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Abstract. The paper proposes new regularization method to state of the power system based on a Weighted 

Least-Squares (WLS) problem. The conventional WLS state estimator includes an iterative process using the 

Normal Equations (NE). In many cases, the NE approach is unstable and very sensitive to erroneous data. 

Morever, the recent trend of employing the state estimation for a distribution system has added new challenges to 

the numerical stability of the state estimator due to the configuration specifics of a particular distribution grid and 

the high R/X ratios of their feeders. Thus, the state estimator is found to be an ill-conditioned system that may fail 

to provide the required solution. Hence, using the proposed regularization method solves the ill-conditioning 

problem of the distribution system state estimation., the performance of the proposed method is evaluated based 

on a simulation test using the U.K. 12-bus and IEEE 14-bus systems 
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Pristop k ocenjevanju stanja slabo pogojenih 

elektroenergetskih sistemov 

 

V prispevku je predstavljena metoda za ocenjevanje stanja 

elektroenergetskega omrežja na podlagi metode uteženih 

najmanjših kvadratov (UNK). Navadno metode UNK za 

ocenjevanje stanja temeljijo na iterativnem postopku, ki pa je 

v določenih primerih nestabilen in občutljiv na napake. 

Specifične konfiguracije omrežja so nov izziv pri ocenjevanju 

stanja, saj je lahko ocenjevanje v slabo pogojenem 

elektroenergetskem sistemu nepravilno. Predlagano  ocenje-

vanje slabo pogojenih elektroenergetskih sistemov smo pre-

verili v postopku simulacije z vodiloma U.K. 12 in IEEE 14.    

1 INTRODUCTION 

The power-system state estimation is an essential 

activity for maintaining the system operation and 

avoiding regional blackouts. This process is 

implemented in power-system control centers using the 

Energy Management System (EMS) and the 

Distribution Management System (DMS). The state of 

any power system, which includes voltage magnitudes 

and phase angles of the system buses, can be estimated 

as a result of solving the state estimation problem  [1].  

The power-system state estimator receives telemetered 

measurements from different locations in the power 

system for calculating the state vector. The real-time 

measurement set includes: voltage magnitudes, active 

and reactive power flows in each branch, active- and 

reactive-power injection in buses, currents of lines or 

branches, circuit-breaker status (on/off), and 

transformer tap positions. The solution of the state 

estimation is delivered to EMS and DMS to be utilized 

by other applications such as the contingency analysis 

and economic dispatch [1],[2]. As the measurements 

contain errors and noise rates, they must be processed 

by the state estimator using an iterative Weighted Least 

Square (WLS) problem [3]. This matrix-based system 

can be unstable numerically. This means small errors in 

the collected data may create substantial deviations in 

the estimated states. Hence, such state estimator is 

declared as an ill-conditioned estimator.  

In large-scale power system, serious stability problems 

can be developed if the state-estimation monitor fits 

inaccurate state-estimation (i.e. the voltages and their 

phase angles). This problem should be intensively 

investigated because "If the system is ill-conditioned, 

then no amount of effort or talent used in the 

computation can produce an accurate answer except by 

chance" [4]. The previous statement indicates the 

weaknesses threaten the whole process of the power-

system state estimation [5].  

The paper briefly discusses the reasons of ill-

conditioning in the state estimation using alternative 

solution methods [6, 7]. Most of these methods have 

been developed for the transmission systems (i.e. high-

voltage grids) [8]. To use state-estimation techniques, 

the modern distribution systems with their radial 

configuration and smart meters must stand-alone. 

Unlike those of the transmission systems, power lines of 

the distribution systems have high R/X ratios and 

insufficient power measurements [9]. These 

characteristics negatively affect the performance of the 
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WLS state estimator. Hence, the regularization approach 

proposed in this paper addresses the problem of ill-

conditioning. Unlike the traditional regularization 

methods, the proposed method directly treats the 

Jacobian matrix. 

Section 2 providres a mathematical formulation of the 

WLS state estimator. Section 3 describes the reasons for 

ill-conditioning considering the status of the power 

systems. Section 4 presents the proposed technique and 

the required process for regularizing the NE approach. 

Section 5 discussed the simulation tests used to evaluate 

the performance of the proposed method using the U.K. 

12-Bus and IEEE 14-bus systems. Section 6 draws 

conclusions. 

2 STATE ESTIMATION FORMULATION 

Installing all the required types of the measuring device 

in all the system buses is not economically feasible. 

Therefore, in the state estimation, the available set of 

measurements is used to estimate the state of the power 

system [1], [2]. If a measurement set is sufficient to 

provide a unique solution for the state vector, the system 

is considered to be observable [10]. 

With a state vector (x) and a measurement set (z), the 

formula of the state estimation is [11]: 

exhz += )(                                  (1) 

where h(x) is nonlinear vector function and e is the error 

or the noise vector.  

     Minimization of the objective function J(x) results in 

the WLS state estimation. 
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)(  is the measurement Jacobian 

matrix and W is the weighting factors matrix. The W 

matrix contains the inverse of the measurement 

variances, i.e. (W =[𝜎1
−2, 𝜎2

−2, ⋯ , 𝜎𝑚
−2 ]). The Jacobian 

matrix is constructed from several blocks to form an 

(m×n) matrix, where m is the measurements and n is the 

number of the state variables. For the sake of simplicity, 

the symbol H replaces H(x). Each block of the H matrix 

corresponds to a specific type of the measurement as 

shown in (3).  
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The objective function can be minimized in the 

following manner to produce estimated state vector �̂�  

(3, 10): 
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where WHHG
T

=  is the gain matrix of the WLS state 

estimator and the coefficient matrix of the state vector. 

Then, x̂ is the difference between true value x and 

estimated value �̂�  is computed as:    
kkTkk

zWxHxxG = )(ˆ)(                  (4) 

The above equation is the NE, which is solved 

iteratively for x̂ . This means the Jacobian H and the G 

matrices are repeatedly constructed at each iteration [2]. 

The G matrix must be sparse and invertible for 

obtaining the state estimation solution from (4). 

However, the problem of ill-conditioning can be 

affected by round-off errors introduced while forming 

the gain matrix [3], [8]. Thus, the poor conditioning 

originates from the Jacobian matrix, and thereby, the ill-

conditioned state estimator can be predicted by 

examining the H matrix. On the other hand, the 

Jacobian measurement matrix becomes ill-conditioned 

if it is a rank-deficient matrix. The well-conditioned 

Jacobian matrix is a full-ranked matrix with its rank 

equaling the number of the state variables (n) [3], [10]. 

 

3  ILL-CONDITIONING: PROBLEM AND 

SOLUTIONS  

The numerical stability of the WLS state estimation is 

affected by several situations that can affect the 

accuracy and the numerical stability of power system 

state estimator [2]. 

The state estimator is sensitive to virtual measurements 

and the power injections utilized to address the 

measurement deficiency [3], [11], [12]. The 

consequences of such case include the situation of a 

badly-scaled Jacobian matrix. However, this problem 

can be noticed in the transmission systems, not in the 

distribution systems. 

The ill-conditioning reasons noticed in the distribution 

system are the lack of power measurements and high 

R/X ratio of the power feeders [13]–[15]. The lack of 

power measurements is here due to the dependence on 

the Ampere measurements. The Ampere measurements 

do not support the phase angle estimation, and are 

considered as redundant measurements [13]. However, 

the modern distribution grids contain Distributed 

Generators (DGs). Thus, the DGs equiped with 

active/reactive power measurements which enhance the 

measurement sufficiency and improve the numerical 

stability.  

On the other hand, the Jacobian matrix of the 

distribution systems state estimator may deteriorate 

because of the high R/X ratios of the distribution system. 

This situation is common in the low-voltage grids 

because of the negligible reactance [15]. Accordingly, 

the diagonal elements deteriorate, and the diagonal 

dominance of the H matrix declines dramatically. In 

contrast, the diagonal elements dominate the Jacobian 

matrix of the transmission grids.   
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Numerous studies have been developed for solving the 

state estimation using relatively stable methods. Besides 

the several methods solving the discussed problem, 

most of the available methods are modifications of the 

traditional methods, which include the orthogonal 

factorization (QR) technique [16]; Normal Equation 

with Equality Constraints (NE/C) [17], [18]; Hatchel's 

matrix approach [19]; blocked formulation method [20]; 

and recently, the regularization techniques using the 

Singular Value Decomposition (SVD) [21–23].  

To solve an ill-conditioned state estimator, the above 

approaches avoid using the gain matrix or treat the 

virtual measurements by reducing the filling-in which 

increases as a separate block that is added to the 

Jacobian matrix. However, these circumventing 

techniques have several drawbacks such as complex 

algorithms, large size of the alternative coefficient 

matrix (i.e. the matrix used instead of the G matrix), and 

an approximate solution when the Jacobian matrix 

becomes a rank-deficient matrix [8]. Therefore, the NE 

approach seems to be the simplest and the least 

expensive approach, but its state-estimation solution 

might be unstable and inaccurate. Thus, the proposed 

solution method employs the NE approach with a 

regularized Jacobian matrix to improve the stability and 

quality of the state-estimation solution. 

4 THE PROPOSED SOLUTION METHOD 

Unlike most of the available solution methods [8], the 

proposed method addresses the Jacobian matrix instead 

of the Gain matrix. The regularization in this approach 

utilizes the Jacobian matrix by adding a minimal 

positive value to its diagonal. The addition of this 

regularization parameter is mainly to support the 

diagonal elements against deterioration caused by the 

measurement deficiency or the R/X ratio. Our 

investigations show the Jacobian is more sensitive to 

these circumstances than the gain matrix. Thus, using 

the Jacobian matrix corrects the ill-conditioning of the 

WLS state estimator. Howevert, the following tasks 

need to be implemented to perforem an adjustable 

regularization to the state estimator: 

a) Determination whether the state estimator is 

ill-conditioned. This task is carried out 

according to the condition number which is a 

measure of the stability/sensitivity of the 

matrix-based systems. The condition number 

of the WLS state estimator is [23], [24]: 

κ (G) =||G||.||G-1||                                  (5) 

where ||G|| is the norm of the gain matrix. The 

condition number is a unity or close to one for 

a well-conditioned matrix and an infinity if the 

G matrix is singular. For the κ values between 

the unity and infinity, the system can be 

unstable or ill-conditioned and, hence, the 

solution may diverge if there is some noise in 

the input data [2, 4]. In this paper, if the system 

has a condition number of 1012 or higher, is 

considered as an ill-conditioned system [25]. 

The cut-off value of 1012 corresponds to 

accuracy of 10-4, which is the set threshold 

accuracy. 

b) The values need to be selected to regularize the 

Jacobian matrix. The regularization parameter 

should be adaptable to the level of ill-

conditioning, i.e. it should be impacting. On 

the other hand, it should be as small as possible 

to avoid affecting the accuracy of the state 

estimation solution. The lowest number that 

differing from zero for a double precision is 

2.22×10-16 [25]. Thus, the regularization 

parameter must be much higher than this value 

for being impacting. The proposed parameter 

(Pregularization) is obtained using the SVD: 

𝑃𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝜆𝑚𝑎𝑥 + 𝑒𝑝𝑠1                       (6) 

where 𝜆𝑚𝑎𝑥  is the maximum singular value that 

is obtained from the SVD analysis and 𝑒𝑝𝑠1 is 

the Machine Epsilon. Only the singular values 

are needed from the SVD analysis. 

c) Determination of the diagonals needed to be 

regularized. The Jacobian matrix consists of 

several blocks that depend on the measurement 

types. The Jacobian has several diagonals. 

However, the regularization parameter is added 

to the principal diagonal of the blocks affected 

by increasing the R/X ratio. These blocks are  

𝜕𝑃𝑖𝑛𝑗. 𝜕⁄  and 𝜕𝑄𝑖𝑛𝑗. 𝜕𝑉⁄ . Other Jacobian’s 

blocks are either affected marginally or are 

inaffected. To maintain the sparsity of the 

Jacobian matrix, the zero entries are excluded 

from the above process.  

Accordingly, the proposed algorithm is simple and less 

expensive regarding in terms of memory size and 

computational efforts and has the following steps:   

1- Prepare the required measurement sets and the 

corresponding weighting factors. Set the 

iteration counter to k=0 

2- Construct the Jacobian matrix 𝐻  

3- Compute the Rank of H 

4- If the rank is full (i.e., Rank = n) go to step 7; 

Otherwise, 

5- Implement the SVD for: 

6- Compute the maximum singular value and 

compute the  Pregularization 

7- Build the regularized Jacobian matrix. 

8- Construct the Gain matrix (𝐻𝑇𝑊𝐻)  

9- Solve (5) for ∆𝑥𝑘. 

10- Check the convergence rate, if (max|∆𝑥𝑘| ≤
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒), stop; otherwise, continue.  

11- Update the state vector (𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘) and 

the iteration counter (k=k+1), return to step 3. 

Compared to SVD, the proposed technique has only one 

coefficient matrix (the G matrix), whereas in SVD there 

are three. On the other hand, it is well-known that SVD 

delivers an approximate solution since it ignores the 

zero singular values. 
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5 SIMULATION TESTS  

For evaluating the performance of the proposed solution 

method is power systems are used using two test cases. 

The first the IEEE 14-bus system with a mesh 

configuration is a transmission system, and second the 

U.K. 12-bus system is a distribution system with a 

weakly-meshed grid [26]. The IEEE 14-bus has low R/X 

ratios for its power lines, the U.K. 12-bus system has 

relatively high R/X ratios [27]. The configuration of the 

U.K. 12-bus system is shown in Fig. 1, and the details 

of the IEEE 14-bus system in [28].  

Table I illustrates the details of the measurement sets 

used for the tests. The tests of the study cases are carried 

out using MATLAB. 

Table 1. The measurement set and the redundancy of the two 

test systems. 

Measurements  
12-Bus system 14-Bus system 

Set 1 Set 2 Set 1 Set 2 

Measurements (m) 37 29 41 33 

State variables (n) 23 23 27 27 

Redundancy (m/n) 1.61 1.26 1.52 1.22 

 

5.1 Construction of the Jacobian matrix 

The tests of the first case-study are implemented for 

analyzing the structure of the Jacobian matrix regarding 

the sparsity, diagonal dominance, and effect of the R/X 

ratio. Thus, the impact of the increased R/X ratio of the 

distribution feeders is examined. The Jacobian matrices 

are constructed for both the IEEE 14-bus and the U.K. 

12-bus system according to the measurement sets in 

Table I. illustrates the construction of the Jacobian 

matrices of the IEEE 14-bus system and U.K. 12-bus 

system respectively. Then, two different R/X ratios of 

are used for a comparison. The patterns of the Jacobian 

matrices of the two test systems for two different R/X 

ratios are shown in Fig. 2. 

Firstly, the base values of the power lines resistance (R) 

are used, then they are increased six times, 6(R) while 

keeping X the same. Thus, the right-side figures refer to 

the R/X case and the left ones represent the Jacobian 

matrix with a ratio of 6(R/X). The distribution grid is 

dramatically affected by this change while the 14-bus 

system is slightly affected. The reduction rate of the 12-

bus distribution grid is about two thirds (65%), while 

the entries of the 14-bus Jacobian matrix are reduced to 

some 25% of their base values. This deterioration 

cannot be avoided when using the orthogonal 

decomposition or the SVD technique since it is related 

to the construction of the Jacobian matrix rather than the 

gain matrix. 

 

Fig. 3 shaows that the main deterioration happen for the 

blocks affected by the decoupling process. i.e., the 

blocks represent the relations of (Pinjection - ) and 

(Qinjection –V). These are blocks H21 and H32. In the 

above figures, the first quarter which represents the 

power measurements turns grey and the white diagonal 

peaks disappear to form the Jacobian structure. Thus, 

these changes confirm the proposed criteria for selecting 

the elements to be regularized. 
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Figure 1. The test system of 12-bus weakly-meshed network.  

 

 

Figure 2. Jacobians of the 12-bus ssytem for two R/X ratios.  
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Figure 2. Jacobian matrix of 12-bus system for two R/X ratios.  
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Regarding the measurement uncertainty, the state 

variables (angles and voltage magnitudes) are increased 

at different rates for each state variable. The uncertainty 

values are inferred from the diagonal values of the 

covariance matrix (σ) that is extracted from the inverse 

of the G matrix. A confidence bound of [-3%, 3%] from 

the mean have been used. The following formula 

represents the percentage uncertainty of the state 

variables (E): 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  ±3 
𝜎

𝐸
 ∗ 100 

5.2 Measurements Deficiency  

 In the second case, the proposed approach is applied to 

two different situations: the first is when there is a 

sufficient number of measurements (Set 1) (Table I). 

The second case is for a small number of measurements, 

i.e. when the redundancy rate is close to the unity. Both 

measurement sets are illustrated in Table II. By 

removing the power-flow measurements, the 12-bus 

network depends more on the pseudo-measurements 

instead on the real-time measurements, which is the 

common situation of most distribution grids. This 

process enables investigating the impact of the DGs in 

distribution grids regarding the state-estimator stability. 

The regularization parameter of this test is 9.61×10-5. 
The condition numbers associated with each case are 

calculated for comparison purposes. These condition 

numbers are based on the regularized Jacobian matrix 

with the regularization parameters shown in Table II. 

The improvement on the conditioning level is noticed 

after applying the proposed method, and the effect of 

the measurement redundancy can be deduced by 

examining the condition numbers.  

 

Table 2. Condition numbers of the test systems for the two 

methods and measurement sets. 

Systems/ Methods 

 

Sets/ Condition numbers 

Set 1 Set 2 

U.K 12-Bus 
NE method 5.396×104 1.595×1021 

Proposed method 2.327×104 1.332×1014 

IEEE 14-Bus 
NE method 1.975×105 2.311×1018 

Proposed method 2.605×104 3.951×1012 

 

6 CONCLUSION 

A regularization method is proposed to solve the ill-

conditioning problem of the WLS state estimator by 

regularizing the Jacobian matrix. It analyzes the reasons 

of ill-conditioning, improves the conditioning level of 

the test systems, and reduces the number of the required 

measurements for observability. The reduction in the 

measurements is required to add accurate meters such as 

PMUs. While the numerical stability of other methods is 

robust, the proposed method offers a simple, efficient, 

and stable state estimator. Moreover, it is adjustable to 

respond to specific features such as limited number of 

measurements and high R/X ratio of the distribution 

feeders. However, further investigations will be needed 

to use the method for an optimal PMU placement and 

linear state-estimation.  
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