
ELEKTROTEHNIŠKI VESTNIK 88(3): 141-146, 2021

ORIGINAL SCIENTIFIC PAPER

Real-time Portrait Segmentation in TensorFlow

Lejla Hodžić1, Emir Skejić2, Damir Demirović2

1 Bicom doo Tuzla, Bosnia and Herzegovina
2 Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina
E-mail: emir.skejic@untz.ba

Abstract. Deep learning is a revolutionizing artificial intelligence, and over the next several decades, it will change

the world radically. Many challenging computer vision tasks, such as detection, localization, recognition, and

segmentation of objects in an unconstrained environment, are being efficiently addressed by various types of deep

neural networks. In the paper semantic segmentation is used to separate a portrait in a video from the background.

Semantic segmentation is a task of clustering together parts of an image which belong to the same object class. The

aim of the paper is to build four different deep learning models that will be able to segment a portrait from a webcam

video in real time and to compare them. Two different deep learning architectures and two different datasets are

used. They are both with over 30,000 human portrait images. Our models are trained using TensorFlow which is a

novel framework for deep learning and Keras which is a neural network library. Architecture 1 is capable of

processing 256×256 RGB images at 12-14 FPS, and Architecture 2 is capable of processing 128×128 RGB images

at 15-18 FPS. Our approach achieves a great performance in terms of both the accuracy and efficiency.

Keywords: portrait segmentation, semantic segmentation, TensorFlow, deep learning, Keras

Segmentacija slik v resničnem času v okolju TensorFlow

Globoko učenje močno vpliva na razvoj umetne inteligence. Z

globokimi nevronskimi mrežami rešujemo številne zahtevne

naloge s področja računalniškega vida, kot so odkrivanje,

lokalizacija, razpoznavanje in segmentacija objektov v

neomejenem okolju. V tem prispevku uporabljamo semantično

segmentacijo za izločitev portreta v videoposnetku. V postopku

semantične segmentacije združimo dele slike, ki pripadajo

istemu razredu predmeta. Predstavljeni so štirje modeli

globokega učenja, ki segmentirajo portret iz videoposnetka s

spletne kamere v resničnem času. Uporabili smo dve različni

arhitekturi globokega učenja in dva različna nabora podatkov,

oba z več kot 30.000 portretnimi slikami. Pri učenju modelov

smo uporabili program TensorFlow in knjižnico nevronskih

mrež Keras.

1 INTRODUCTION

Computer vision is a science of understanding or

manipulating images and videos [1]. It has a lot of

applications, including autonomous driving, industrial

inspection, and augmented reality. The use of deep

learning for computer vision can be categorized into

multiple categories: classification, detection,

segmentation, and generation, both in images and videos.

Deep learning is a collection of techniques from Artificial

Neural Network (ANN) which is a branch of machine

learning. Artificial neural networks are a computational

model that is based on how the brain is believed to work

[4]. Artificial neurons are based on the structure of the

biological neuron and use mathematical functions with

real values to simulate their behavior. Such artificial

neurons are called perceptrons. An artificial neuron or

perceptron takes several inputs and performs a weighted

summation to produce an output. The weight of the

perceptron is determined during the training process and

is based on the training data. A perceptron can only learn

simple functions by learning the weights from examples.

The process of learning the weights is called training.

The advancements in computer vision with deep

learning have been constructed and improved with time,

particularly over one neural network i.e. Convolutional

Neural Network (CNN). CNN [6] is a go-to deep learning

architecture for computer vision tasks, such as the image

segmentation. CNNs have even been extended to the

field of video analysis. The CNNs building blocks are

filters i.e. kernels. They are used to extract the relevant

features from the input using the convolution operation.

CNNs have weights, biases and outputs through a

nonlinear activation [1]. Regular neural networks take

inputs and neurons are fully connected to the next layers.

Neurons within the same layer don't share any

connection. If regular neural networks are used for

images, they will be very large in the size due to a huge

number of neurons, resulting in overfitting. An image can

be considered as a volume with dimensions of the height,

width and depth. A depth is a channel of an image, which

is red, blue and green. The CNN neurons are arranged in

a volumetric fashion to take advantage of the volume.

CNN is a single most important component of any deep

learning model for computer vision. It won't be an

Received 2 February 2021

Accepted 15 April 2021

142 HODŽIĆ, SKEJIĆ, DEMIROVIĆ

exaggeration to say that it will be impossible for any

computer to have vision with no CNN.

Semantic image segmentation of a high accuracy and

efficiency using CNNs has been a popular research topic

in computer vision. Semantic segmentation [2] is a task

of doing a pixel-wise classification. In semantic

segmentation, each pixel is classified into one of the

predefined sets of classes such that pixels belonging to

the same class belong to a unique semantic entity in the

image. Creating training data for segmentation tasks is

expensive. The semantic segmentation dataset requires

specialized software annotators that are very patient and

extremely accurate of their work [4]. In fact, the process

of labeling with a pixel-level accuracy is perhaps a most

time-consuming process among all of the annotation

types. For this reason, the number of the semantic

segmentation datasets is low and their number of images

is limited.

TensorFlow is an end-to-end open source platform for

machine learning [5]. It has a comprehensive, flexible

ecosystem of tools, libraries and community resources

that inspires researchers to promote the state-of-the-art in

machine learning and developers to build and deploy

machine learning-powered applications. The GPU

support exists for specific NVIDIA cards, using the

related version of the CUDA toolkit [7]. TensorFlow

comes with a strong support for machine learning and

deep learning, and the flexible numerical computation

core is used across many other scientific domains. The

core of TensorFlow is implemented in the C++

programming language, and the main programming

language is Python.

TensorFlow uses Keras as a high-level API for its

library [3]. It is commonly called tf.keras. Keras is a

popular choice of a deep learning library since it is highly

integrated into TensorFlow, which is known in

production deployments for its reliability. The release of

TensorFlow 2.0 has introduced several changes to the

framework: from defaulting to eager execution to a

complete APIs cleanup [4]. Keras is not a high-level

wrapper around a machine learning framework

(TensorFlow, CNTK, or Theano); instead, it is an API

specification used for defining and training machine

learning models. The TensorFlow eager execution is an

imperative programming environment that evaluates

operations immediately, without building graphs:

operations return concrete values instead of constructing

a computational graph to run later [5]. TensorFlow 2.0,

with its focus on an eager execution, allows the user to

design a better-engineered software.

In the paper, TensorFlow 2.0 is used following the

Keras API specification. The main programming

language is Python 3. Four different deep learning

models are built able to segment a portrait from a

webcam video in real time. A combination of two

architectures and two datasets is used. For both

architectures, Convolutional Neural Networks are

employed. In Architecture 1, the inputs and outputs are

the RGB images of the size of 256×256. It is based on the

U-net architecture and uses residual blocks with depth-

wise separable convolutions. In Architecture 2, inputs

and outputs are the RGB images of the size of 128×128.

It is based on the MobileNet-v2 architecture. Training is

evaluated on a CPU and GPU – nVIDIA Quadro

M1000M.

2 METHODS

Real-time portrait segmentation as a specialized

segmentation problem attracts more and more attention,

since for web and mobile applications the background

editing is very important (e.g. blurring, replacement, etc.)

on portrait images and videos (see Figure 1). In this

section, two datasets and structure of two architectures

used for real-time portrait segmentation are introduced.

a) Original image b) The mask c) Original image after

background replacement

Figure 1. Use of portrait segmentation on an image.

REAL-TIME PORTRAIT SEGMENTATION IN TENSORFLOW 143

2.1 Dataset

The dataset is probably the most critical part of the entire

machine learning pipeline [4]. Its quality, structure, and

size are the key to the success of deep learning

algorithms. A dataset is nothing more than a collection of

data. Formally, a dataset can be described as a set of pairs

(ei,li), where ei is the ith example and li is its label, with a

finite cardinality:

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 = {(𝒆𝒊, 𝒍𝒊)}𝒊=𝟏
𝒌

A dataset has a finite number of elements. Our machine

learning algorithm loops over this dataset several times,

trying to understand the data structure, until it solves the

task it is asked to address. For training and testing our

models, two datasets are used. The first is the

“AISegment” [8] portrait dataset. This dataset is

currently the largest portrait matting dataset, containing

34,427 images and corresponding matting results.

Images are collected from Flickr, Baidu and Taobao and

are scaled to 600×800. The corresponding matting files

are in the png format, which extracts the alpha map

(mask) from the png image before training. Some sample

portrait images are shown in Figure 2. To improve the

generality of the trained model, several data

augmentation methods are used to supplement the

original training dataset, leading to better segmentation

results. To increase the accuracy of the model in different

conditions, cold and warm filters are applied on some

images with the help of the Python script. The run-time

augmentation methods used in our experiments for both

datasets include shift, zoom and horizontal flip and are

applied by a Keras data generator and a preprocessing

module.

Figure 2. Sample portrait images from Dataset 1.

The second dataset contains 32,711 images and

corresponding masks. Images are scaled to 256×256 and

masks are in a binary format for two segmentation classes

(foreground and background). This dataset is different

from the first because it contains the same image five

times with different data augmentation methods applied.

Those data augmentation methods are: blur, crop and

amplified light. Some sample portrait images from this

dataset are shown in Figure 3. For both datasets, images

are divided into two groups. One is a training set with

80% of the images and the other is a validating set with

20% of the images. The training set is a subset used to

train the model and the validation set is a subset used to

measure the model performance during training and also

to perform a hyper-parameter tuning/search.

Figure 3. Sample portrait images from Dataset 2.

2.2 Architecture 1

The first architecture used for real-time portrait

segmentation is based on the U-Net architecture. The U-

Net architecture is designed for semantic segmentation

and is based on a fully convolutional network [9]. Our

architecture includes two modules, i.e. the encoder and

decoder module. RGB images of the size of 256×256 are

used as inputs. The encoder module extracts features

from a raw RGB image. It is constructed by combining,

activated traditional convolution layers and residual

blocks with depth-wise separable convolution layers.

The depth-wise separable convolution [10] is a variation

of the traditional convolution used to improve the

efficiency. It performs a depth-wise spatial convolution

followed by a point-wise convolution to mix together the

resulting output channels. The activation layers use the

‘ReLU’ activation function, enabling an easier training

and better performance. The number of filters, learned

by the convolutional layers is 8, 32, 64 and 128. The

kernel size is 3×3, the stride is 2×2 reducing the size of

the output volume (down-sampling) by 2× as a

replacement to max pooling. To reconstruct the spatial

information, a decoder module is used. It contains

transposed convolution layers for up-sampling the

feature maps by 2×. The decoder uses residual blocks too,

and keras Add layers instead of concatenating. Our model

is implemented using TensorFlow and Keras API. The

144 HODŽIĆ, SKEJIĆ, DEMIROVIĆ

Adam optimizer is used to minimize the loss calculated

by the binary cross-entropy loss function with the batch

size of 64 and weight decay of 1e-3 during training. The

initial learning rate is 0.001, and to reduce it when the

metric stops to improve, the ReduceLROnPlateau

callback is used. To visualize the architectures,

TensorBoard is used. Architecture 1 is shown in Figure 4.

Figure 4. Architecture 1.

2.3 Architecture 2

Architecture 2 used for real-time portrait segmentation is

also based on U-Net, but as a backbone for the encoder

module the MobileNet-v2 architecture is used [10].

MobileNets are a family of neural network architectures

released by Google to be used on machines with a limited

computing power. They strive to provide the state-of-the

art accuracy, while requiring as little memory and

computing power as possible. This makes them a very

fast family of networks used for image processing. Our

encoder module uses 3×3 depth-wise separable

convolutions, width multiplier of 0.5 which

proportionally decreases the number of filters in each

layer, linear bottlenecks and shortcut connections. The

RGB images of the size of 128×128 are used, as inputs

and ‘imagenet’ weights pre-trained on ImageNet.

Keeping the U-shape architecture to reconstruct spatial

information, a decoder module with UpSampling2D +

Conv2D layers for up-sampling the feature maps is used.

The decoder contains batch normalization layers that

normalize their inputs, dropout layers with the rate of 0.5

to avoid overfitting and activation layers with a ‘ReLU’

activation function. Architecture 2 uses concatenate

layers in decoder, unlike Architecture 1 which uses Add

layers. Our model is implemented using TensorFlow and

Keras API. The Adam optimizer is used to minimize the

loss calculated by a binary cross-entropy loss function

with the batch size of 32 and weight decay of 1e-3 during

training. The initial learning rate is 0.001. To reduce it

when the metric stops to improve, the

ReduceLROnPlateau callback is used. Architecture 2 is

shown in Figure 5.

Figure 5. Architecture 2.

3 RESULTS

Training and testing are performed on a single machine

running a 64-bit GNU/Linux with seven-core Intel®

6700HQ CPU @ 2.60GHz and GPU NVIDIA Quadro

M1000M. Both architectures use the U-Net based

architectures to generate sharp segmentation boundaries,

depth-wise separable convolutions to gain the running

speed, and activation layers using the ‘ReLU’ activation

function to improve the performance and simplify

training. Both datasets are large (over 30,000 images),

and of a good quality and structure. Figure 6 shows

several difficult portrait segmentation results, obtained

with a model trained on Dataset 1.

REAL-TIME PORTRAIT SEGMENTATION IN TENSORFLOW 145

3.1 Accuracy Analysis

The accuracy is a ratio between the number of correct

predictions and the number of all predictions made. The

accuracy is used to measure the segmentation

performance. These metrics are used during the training

phase to measure the model performance and monitor

how the training proceeds by checking the validation and

training accuracy to detect if the model either overfits or

underfits the training data. Using Dataset 1, the training

accuracy achieved with Architecture 1 is 98.23% and the

validation accuracy is 97.71%. For Architecture 2, the

achieved training accuracy is 97.17% and validation

accuracy is 96.72%. Using Dataset 2, the training

accuracy achieved with Architecture 1 is 98.00% and

validation accuracy is 96.84%. For Architecture 2 the

achieved training accuracy is 97.15% and validation

accuracy is 95.97%. Dataset 1 gives slightly better

results. The models trained on Architecture 2 achieve

higher training accuracy faster, because of using

MobileNetV2. This is why in Epoch 1, the accuracy for

Architecture 2 is about 94% and for Architecture 1 about

82%. After 10-15 epochs, the accuracy for Architecture 1

increases. The accuracy graph is shown in Figure 7.

Figure 6. Segmentation results of challenging portrait

images: a) original image; b) after segmentation on

Architecture 1; c) after segmentation on Architecture 2.

Figure 7. Validation accuracies.

3.2 Loss Analysis

The loss function quantifies how “good” or “bad” a deep

learning neural network learns to map a set of inputs to a

set of outputs from training data. The loss function has an

important job in that it must faithfully distill all aspects

of the model down into a single number in such a way

that improvements in that number are a sign of a better

model. The cross-entropy loss is minimized where

smaller values represent a better model than larger

values. In the paper a binary cross-entropy loss function

is used. Using Dataset 1, the training loss achieved with

Architecture 1 is 0.0302 and the validation loss is 0.0451.

For Architecture 2, achieved the training loss is 0.0390

and the validation loss is 0.0571. Using Dataset 2, the

training loss achieved with Architecture 1 is 0.0401, and

the validation loss is 0.0496. For Architecture 2 achieved

the training loss is 0.0432 and the validation loss is

0.0585. Following the above the combination of

Architecture 1 and Dataset 1 gives the best results. The

loss graph is shown in Figure 8.

Figure 8. Validation losses.

3.3 Speed Analysis

The efficiency is a very important issue for portrait

segmentation in general. For the speed at which images

are shown, the models trained on Dataset 1 give slightly

better results. Our models are tested using a Python script

and also a browser using TensorFlow JS. Regarding the

results obtained using the Python script, the model

trained on Architecture 1 and Dataset 1 is capable of

processing 256×256 RGB images at 12-14 FPS, and the

model trained on Architecture 2 and Dataset 1 is capable

of processing 128×128 RGB images at 15-18 FPS. The

speed comparison for these architectures and datasets is

shown in Table 1.

Table 1. Speed comparisons

Architecture Dataset Python script Browser

1 1 12-14 FPS 5-7 FPS

2 1 15-18 FPS 5-8 FPS

1 2 11-12 FPS 5-7 FPS

2 2 14–17 FPS 5-7 FPS

146 HODŽIĆ, SKEJIĆ, DEMIROVIĆ

Our method is compared with the representative semantic

segmentation method DeepLab [11]. DeepLab uses the

PASCAL VOC 2012 dataset consisting of 20 foreground

object classes and one background class resulting in

10,582 training images. The DeepLab models segment

objects like a person, airplane, train, background on an

image, etc. They adopt the simplest form of piecewise

training and decoupling the DCNN and CRF training

stages, when the unary terms provided by DCNN are

fixed. They obtain the highest accuracy using the

DeepLab-MSc-CRF-LargeFOV method by segmenting

the background on the image. This accuracy is lower than

the one obtained for our portrait segmentation and is

93.1%. When it comes to the image processing speed, our

method shows a better performance. The DeepLab

method operates at 8 FPS, and ours of max 18 FPS. The

related comparison graph is shown in Figure 9.

Figure 9. Accuracy and speed comparison graph.

4 CONCLUSION

Real-time portrait segmentation has a significant role in

many web applications, such as background replacement

or blurring in a video chat or teleconference. The paper

presents two architectures and two datasets on which

models for segmenting the portraits from a webcam video

in real time in a browser are trained. The experimental

results demonstrate a high accuracy and good efficiency

for both architectures and datasets. Architecture 1 is

better in terms of the accuracy (>1%) and loss (~ 0.0088).

Architecture 2 is slightly better in terms of the efficiency.

Dataset 1 is slightly better than Dataset 2 in all respects,

i.e. accuracy, loss and efficiency. Judging from the final

portrait segmentation results from a webcam video, the

model trained on Architecture 1 gives a more stable

output with better boundaries. Therefore, it is

recommended to use Architecture 1 and Dataset 1 due to

their accuracy and also good results in the measuring the

loss and efficiency. However, but both architectures can

serve as a useful tool for real-time portrait segmentation

in a browser. Compared to the representative semantic

segmentation method DeepLab, our method achieves

significantly better performance.

In future, the performance gain of the browser using

WebAssembly, and minimization of the resource

consumption will be investigated.

REFERENCES

[1] Rajalingappaa Shanmugamani, “Deep Learning for Computer
Vision: Expert Techniques to Train Advanced Neural Networks

Using TensorFlow and Keras”, 2018.

[2] Swarnendu Ghosh, Nibaran Das, Ishita Das and Ujjwal Maulik,

“Understanding Deep Learning Techniques for Image

Segmentation”, in ACM Computing Surveys, no. 73, August 2019.

[3] Rowel Atienza, “Advanced Deep Learning with TensorFlow 2 and

Keras – Second Edition”, February 2020.

[4] Paolo Galeone, “Hands-On Neural Networks with TensorFlow

2.0”, September 2019.

[5] TensorFlow https://www.tensorflow.org

[6] Analytics Vidhya, “Convolutional Neural Networks (CNN) from

Scratch”

[7] CUDA https://docs.nvidia.com/cuda

[8] Matting Human Datasets

https://www.kaggle.com/laurentmih/aisegmentcom-matting-

human-datasets

[9] J. Long, E. Shelhamer, T. Darrell, "Fully convolutional networks
for semantic segmentation", in IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp. 640–651 , 2014.

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, LC. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks”, in
IEEE, June 2018.

[11] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille,

“Semantic image segmentation with deep convolutional nets and
fully connected CRFs”, (ICLR International Conference on

Learning Representations), 2014

Lejla Hodžić received her B.Sc. degree in Electrical Engineering from

the Faculty of Electrical Engineering, University of Tuzla, Bosnia and
Herzegovina, in 2018. Currently, she works with the Bicom Systems

d.o.o. as a software engineer. Her research interests include digital

image processing, computer animation and software engineering.

Emir Skejić received his B.Eng, M.Sc. and Ph.D. degrees in Electrical
Engineering from the Faculty of Electrical Engineering, University of

Tuzla, Bosnia and Herzegovina, in 2000, 2003 and 2007, respectively.

Since 2001, he has been employed with the same faculty, where he is
currently an associate professor in the field of Computer and

Information Science. His research interests are computer graphics,

human-computer interaction, and image processing and analysis.

Damir Demirović received his B.Eng, M.Sc. and Ph.D. degrees in
Electrical Engineering from the Faculty of Electrical Engineering,

University of Tuzla, Bosnia and Herzegovina, in 2003, 2006 and 2011,

respectively. Currently, he is an associate professor at the same faculty.
His research interests are in computer science and include pattern

recognition, and image processing and analysis.

https://www.tensorflow.org/
https://docs.nvidia.com/cuda/
https://www.kaggle.com/laurentmih/aisegmentcom-matting-human-datasets
https://www.kaggle.com/laurentmih/aisegmentcom-matting-human-datasets

