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Abstract. Identification and classification of high-impedance faults (HIFs) in electric-power distribution systems 

(EPDSs) represent some of the most significant challenges faced by the distribution system operators (DSOs).  The 

recent advances in signal processing and changes in the EPDS regulatory framework have prompted acceleration 

in the development of advanced methods used for fault identification and classification in EPDS. The paper presents 

a method for identification and classification of HIFs in medium-voltage (MV) EPDSs, based on the Discrete 

Wavelet Transform and Artificial Neural Networks. The method was tested on generated signals based on a real 

EPDS and it was demonstrated that it is capable to accurately detect and classify HIFs in EPDS. The paper 

contributes to the existing research by developing and testing, on a real EPDS, a HIF-identification and 

classification method which offers a better performance compared to the currently installed protection devices.  
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Identifikacija in klasifikacija visokoohmskih okvar z 

uporabo diskretne valjčne transformacije in nevronskih 

mrež 

Identifikacija in klasifikacija visokoohmskih okvar v 

elektrodistribucijskih sistemih je pomemben izziv za operaterje 

elektroenergetskih omrežij. Napredek na področju obdelave 

signalov in spremembe pri regulativi elektrodistribucijskih  

omrežij so spodbudili razvoj naprednih metod za identifikacijo 

in klasifikacijo napak v elektroenergetskih omrežjih. V 

prispevku je predstavljena metoda za identifikacijo in 

klasifikacijo visokoohmskih okvar v srednjenapetostnem 

distribucijskem omrežju. Metoda temelji na uporabi diskretne 

valjčne transformacije in nevronskih mrež. Metodo smo 

preverili s signali na osnovi resničnih elektroenergetskih 

omrežij. Eksperimentalni rezultati potrjujejo, da lahko s 

predlagano metodo natančno in učinkovito  ugotovimo 

visokoohmsko okvaro v elektrodistribucijskem omrežju. 

 

1 INTRODUCTION  

In the recent years, there have been historical changes in 

the power-system structure, organisation and 

management, driven by the process of market liberation 

and energy transition from the conventional to the 

renewable energy generation paradigm. As a 

consequence, the management and operation of the 

electric-power distribution systems (EPDS) have also 

changed. Distribution system operators (DSOs) are 

constantly scrutinised by regulators and customers in 

terms of service reliability and quality parameters [1]. 

Two of the major practical challenges faced by DSO are 

power-system fault detection and classification. In 

particular, fault detection and classification are very 

important for DSO in order to take appropriate actions 

and ensure that the system continues to operate safely and 

efficiently.  

 Unfortunately, many faults remain undetected due to 

complex physical properties of the voltage and current 

waveforms and lack of appropriate detection 

technologies which are capable to provide fast and 

accurate fault classification. This is particularly true in 

the case of high-impedance faults (HIFs), which present 

a special challenge. In the past, there has been an increase 

in the number of reported fault-detection methods, but an 

ideal detection and classification are still an open 

question and continue to be a subject of scholar efforts 

[2], [3]. Therefore, HIFs present a serious problem since 

they cannot be easily detected. For these reasons, there is 

a need for an ongoing investigation of new methods for 

the EPDS fault identification and classification, which 

makes this topic a vibrant research area.  

 The paper contributes to these efforts by presenting a 

new method for identification and classification of HIFs 

in medium-voltage (MV) EPDS based on a combination 

of Discrete Wavelet Transform (DWT) and Artificial 

Neural Networks (ANNs). The aim of the paper is to 

experimentally verify the new method which represents 

an improvement compared to operational capabilities of 

the protection systems currently deployed in EPDS. The 

method is expected to solve one of the major operational 

challenges faced by DSO. The paper is a part of an 

ongoing research into advanced power-system 
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protection, with a particular focus on HIF detection in 

EPDS ([1], [3] and [4]). 

  

2 LITERATURE REVIEW 

The EPDS faults can be broadly classified in two 

categories, based on the fault resistance. The resistances 

in the first category are mostly below a few hundreds of 

Ohms. In order to clear this type of faults, it is necessary 

to isolate the faulted section of the system and to trip the 

circuit-breaker. For this type of faults, the distance 

protection scheme is feasible. The resistances in the 

second category are very high the neutral potential is very 

low [4]. 

HIFs can generally be defined as faults with current 

values in the range from 0 to 75 A in an effectively 

grounded EPDS [5]. Their detection and classification 

continue to be a major challenge for DSO and is 

becoming even more difficult with the increase in the 

EPDS complexity. The existing EPDS protection 

systems are not completely adequate for HIF detection 

due to various issues such as sensitivity, selectivity and 

diversity [6]. The harmonic component in the zero-

sequence current has been typically used in the existing 

detection methods [5]. Nowadays, the research into HIF 

detection continues to attract new interests [7], [5] and 

[8].   

In particular, the combination of DWT and ANN 

appears to be a promising approach for HIF detection, 

because the wavelet transform (WT), which maps the 

time-domain signals into the time-scale domain, is 

capable to describe both the frequency information and 

the location of the frequency components. This unique 

feature of WT makes it a very popular method for HIF 

detection [8]. Further, ANNs have been tested in various 

engineering applications and are regarded as a fast and 

accurate method for classification with powerful 

prediction capabilities. For these reasons, DWT and 

ANNs are often used together in HIF identification and 

classification applications [8] and [9]. In conclusion, HIF 

identification and classification continue to be a relevant 

research topic and a combination of DWT and ANNs is 

a promising approach to an improvement of the existing 

EPDS protection systems.   

 

3 THEORETICAL BASICS 

WT is used in numerous engineering applications. It is 

regarded as a mathematical tool which has numerous 

advantages when compared with traditional methods in a 

stochastic signal-processing application, mainly because 

waveform analysis is performed in a time scale region 

[10]. WT of a signal 𝑓 (𝑡) ∈ 𝐿2(𝑅), where 𝐿2 is the 

Lebesgue vector space, is defined by the inner-product 

between 𝛹𝑎𝑏(𝑡) and 𝑓(𝑡) as [10]: 

 
𝑊𝑇 (𝑓, 𝑎, 𝑏) =

1

√𝑎
∫ 𝑓(𝑡)

+∞

−∞

𝛹 (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 (1) 

where a and b are the scaling (dilation) and translation 

(time shift) constants, respectively, and Ψ is the wavelet 

function which may not be real as assumed in the above 

equation for simplicity [10]. The Wavelet transform of 

the sampled waveforms is obtained by implementing 

DWT given by [10]: 

𝐷𝑊𝑇 (𝑓, 𝑚, 𝑛) =
1

√𝑎0
𝑚

∑ 𝑓(𝑡)

𝑘

𝛹 (
𝑛 − 𝑘𝑎0

𝑚
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where a and b from equation (1) are replaced by 𝑎0
𝑚 and 

𝑘𝑎0
𝑚, k and m being integer variables. In a standard 

DWT, the coefficients are sampled from a continuous 

WT on a dyadic grid, 𝑎0 = 2 and 𝑏0 = 1, yielding 𝑎0
0 =

1, 𝑎0
−1 = 2−1, etc. [10].  

In the Back propagation neural network (BPNN), the 

output is a feedback to the input to calculate the change 

in the values of weights [11]. The weights of the back-

error-propagation algorithm for the neural network are 

chosen randomly to prevent a bias toward any particular 

output. The first step in the BPNN algorithm is a forward 

propagation [11]: 

 
𝑎𝑗 = ∑ 𝑤𝑗𝑖

(1)
𝑥𝑖

𝑚

𝑖

 (3) 

 𝑧𝑗 = 𝑓(𝑎𝑗) (4) 

 

𝑦𝑗 = ∑ 𝑤𝑘𝑗
(2)

𝑧𝑗

𝑀

𝑖

 (5) 

where 𝑎𝑗 represents the weighted sum of the inputs, 𝑤𝑖𝑗  

is the weight associated with the connection, 𝑥𝑖 are the 

inputs, 𝑧𝑗 is the activation unit of (input) that sends a 

connection to unit j and 𝑦𝑖  is the i-th output. 

The second step is calculation of the output difference 

[11]: 

 𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘 (6) 

where 𝛿𝑘 represents the derivative of the error at a k-th 

neuron, 𝑦𝑘  is the activation output of unit k and 𝑡𝑘 is the 

corresponding target of the input. 

The next step is back propagation for hidden layers 

[11]: 

 

𝛿𝑗  = (1 − 𝑧𝑗
2) ∑ 𝑤𝑘𝑗𝛿𝑘

𝐾

𝑘=1

 
(7) 
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where 𝛿𝑗 is the derivative of error 𝑤𝑘𝑗  to 𝑎𝑗.  

Afterwards, the gradient of the error with respect to 

the first- and the second-layer weights is calculated, and 

the previous weights are updated. MSE for each output 

in each iteration is calculated by [11]: 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝐸𝑖 − 𝐸𝑜)2

𝑁

1

 
(8) 

where N is number of iterations, 𝐸𝑖 is the actual output 

and 𝐸𝑜  is the output of the model.  

 After each step, the weights are updated with the new 

ones and the process is repeated for the entire set of input-

output combinations available in the training-data set, 

and this process is repeated until the network converges 

for the given values of the targets for a predefined value 

of the error tolerance [11]. 

 

4 RESULTS, DISCUSSION AND FUTURE WORK 

This section of the paper presents results of the proposed 

algorithm application to the problem of HIF 

identification and classification in MV EPDS. In order to 

demonstrate the practical relevance of the proposed 

algorithm, it is applied to a real 10 kV MV EPDS 

currently used in Bosnia and Herzegovina. First the 

EPDS test system is described, followed by an outline of 

the computational procedure. Next, results of the 

proposed method are presented and discussed. Finally, 

the future research directions are given.  

4.1 The test system  

As the MV and low-voltage (LV) distribution systems 

mostly operate as radial systems, the proposed algorithm 

is tested in a radial EPDS. 

The test system developed for the purpose of 

algorithm testing represents a part of a real MV 

distribution system operating in the area of the City of 

Mostar (Bosnia and Herzegovina) which is similar to 

typical distribution systems used throughout Europe.  

The MV customers are supplied from a 35/10 kV 

main transformer via 10 kV feeders. The LV customers 

are supplied via 10/0.4 kV substations. The test 10 kV 

network supplies electricity in an urban area and mostly 

consists of underground cables. Detailed test system 

parameters are given in Table 1. 

The simulation model is developed in 

MATLAB/Simulink software and presents a three-phase 

model of the part of the Mostar EPDS fed from two 

parallel 35/10 kV transformers. A schematic 

representation of the test system is shown in Fig. 1.  

The faults and measurements are performed on a 10 

kV underground cable that feeds the entire consumption 

area. Faults are simulated for different fault resistances 

(in the range from 20 Ω to 600 Ω) and at different fault 

locations. The simulated faults are phase A to the ground 

fault (AG), phase A to phase B to the ground fault (ABG) 

and phase A to phase B to phase C to the ground fault 

(ABCG). 

 
Figure 1. Test system developed in MATLAB/Simulink 

Table 1. Power-system parameters. 

Component Parameters 

System 

voltages 

VMV1 = 35 kV, VMV2=10 kV, VLV=0.4 kV 

f = 50 Hz 

Transmission 

lines 

lengthL1= 5.87 km, lengthL2= 0.95 km, 

lengthL3= 4.47 km, lengthL4= 1.47 km, 

lengthL5= 5.34 km, lengthL6= 6.63 km, 

lengthL7= 3.11 km 

ZL1= ZL2= ZL3= ZL4= ZL5= ZL6= ZL7  

R1= 0.206 Ω/km, R0= 0.96 Ω/km 

L1= 0.359x10-3 H/km, L0= 1.178x10-3 H/km 

C1= 0.254x10-6 F/km, C0= 0.118x10-6 F/km 

Transformers 

35/10 kV 

Pn=8 MVA, R1=0.0802 Ω, L1=4.028x10-4 H, 

R2=19.64x10-3 Ω, L2=9.866x10-5 H 

Transformers 

10/0.4 kV 

Pn=630 kVA, R1=0.2495 Ω, L1=4.873x10-5 H, 

R2=1.33x10-4 Ω, L2=2.598x10-8 H 
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The sampling frequency of the current protection 

relays and measuring equipment in the Bosnia and 

Herzegovina EPDS is 3.2 kHz. Since the existing 

equipment already operates with this sampling 

frequency, a logical upgrade would be to use this 

equipment coupled with the proposed algorithm. This 

fact is the reason for using the chosen sampling 

frequency. 

For the proposed DWT-ANN algorithm, the condition 

with no fault and the conditions with three types of the 

fault are simulated for various resistance values and fault 

locations, giving a total of 1600 fault scenarios. 

4.2 Computational procedure 

The proposed method for fault identification and 

classification is based on a combination of DWT and 

ANN. It does not require current measurements and 

coefficient calculations because it performs with details 

and approximation waveforms rather than with 

calculated coefficients. The simulation model considers 

the fault resistance values for the unearthed MV network, 

based on [4]. 

After simulating all the possible fault scenarios, for 

each fault and different values of the fault location and 

resistance, the voltage waveforms are generated. The 

fault is simulated during the entire simulation interval, 

i.e. (0 – 0.08 s). When the voltage waveforms are 

generated, DWT is applied to these waveforms. A 

Daubechies 4 wavelet is used at a 3.2 kHz voltage signal, 

therefore one approximation and four details are obtained 

for each voltage. Four levels of decomposition are used 

in this paper in order to get the following frequency 

bands: 

• First detail level - frequency band: [800, 1600] Hz, 

• Second detail level - frequency band: [400, 800] 

Hz, 

• Third detail level- frequency band: [200, 400] Hz, 

• Fourth detail level - frequency band: [100, 200] Hz, 

• Fourth approximation level - frequency band: [50, 

100] Hz 

The A4 waveform is a base sinusoidal wave and 

reflects the signal behaviour during each fault. The rest 

of the DWT waveforms are higher harmonic components 

of the voltage signal, and therefore they reflect a 

distinctive voltage behaviour during each fault type.  

 The algorithm is also tested by the Symlet 4 and 

Biorthogonal 4.4 wavelet families, and the output results 

are similar or the same. Therefore, it is not necessary to 

be particularly cautious regarding the choice of the 

wavelet family. The DWT signal components give a 

good insight into the system behaviour during fault 

conditions. For this reason, they are used as 

representative signals for each fault type. Afterwards, 

these DWT signals are combined and grouped and 

represent a unique „signature“ for each fault, which 

represents the input to ANN. After that, ANN is trained 

with a large set of this data, thus becoming capable to 

detect and identify the EPDS faults.  

The ANN output consists of a set of the values that 

are not discrete, do not indicate an exact fault type, and 

do not represent a fault possibility. By adding a 

modification to interpret results, it is possible to convert 

these outputs to 0% and 100% (probability of the absence 

and presence of each fault). The block Results 

interpretation in Fig. 2 simply finds the highest value for 

the each ANN output scenario and sets it to 100%, while 

setting all other outputs to 0%. With this modification it 

is possible to get an unambiguous fault type as the 

algorithm output. 

Once trained, ANN is capable of fault detection and 

classification, according to the algorithm shown in Fig. 

2. With the measuring equipment installed in EPDS, the 

voltage waveforms can be measured and sent to an 

installed industrial computer with a DWT-ANN 

algorithm software. In the case of a fault detection, an 

appropriate trip signal, depending on the fault type, can 

be sent to the circuit breaker.  

4.3 Results 

In order to use the proposed algorithm in a real PDS, 

ANN needs to be trained to all the possible scenarios 

in EPDS. Since the algorithm is planned to be used in the 

online mode to constantly monitor the system voltages, it 

can constantly improve and learn new possible EPDS 

operating scenarios. 

 For the beginning, the input data for ANN need to be 

created. In order to get a unique EPDS signature for every 

fault type, a signal that reflects this state needs to be 

created. For this purpose, 1600 simulations for three 

types of the fault and normal operating conditions, with 

various fault resistances and fault locations, are carried 

out. For each fault scenario, each phase voltage is 

measured and transformed with DWT. By combining the 

DWT signals of all phase voltages for each fault scenario, 
 

Figure 2. Algorithm of the proposed method. 
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a group signal that reflects the system behaviour during 

each fault is created, as shown in Fig. 2. 

Grouped DWT signal is a signal that is built simply 

by adding the start of the next signal to the end of the 

previous signal using the details and approximation 

waveforms for each fault scenario in the system, i.e. this 

signal is composed from the DWT waveforms of the 

currently measured voltage signal.  A grouped signal for 

400 simulations for each fault type is shown in Fig. 4. 

The differences between the created signals for a 

particular fault type are apparently negligible, but ANN 

is capable to classify them correctly. Higher harmonic 

components, which are important for the identification 

process, can be efficiently identified in the DWT filters 

of the corresponding frequency range. Generally, DWT 

is widely used for the noise-removal applications [12], 

[13]. Moreover, since the proposed algorithm is paired 

with ANNs, which are known to have a high accuracy in 

the pattern classification and noise removal ability, this 

issue is addressed even more effectively [7]. 

 After this unique signal for each fault scenario is 

created, the input set of data for ANN training is ready. 

Designed ANN takes the input set of 1600 input vectors 

and 1600 corresponding outputs during a training 

process. After that, trained ANN has four possible 

outputs, where each output notes the normal operating 

condition and three types of PDS faults. It is important to 

note that the ANN outputs are numerical values, that 

don’t clearly detect or classify the PDS faults. 

 Because of that, a modification to the ANN output will 

be introduced. This modification will take the ANN 

output vector and set the highest value to 100%, and all 

other output values to 0%. This will result in an 

unambiguous output that clearly notes the presence of a 

fault and identifies the fault type. The proposed DWT - 

ANN algorithm is capable to accurately detect the fault 

and distinguish between the three possible categories of 

faults, regardless of the fault-resistance value and fault 

location. After the training and testing process, the 

created ANN is perfectly capable to classify faults in the 

EPDS. 

 In order to get a good insight into the algorithm 

efficiency, it is necessary to test it with new fault 

scenarios with new resistance values and different fault 

locations, i.e. fault scenarios that ANN is not trained to. 

For this purpose, new simulations with new parameters 

are carried out. Table 2 shows classifier results to this 

fault scenarios, where column Desired output presents a 

simulated-fault type and column Actual output an 

evaluated fault type. The 0% or 100% values present the 

absence or presence of a specific fault. Column Actual 

output presents the ANN output for each fault scenario. 

The proposed DWT – ANN algorithm has a 100% 

accuracy in the range of 20 – 600 Ω for all fault locations. 

 The proposed algorithm is planned to be used in the 

online mode. The storage method is important since the 

grouped DWT components take a lot of storage. A 

present-day industrial computer with a somewhat larger 

 
           a 

 
               b 

 
               c 

Figure 4. Grouped DWT component signals: 

(a) AG HIF fault, (b) ABG HIF fault, (c) ABCG HIF fault 

Table 2. Output of the DWT-ANN classifier for different fault resistances, fault locations and fault types. 

 
Resistance 

(Ω) 

 

Fault 

location (% 

length) 

Desired output (probability in %) 

 

Actual output (probability in %) 

AGF ABGF ABCGF No fault AGF ABGF ABCGF No fault 

20 0.01 100 0 0 0 100 0 0 0 

110 0.16 0 0 0 100 0 0 0 100 

200 0.31 0 100 0 0 0 100 0 0 

290 0.46 0 0 100 0 0 0 100 0 

380 0.61 100 0 0 0 100 0 0 0 

470 0.76 0 100 0 0 0 100 0 0 

560 0.91 0 0 0 100 0 0 0 100 
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hard drive will be enough for online monitoring. Few 

minutes old data can be deleted if no disturbances are 

recorded. However, voltage waveforms can be saved for 

a later analysis. The ANN output modification 

contributes to the algorithm speed since the ANN output 

matrix now consists of zeros and ones, and hence does 

not consume much space and makes the matrix easier to 

operate with. 

4.4 Future research directions 

The list of the EPDS fault types is not exhausted by the 

faults included in this paper. However, this algorithm is 

applicable to new scenarios since it can be easily 

extended by an additional training of ANN. The proposed 

algorithm has a potential practical application in terms of 

its implementation on the EPDS protection-system 

devices. In order to achieve that, the algorithm robustness 

improvement is an important part of the future research 

in this area. Further, an extension in the number of the 

system components and scenarios that can lead to a false 

tripping signal should be considered. Finally, an agent-

based modelling of complex systems is proposed as an 

interesting future direction in this area.  

 

5 CONCLUSION  

EPDS faults are undesirable events and remain a serious 

challenge for DSO. In particular, HIF identification and 

classification present a particularly complex task due to 

physical characteristics of HIF and shortcomings of the 

existing protection devices. For these reasons, this topic 

remains an open research area. The paper proposes a 

method to improve the existing algorithms for 

identification and classification of HIFs in MV EPDS, 

based on DWT and ANN. This study is a part of an 

ongoing research into advanced power-system protection 

algorithms concerned mainly with the HIF identification 

and classification. The proposed method has a practical 

significance since, as demonstrated, it can be applied to a 

real EPDS and it accurately identifies and classifies faults 

in the 20 – 600 Ω range of the fault resistance for various 

fault locations. The proposed algorithm is believed to be 

a promising approach to the future implementation of the 

power-system protection devices. 
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