRF-LargeFOV method by segmenting 

the background on the image. This accuracy is lower than 

the one obtained for our portrait segmentation and is 

93.1%. When it comes to the image processing speed, our 

method shows a better performance. The DeepLab 

method operates at 8 FPS, and ours of max 18 FPS. The 

related comparison graph is shown in Figure 9. 

 

 

Figure 9. Accuracy and speed comparison graph. 

 

4 CONCLUSION 

Real-time portrait segmentation has a significant role in 

many web applications, such as background replacement 

or blurring in a video chat or teleconference. The paper 

presents two architectures and two datasets on which 

models for segmenting the portraits from a webcam video 

in real time in a browser are trained. The experimental 

results demonstrate a high accuracy and good efficiency 

for both architectures and datasets. Architecture 1 is 

better in terms of the accuracy (>1%) and loss (~ 0.0088). 

Architecture 2 is slightly better in terms of the efficiency. 

Dataset 1 is slightly better than Dataset 2 in all respects, 

i.e. accuracy, loss and efficiency. Judging from the final 

portrait segmentation results from a webcam video, the 

model trained on Architecture 1 gives a more stable 

output with better boundaries. Therefore, it is 

recommended to use Architecture 1 and Dataset 1 due to 

their accuracy and also good results in the measuring the 

loss and efficiency. However, but both architectures can 

serve as a useful tool for real-time portrait segmentation 

in a browser. Compared to the representative semantic 

segmentation method DeepLab, our method achieves 

significantly better performance. 

 

In future, the performance gain of the browser using 

WebAssembly, and minimization of the resource 

consumption will be investigated. 
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