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Abstract. A research and a pilot implementation of a monitoring architecture for multiple-cloud infrastructures
of VMware, HyperV and OpenStack are presented. A standardized set of monitoring attributes is selected and
an efficient architecture to support monitoring itself is implemented.
Two different monitoring architectures and their interfaces are described. The pilot is implemented by using the
less flexible architecture due to the lack of time. The advantages and disadvantages of both architectures are
analyzed.
Furthermore two monitoring systems were implemented. One of them serves only as a proof of concept and
the other is aa complete monitoring infrastructure for multiple different clouds. On the top of the monitoring
system, a fully operational support for SLAs was implemented.
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Nadzor več oblačnih postavitev

Predstavljamo raziskavo in pilotsko postavitev arhitekture sis-
tema za nadzor več oblačnih infrastruktur: VMware, Hy-
perV in OpenStack. Raziskava se osredinja na izbiro stan-
dardizirane množice atributov za spremljanje in na izdelavo
učinkovite arhitekture za sam nadzor. V prispevku razpravl-
jamo o dveh arhitekturah s potrebnimi vmesniki. Pri izvedbi pi-
lotne postavitve je bila uporabljena manj prilagodljiva arhitek-
tura zaradi časovne omejitve, predstavljene pa so prednosti in
slabosti obeh arhitektur. Poleg tega smo izdelali dva sistema
za nadzor, kjer je bil namen prvega le dokaz koncepta, drugi
pa implementira sistem za nadzor večih oblačnih infrastruktur.
Poleg tega sistem implementira polno operativno podporo za
SLA.

1 INTRODUCTION

As cloud management is some kind of specialization
of management of distributed computing systems, it
inherits many techniques from the traditional computer
network-management. However, as cloud computing en-
vironments are considerably more complex than those
of legacy-distributed computing [1], new management
methods and tools need to be implemented. Introduction
of multiple-cloud platforms (such as VMware, HyperV
OpenStack and others) and monitoring crucial aspects
from a centralized point are a challenging task. The
multiple-cloud monitoring introduces the problem of
maintaining compatibility between different attributes in
different clouds. Furthermore, not only measures, but
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also APIs of different clouds are quite different. Indeed,
the number of interfaces can be as high as the number
of the cloud platforms.

The easiest way to define the quality of service at the
SLA (Service Level Agreement [2]) level is to measure
the availability of services and quality of their deliver-
ance. It is very difficult to define and measure the exact
availability of the resources, such as processing power,
I/O read/write speed, etc. The provider provides only
the nominal values of availability for such resources.
Quality of service (QoS), which defines the availability
of sufficient resources to the user, is crucial to the users
of cloud services.

There have been some attempts to address the par-
ticulars of private and mixed clouds, in particular the
solution [3] which presents an implementation of a
private cloud monitoring system (PCMONS). The so-
lution is based on agents. The [4] presents a framework
called Lattice for monitoring multiple federated private
clouds. The general requirements for cloud monitoring
are defined in [5], although the multi-tenancy require-
ment has not much relevance in a private cloud. The
current portfolio of the available tools lacks open source,
inter-operable cloud management and monitoring tools.
To the best of the authors’ knowledge, no research has
been made public that addresses the specific problems
of monitoring multiple private and public clouds.

The paper is structured as follows: Section 2 reviews
the related work; it mainly addresses similarities with
the basic network management and monitoring. Section
3 presents the methodology, followed by a description
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of implementation and testing in section 4. The final
section presents the conclusions and plans for the future
work.

2 RELATED WORK

2.1 Network management and monitoring

Network monitoring is defined in [6] and [7] as the
use of a system that constantly monitors a computer
network for slow or failing components. The system
provides several ways of notification for extraordinary
events. It is a subset of the functions involved in network
management, missing the functions for manipulating
network components. Commonly measured metrics are
response time, availability, uptime, consistency and re-
liability metrics.

2.1.1 Open-source monitoring tools: A survey was
made by comparing the open-source and free network
and system monitoring tools. Some of the observed
studies are [8] and [9]. The tools having the biggest
user base, biggest number of active installations and the
best overall reputation in the community were selected:

• Ganglia monitoring system [10],
• Nagios Core [11] and
• Zabbix [12].
Cacti ([13]) is an open-source, web-based network

monitoring and graphing tool designed as a front-
end application for the open-source tool. It can be
extended using plugins to monitor virtually anything,
which makes it a viable solution for a base for a new
monitoring tool.

2.1.2 Architecture: Fig. 1 shows the basic architec-
ture of a network management system as presented in
[6] and [7]. The architecture for the network monitoring
system is the same, only the functionality is limited to
monitoring, The basic building blocks are:

• Network Management System (NMS);
• Simple Network Management Protocol (SNMP)

[14] presenting a means of standardized commu-
nication between the monitoring entities;

• Management Information Base (MIB): monitoring
information storage;

• Remote MONitoring (RMON) [15].

Figure 1. Basic architecture of a network monitoring system.

2.2 Cloud monitoring

The cloud monitoring tools monitor performance of
the applications hosted in the cloud or control the
public cloud infrastructure, primarily observing the SLA
agreement (SLA, [2]). These tools primarily target one
cloud platform.

Each cloud deployment model has particular needs
and requires different approaches. The most distinct
differences are between public and private clouds. The
public clouds often have geographically diffuse, large re-
source pools, which require more investment in monitor-
ing the traffic and ensuring scalability. Service metrics,
such as the link availability and connection speed, are
an essential information in both the private and public
clouds and are subject to the SLA agreement.

Figure 2. Basic architecture of a cloud system.

The user should be able to control the services re-
motely. It is important that a ”base-lining” (compar-
ing the current performance to a historical metric or
baseline) is created, which represents the optimum. The
multiple clouds introduce a new dimension into solving
the problem of the monitoring task. The control and
monitoring task can be distinguished as two separate
tasks:

• External control: all the services are accessible
from the outside, including the metrics offered by
the service provider. It is necessary to consider also
the impact of the communication link from the user
to the service provider;

• Internal control: parameters are usually not accessi-
ble to the users. The parameters must be controlled
by the service provider to detect on the basis of
this monitoring the errors and anticipate the trends
(accompanied by SLA).

Speaking from the user perspective, the control may
also vary according to the type of the cloud (public,
private, and hybrid). This work is limited to controlling
the IaaS services which include:

• Network control: availability, packet loss, packet
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delay and jitter (usually a link between the IaaS
platform and the Internet);

• Monitoring the CPU server;
• Storage monitoring, e.g. the API interfaces via the

cloud;
• Other types of monitoring: detailed server monitor-

ing and
• Application monitoring.
The interfaces usually used to control the server inter-

face are standard interfaces supported by the operating
systems SNMP, WMI, wbem and virtual platform inter-
face, or by a dedicated agent installed on the server that
communicates with the control system via a standard
or, in most cases, proprietary protocol. Fig. 2 shows the
basic control and management architecture of the cloud
services.

Int the first phases of the deployment the user or
supplier follows the agreed SLA and includes the control
services. The control system generates SLA reports (via
SLM - Service Level Management module) from the
monitoring and SLA data. The SLM module monitors
the SLA in real time using an appropriate ”dashboard”
interface and automatic generation of the SLA reports
according to the agreement and compliance penalties.

2.2.1 Accessing the cloud properties: Most of the
service providers in the cloud offer their programmable
interfaces for monitoring and accessing the function-
ality. They are usually well documented and publicly
accessible (often under a Creative Commons license). As
these interfaces differ substantially between individual
service providers, they are not inter-operable. Some
vendors have adopted interfaces provided by the well
established players like Amazon EC2 API [16]. There
is also a number of open standards under development,
including the Open-Cloud Computing Interface – OCCI
consortium and Open-Grid Forum – OGF, which bring
together some of the most important players in the
field of the cloud technologies. Open standards support
independence from services of one manufacturer. The
OCCI protocol [17] is a collection of the needs of the
IaaS Cloud computing managers and administrators in
the form of Use Cases. This document presents the
grounds for the monitoring requirements in which the
reference feature set (described in Section 3.1) is col-
lected. Configuration Description, Deployment and Life-
cycle Management (CDDLM) [18] describes a standard
for the management, deployment and configuration life
cycle of the Grid services.

3 METHODOLOGY

Our research experiment focused on the following goals:
• definition of a suitable architecture;
• selection of a reference feature set to be monitored

for each platform;

• implementation of a pilot monitoring system and
deployment into a simulated working environment.

The test multiple-cloud setting consisted of three
different cloud infrastructures: VMware, HyperV and
OpenStack. Each platform used a virtualization plat-
form: VMware ESX, Microsoft Hyper-V and Linux
KVM, respectively. For the monitoring system to func-
tion properly, accessing the information about the hosts
and virtual machines is needed. The information is de-
livered through standardized interfaces (installed probes,
API calls to the platforms). The selection of the platform
set was motivated by the following criterion: select two
from the closed-source infrastructures with the largest
user base and the most used open-source infrastructure.
The selection was agreed by all partners of the KC
Class project consortium. Further information about the
project is available in Section 6.

3.1 Monitoring-parameters comparison

Three private cloud platforms were selected as the
testing environments. Two were closed source, VMware
and HyperV and one was open source, OpenStack.

For each of the studied cloud platforms a reference
feature set was constructed using a list of the most pop-
ular and most important monitoring features. A similar
research was already made by [5] and [3], but the results
were not conclusive. The most important document our
research eas based on, was the OCCI protocol [17] with
the record of Use cases. The reference-feature set was
constructed according to the research results [4], [19]
and [20]. It is presented in Table 1.

Each platform completely supported the reference
feature set except for the low-level feature set for the
OpenStack (host parameters, marked with an ∗ in Table
1). Therefore, we introduced the Ganglia monitoring
system [21] for the OpenStack cloud to support the
missing monitoring properties. The selection process is
described in Section 3.2.

3.2 Host parameters monitoring

The three final candidates presented in Section 2.1.1
were deployed in a real-life simulated environment to
test the ease of installation, scalability and usability
(feature set). Based on the testing results the Ganglia
monitoring system was selected although Nagios has
the largest installation base (most used). The reason for
selecting Ganglia was its ease of installation, simple
communication protocol and minimalistic design proper-
ties. These properties make Ganglia to be most suitable
for cluster monitoring which is basically what the system
will be used for in our setting. Moreover, Ganglia has
also won a good reputation in the community and a big
user installation base.
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Table 1. The reference feature set. The ∗ denotes the parame-
ters monitored with the third party software.

Parameter/infrastructure VMware OStack Hyper-V
Mixed parameters

Virtual machine name X X X
Virtual machine status X X X

Host OS parameters
Last host OS start X X X
Host OS drivers status X X X
Assigned proc. time X X X
Processor load X X X
Processor time limit X X X
Processor time reservation X X X
Memory limit X X X
Memory reservation X X X
Memory usage X X X
Management mem usage X X X
Swap size X X X
Network interface name X X X
Network interface status X X X
IP address X X X
Forwarded packs X X X
Received packs X X X
Sent packs X X X
The assigned disk name X X X
Read speed, nr. of reads X X X
Write speed, nr. of writes X X X
VM disk name X X X
Used disk space X X X
Non-used disk space X X X

Host information
Server name X X∗ X
Manufacturer name X X∗ X
Proc. model name and nr. X X∗ X
Number of cores X X∗ X
Core speed X X∗ X
Memory size X X∗ X
Actively used memory size X X∗ X
Management memory size X X∗ X
Kernel memory size X X∗ X
Last boot time X X∗ X
Nr. of virtual machines X X∗ X
Nr. of networks X X∗ X
Nr. of network adapters X X∗ X
Amount of all data X X∗ X
Amount of read data X X∗ X
Amount of sent data X X∗ X
Amount of received data X X∗ X

Storage data
Storage capacity X X X
Available storage capacity X X X
File system type X X X

Image data
Product name X X X
Product information X X X
Product URL X X X
Manufacturer URL X X X
Image status X X X

3.3 Design overview

The basic design of the cloud architecture is presented
in Fig. 2. Monitoring is presented as an independent
module. The multiple cloud monitoring architecture
complies with the established architecture. Each control
system collects data and makes them available to the
SLA control system and to the control dashboard. The
data is processed either in real-time or on-demand. An
important performance aspect are the architecture of the

control systems and the interface.
Two architectures are possible. The first is shown

on Fig. 3 in which the control system communicates
directly with the interface available for a virtual plat-
form. Examples of such interfaces are the VMware
SDK [22]; Hyper-V WMI [23], etc. The access to these
interfaces is possible via an additional software installed
on the control system. In control-system modules can
also be implemented as plug-ins. The advantages of such
implementation are easier debugging and better error
control.

Figure 3. First possibility: the architecture design with direct
communication.

In the second possible architecture (see Fig. 4) in
which the control system communicates via the same
protocol with different virtual platforms, there is no
need to install special software on each virtual plat-
form. A gateway (translation interface) is implemented
for each virtual platform between the interfaces used
by the control system and the virtual platform. The
advantage of this implementation is that the controlled
systems are presented in the same way which makes
it easy to scale the monitoring system. A similar ap-
proach is known in the network management (protocols
SNMP[14], RMON[15], and in the Ganglia monitoring
system [21]).

Figure 4. The second possibility: the architecture design with
communication through a gateway.

The first possibility was selected for pragmatic rea-
sons because the lack of time and resources to imple-
ment the second possibility which is more versatile but
was more demanding second architecture, although it
presents an important advantage over the first one.
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4 IMPLEMENTATION AND VALIDATION

The presented design was implemented on a fully func-
tional multiple-cloud setting. Its details are shown in Fig.
5. The cloud consists of three separate platform imple-
mentations: OpenStack, Microsoft Hyper-V, VMware.

Figure 5. Implemented testi setting.

The proposed architecture and the selected monitoring
parameter set were implemented in a fully functional
monitoring system, BBMon, that permiting empirical
testing of the simulated and real-life test cases. Fig.
6 shows the implemented architecture and the existing
control systems. The architecture supports the complete
SLA control. Each platform provides a system for
monitoring the virtual systems, including ”provisioning”
and control. Monitoring can be done through the API
interfaces allowing control to the third-party tools. All
the data for the OpenStack host parameters gathered by
Ganglia are parsed and presented by the BBMon tool.

Figure 6. Architecture of the proposed system: two monitoring
systems, VMware monitoring tool and BBmon, are deployed
on a mixed-cloud environment.

Two control systems were implemented: the VMware
monitoring tool and BBmon. The first is used as a proof-
of-concept and monitors only the VMware cloud, while
the later interacts with the three systems implementing

the architecture shown in Fig. 6. ESX (Elastic Sky X)
is a hypervisor for the VMware platform, Hyper-v is
a hypervisor for the Microsoft platform and KVM is a
hypervizor for the OpenStack platform. VSpehere APi
is VMware API adopted also by Hyper-v platform and
SCVMM (System Center Virtual Machine Manager) is a
virtual machine manager tool for the Microsoft solution.
XML-RPC is a remote procedure call (RPC) protocol.

4.1 VMware monitoring tool

A single cloud monitoring (VMware Virtualization
Monitoring) tool based on the open-source toolkit Cacti
was developed as a proof-of-concept. A graphical in-
terface is used to display graphs. The data storage is
of a long-term type. A plugin communicating with the
virtualization infrastructure through VMware API was
introduced to the Cacti, thus enabling monitoring of
VMware environment virtualization infrastructure. API
consists of a non-trivial set of data structures enabling
creation, editing, monitoring and management of most of
the infrastructure components. The Cacti framework was
used to avoid developing the basic control systems func-
tionality. The tool presents the basic set of functionalities
for periodic capturing of the necessary information using
API.

4.2 BBmon monitoring system

The BBmon control system is a set of open-source
tools and accessories produced by Astec∗. One of the
most attracting features of the system is the display of
the control tests. It supports control of the basic server
characteristics presented in Table 1.

Fig. 7 shows the monitoring console of the BBmon
control system.

Control can be done in two ways:
• through agents installed on the servers;
• without agents through different protocols or in-

terfaces supported by the controlled appliances or
applications.

The system calculates availability of the resources
within a specified time period. The calculation is called
a test. The test can be modified to tailor specific client’s
needs and cover all available monitoring resources with
the suitable time-frames. An additional module, called
the SLA monitor producing the SLA reports and alarms
compliant to the SLA agreement.

4.3 Testing / Validation

The implemented monitoring systems, i.e. VMware
monitoring tool and BBmon, were used in a real-life
simulation setting.

Stress tests based on artificial traffic and request
generators were used to assess the general robustness

∗http://www.astec.si
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Figure 7. Metrics grouped into the BBmon tests (different
states).

of the presented architectures and also of the specific
implementation:

• A set of three Linux flavors (a generic off-the-shelf
Ubuntu server, Debian server, CentOS server) and
one windows flavor (a Windows Server 2008) were
prepared. A flavor is a cloud-ready installation of
an operating system used to produce ”live” images;

• Each platform was loaded with 10 images, 6 Linux
and 4 Windows flavors. The total number of images
was 30;

• A script was prepared to start and stop the installed
images as planned:

– at the first hour, all the images were started;
– at the next hour, 50% of the (randomly se-

lected) images were shut down;
– at the last hour, all the images were shut down;
– the iteration was repeated for the whole week;

• The setting (all images) was subjected to a heavy
load for a random amount of time: a set of traffic
generators generated requests to all the live images.

The testing results are presented in Table 2.
The monitoring systems performed normally: the la-

tency of the monitoring functions was not increased or
only marginally increased in the heavy-load state. No
data was lost. Some minor flaws in the functionality
were fixed ad-hoc, but overall the proposed architecture
design shows no flaws. The monitoring systems were
installed on VMs in the cloud with the possibility
of having the setting changed with no impact to the

Table 2. The stress-test results: no data lost, latency only
neglectably increased.

Started images Locally collected
data (bytes)

Received
data
(bytes)

Latency

Normal load
100 % 126.290 126.290 0m0.568s
50 % 74.670 74.670 0m0.574s

0 % 23.050 23.050 0m0.559s
Stress load

100 % 126.290 126.290 0m0.642s
50 % 74.670 74.670 0m0.664s

0 % 23.050 23.050 0m0.634s

generality.

5 CONCLUSION AND DISCUSSION

A reference-feature set for cloud monitoring to be used
as a basis for new comparisons is constructed following
the results of previous research. The selected platforms
monitoring features are checked against a reference fea-
ture set; each of the three platforms enables the reference
feature set to be monitored. A pilot implementation of
the monitoring system proves that the prepared solution
is satisfactory but needing further evaluation.
The future plans include reimplementation of a standard-
ized architecture solution with the monitoring system
communicating with the virtual platforms through a
gateway as shown in Fig. 4. The presented methods
and architectures should be further evaluated on a large
mixed-cloud environment using the presented criteria
and the evaluation method should be further researched
as the latency and data consistency of the monitoring
system do not represent the whole monitoring system
performance.
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