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Abstract. The interaction between a charged metal surface and an electrolyte solution causes the formation of an
electrical double layer, which has been a subject of an extensive study for more than a century. The present paper
provides a statistical mechanical description of orientational ordering of water molecules and excluded volume
effect near charged metal surface. The results of statistical mechanical model are then included in generalized
phenomenological Stern model by taking into account the spatial variation of the dielectric constant near the

charged surface and the finite size of counterions.
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Naelektrena kovinska povrsina v stiku z elektrolitsko raztopino -
vpliv krajevne odvisnoti dielektricne konstante

Povzetek. Elektricna dvojna plast nastane kot posledica in-
terakcije med naelektreno kovinsko povrsino in elektrolitsko
raztopino. PriCujoci ¢lanek podaja statisticno mehanski opis
vpliva orientacije dipolov vodnih molekulin kon¢nih velikosti
molekul na elektricno dvojno plast. Napovedi statisti¢no-
mchanskega modela so v nadaljevanju na fenomenoloSki nacin
vkljucene v posplofen Sternov model elektri¢ne dvojne plasti
z upostevanjem prostorske odvisnosti dielektri¢ne konstatne v
bliZini naelektrene kovinske povrSine.

Kljucne besede: orientacijsko urejanje vodnih dipolov, Sternov
model, konéni volumni molekul, dielekri¢na konstanta

1 Introduction

The contact between a negatively charged metal sur-
face and electrolyte solution results into rearrangement of
the ion distribution and water reorientation near the metal
surface and the formation of the so-called electrical dou-
ble layer (EDL). Most of the models describing this phe-
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nomenon assume that the dielectric constant in the whole
system is constant. But actually close to the charged sur-
face the water dipoles cannot move as freely as away from
it and show a distinct preferential orientation in direction
of the normal to the charged surface [1, 2, 3]. Also, due to
accumulation of counterions near the charged metal sur-
face [4] the water molecules are partially depleted from
this region. All these result in spatial variation of dielec-
tric constant near the charged surface [1, 33, 2]. There-
fore, here we present a simple model of EDL, which takes
into account the spatial variation of the dielectric con-
stant. The orientational ordering of water molecules and
the excluded volume effect near the charged metal surface
are described within a statistical mechanical approach.
The results of the statistical mechanical model are then in-
cluded in a generalized Stern model via space dependency
of the dielectric constant near the charged surface and the
distance of closest approach for counterions. A possible
application of the predicted results is also described.
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2 Theory

2.1 Statistical mechanical description of ex-
cluded volume effect and orientation of wa-
ter molecules near a charged metal surface
in contact with an electrolyte solution

We consider a charged metal surface in contact with a
solution of ions and the Langevin dipoles of a finite size.
The metal surface is charged with surface charge density
oess. The lattice with an adjustable lattice site is intro-
duced in order to describe the system of the Langevin wa-
ter dipoles and salt ions. All lattice sites are occupied by
ions or dipoles. For the sake of simplicity we assume that
the volume of each ion is equal to the volume of a water
molecule. Free energy of system F', measured in units of
thermal energy k7', can be written as [1]

i = ) ()W
+ / [n+(r) In n;_(()r) +n_(r)ln n;ir)] av
+ / <n(r,w) In M;_(;iw)> av (1

+ )\/ [ns - <n(r, w)> —ng(r) — n_(r)] dv,

where the first term corresponds to the electrostatic field
energy. Here

U(x) = eod(z) /KT, (2)

is the reduced potential, where e is the elementary charge
and ¢(x) electrostatic potential. The Bjerrum length is
equal to g = eZ/4meokT, where €g the permittivity
of the free space. The second line accounts for mixing
free energy contribution of the positive and negative salt
ions, n4 and n_ are the number densities of positively
and negatively charged ions, respectively, while ng is the
bulk number density of positively and negatively charged
ions, where we assume ¢(x — oo) = 0. The third line
accounts for the orientational and translational entropy
contribution of water (Langevin) dipoles to the free en-
ergy, where ng,, is a bulk number density of dipoles. The
dipole distribution function is given by

n(r’w) = nd(r)P(r,w) ) (3)

where n,4(r) is the number density of water dipoles and
P(r,w) is probability that dipoles located at r are ori-
ented for the angle w with respect to the normal to the
charged metal surface. At any position r we require the

= 1 to be fulfilled,
where the averaging over all angles w is defined as:

normalization condition <P(r, w)>

™

<F(r)> - %/F(r,w) aQ . &)

The last line in Eq.(1) is the constraint due to finite size
of particles, ns being the number density of lattice sites:
Ng = 1/a§, where a is the width of the single lattice site.
Averaging over all angles w in Eq.(3) gives the number
density of water dipoles 7., (r)

<n(r,w)> = <nd(r)P(r,w)>:
= nal)(Pr,w) =naw) - )

The charges of counterions, coions and water dipoles
contribute to the average microscopic volume charge den-
sity

o(r) = eg (ny(r) —n-(r)) = V-P, ©)

where the polarization is given by P = <p n(r, w)> pis
the dipole moment of water molecules.

The free energy F' = F(n4,n_,n) fully specifies the
system. In thermal equilibrium F' adopts minimum with
respect to the functions ny (r), n_(r) and n(r,w). The
results of the variational procedure are

ny(r) = mnge YT, (7
n_(r) = nge'*t, (®)
n(r,w) = ngye PVY/0FA ©)

Inserting Eqs.(7)-(9) into the constraint (see the last line
of Eq.(1)):

ns =ny (r)+ n_(r) + <n(r,w)> , (10)
we can calculate the parameter \:
A s
= ) (11
2ng cosh ¥ + ;§|@$| sinh 22 LZ‘I'l
where we take into account:
(eTprTueo) — (12)

[ e PV¥/eoqq

4
1
21 [ d(cosw)ePol V¥l cosw/eo
1

4w
€0 . Po | V\IJ|
= sinh ,
polv\m €0

where pg is the size of the water dipole moments. In
the above derivation we assume the azimuthal symmetry,
where w is the polar angle between the dipole moment
and the axis perpendicular to the charged metal surface.
Inserting the Boltzmann distribution functions Eqgs.(7)-(9)
into Eq.(6), we get the following expression for the vol-
ume charge density in the electrolyte solution:

0= —2eyng e sinh ¥ — (13)

— g V- (€>\<p e—PV¥/eo >) :
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where:

<p e—p-V\I//eo>
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In the last step of the above derivation we assume the az-
imuthal symmetry and defined © = cosw. Using Eq.(12)

it follows from Eq.(14):
AVA'
F <p0|e |) . (15)

. \VA'J
<p o PV /eo> = —po
0

V|

The function F(u) is defined as:

sinh u
Flu) = £(w) 2

(16)

where L£(u) = (coth(u) — 1/u) is the Langevin func-
tion. Function £(po|V¥|/ep) describes the average mag-
nitude of dipole moments at given r. Inserting the vol-
ume charge density (13) into the Poisson equation AU =
—4mlpo/ey we get [1]:

inh &
AV = Srlgngn, o= _ (17)
_ Do VU F(po|V¥|/eo)
4mlg now Ns eOV [|V\I/| 7 } ,

where function H, related to the finite particle size, is
given by

w Y
H = 2ng cosh ¥ + o’ sinhpOlv | .

18
po|V\I/| €0 ( )

The differential equation (17) has two boundary condi-
tions. The first boundary condition is obtained by inte-
grating the differential equation (17) [1]:

o VU
vy = —Arlp ——— — 19
ls mls N (19)
po [ VU F(po|V¥|/eo)
— 4rlgn, w—[ :
i NE v H s
where % is the vector normal to the surface S. The con-

dition of electro-neutrality of the whole system was taken
into account. The second boundary conditionis V¥|,, =
0.
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In the case of one large charged metal surface being in
contact with the electrolyte solution, the differential equa-
tion (Eq.(17)) reduces to [1]:

v sinh ¥

4rlpng (2 o

szcj_z%[f(poli’l/eo)]) Qo)

with boundary conditions

V(r=0) = 4r& | = oes -
€y
— Nsnow pow e
and
W (z —00) =0 . 22)

The polarization (where x-axis is perpendicular to the
charged surface) is proportional to the electric field
strength

P = co(cess — DE | (23)

where €.y is the dielectric constant. From Eq. (23) the
dielectric constant can be calculated

P
€eff =1+ — . 24)

EoE
On the other hand, the polarization can be defined also via
the expression for the volume density of dipole moments
P= <p n(r, w)>, in which we insert Eqs. (11) and (15)
to get:

vo F(mRY)
V| H

Inserting Eq.(25) into Eq.(24) and taking into account the
definition E = —V ¢, we can calculate the dielectric con-
stant:

P= —Po Now Ns (25)

]:(M)
Po €0
€eff = 1+ ngynsdnlp — -

€0 |V\IJ| H ’

In the case of charged planar metal surface Eq.(26) reads

[1]:
F ()
ceff(x) =14 noywns4nlp Po Z A\ « /

€0 |\Iﬂ| 7‘[

(26)

27)

In the approximation of small electrostatic energy and
small energy of dipoles in the electric field compared to
thermal energy, i.e. small ¥ and small po|¥’|/eo, Eq.(20)
can be expanded in the Taylor series up to the third order
to get [1]:
20+ 2(—qe 4 )W+ e (B2)7 00 08)

A+ M(_nuw + %)(%)4\1,/2

no 6

"
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where

1 ow Poy2  Tow (@)Z\IJZ

= 20w (B0 29
4drlgno 3ns e %

3110 €

The corresponding boundary condition Eq.(21) expanded
up to the third order is:

__Gefr
T'(0) = e
e (2) (- o +5)|
where
Po ? Now 1 2
B— (%) (- w4 E) wOPr, G

while the dielectric constant can be expressed as [1]:

2
€opr (@) = <1+ 47;Bn0w (1;—(’) Bl) NEY))

0

where

2

w 1

Bl=1- 20924 (20 — ) (2) g2 (33
Ns 6n5 10 €0

Hereafter Eqs.(28)-(32) were used to calculate the
spatial profile of the dielectric constant.
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Figure 1. Dielectric constant close to the charged metal
surface. Dipole moment of water po = 5D, bulk con-

centration of water mow/Na
density o.5f = 0.05As/m>.
tice site a; = 0.318 nm.
no/Na = 0.1 mol/l.

Slika 1. Krajevna odvisnost diclektri¢ne konstante v bliZini
naelektrene kovinske ploS¢e. Modelini parametri so: dipolni
moment vodnih molekul po = 5D, koncetracija vodnih molekul
dale¢ stran od plos¢e now/Na = 55mol/l, povriinska gos-
tota naboja na kovinski plo§éi oesp = 0.05 As/m?, Sirina
mreZnega mesta ¢ = 0.318 nm. Koncetracija soli dale¢ stran
od ploste no/Na = 0.1mol/l (polna &rta). Sirina mreZnega
mesta as = 0.318 nm.

= 55mol/l, surface charge

The width of a single lat-
Bulk concentration of salt is

; (30)

Fig.1 shows the spatial variation of dielectric constant,
calculated according to Eq.(32). The dipole moment of a
single water molecule was chosen to be 5 Debyes (D) in
order to reach the dielectric constant of pure water 78.5
far away from the charged metal surface. The bulk water
concentration (ng,, /N 4) was chosen 55 mol/l, where N 4
is Avogadro number.

x[nm]

Figure 2. Number densities of counterions (n4) and wa-
ter molecules (ng) as a function of the distance from the
charged metal surface. Bulk concentration of salt: full line
no/Na = 0.1mol/l and dashed line no/Na = 0.2mol/l.
Model parameters: dipole moment of water po = 5D, bulk con-
centration of water 1o, /Na = 55 mol/l, metal surface charge

density o.¢; = 0.05 As/m?>. The width of a single lattice site
as = 0.318 nm.

Slika 2. Stevilska gostota protionov (n4) in vodnih molekul
(nq) kot funkcija razdalje od naelektrene kovinske ploSce. Kon-
cetracija soli dale¢ stran od plos¢e : ng/Na = 0.1mol/l
(polna ¢rta) in mg/Na = 0.2mol/] (prekinjena ¢rta). Mod-
elni parametri so: elektri¢ni dipolni moment vodnih molekul
po = 5D, koncentracija vodnih molekul dale¢ stran od
plos¢e mow/Na = bHbmol/l, povrSinska gostota naboja

oefsr = 0.4 As/m?. Sirina mreznega mesta a, = 0.318 nm.

Fig. 2 shows the number densities of counterions and
water molecules as a function of the distance from the
charged metal surface. The results are given for three dif-
ferent bulk concentrations of salt. The number density
of counterions decreases with increasing distance from
the charged metal surface. The number density of wa-
ter molecules increases with the increasing distance from
the charged metal surface and reaches a plateau value far
away from the charged surface. Near the charged surface,
the number density of coions is negligible compared to
the number density of counterions. The thickness of EDL
increases with the decreasing bulk concentration of salt.

The average cosine of the angle w between the dipole
vector of the Langevin dipoles and the axis perpendicular
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to the metal surface is given by equation:
<COS(.L) e—Pol¥’| cos w/eo>

<COS(A}> =
B <e—p0|\I/’|cosw/e0>

= —ﬁ(pol‘l’/veo),

(34)

where means the averaging over all angles w

B
weighted by the Boltzmann factor. The average cosine

cosw ) , as a function of the distance from the charged

surface g)r different surface charge densities and bulk
counterion number densities, is shown in Fig. 3. Fig. 3
shows that the dipole moment vectors at the charged metal
surface are predominantly oriented towards the surface.
Far away from the charged metal surface all orientations
of dipoles are equally probable, therefore < cosw >p=
0 (see Fig. 3). The absolute value of < cosw >p in-
creases with increasing o.f; corresponding to stronger
orientation of water dipoles. Due to the stronger screen-
ing, the absolute value of < cosw > p is decreasing with
increasing ng.

0 0 — =
A Y
2.0.05 ~0.05| 4
8
' 0.1 0.1 B)
"0 1 2 3 0 A 2 3
30 30
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8
E10
= 0
0 1 2 3
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Figure 3. Average cosine of angle of the Langevin dipoles
(A,B) and polarization (C,D) as s function of the dis-
tance from the charged metal surface. Figures A and C:
no/Na = 0.1mol/l, surface charge densities from bottom
to top are oer; = 0.05As/m” and o.py = 0.01 As/m”.
Figures B and D: 0.5 = 0.05 As/m?, bulk salt concentra-
tions from bottom to top follows as ng/Na = 0.1mol/l,
no/Na = 0.2mol/l. The width of a single lattice site
as = 0.318 nm (from [1]).

Slika 3. Krajevna odvisnost povpreénega cosinusa nagn-
jenosti dipolov vodnih molekul in polarizacije v bliZini naelek-
trene kovinske plo§e. Sliki A in C: no/Na = 0.1mol/l,
povrsinska gostota naboja na kovinski plos$¢i od spodaj navz-
gor: a.pp = 0.05As/m” in 0.01 As/m>. Sliki B in D:
oer; = 0.05 As/m?, Koncetracija soli dale¢ stran od plo3ce
od spodaj navzgor no/N4 = 0.1mol/l in 0.2mol/l. Sirina
mreZnega mesta a, = 0.318 nm (iz [1]).

2.2 Generalized Stern model. Influence of spa-
tial variation of dielectric constant

The Stern Model [5] was the first attempt to incor-
porate steric effects by combining the Helmholtz [8] and
Gouy-Chapman [6, 7] model. Helmholtz treated the dou-
ble layer mathematically as a simple capacitor, based on
a physical model in which a layer of ions with a single
layer of solvent around each ion is adsorbed at the sur-
face. Gouy [6] and Chapman [7] considered the ther-
mal motion of ions and pictured a diffuse double layer
composed of ions of opposite charge (counterions) at-
tracted to the surface and ions of the same charge (coions)
repelled by it embedded in a dielectric continuum de-
scribed by the Poisson-Boltzmann (PB) differential equa-
tion [9, 10, 4, 11] . In its simple version the Stern Model
[5] consists of the inner Helmholtz plane (IHP), where
the coions are bound near the surface due to specific ad-
sorption, and the so-called outer Helmholtz plane (OHP)
of hydrated counterions at the distance of the closest ap-
proach (b), and a diffuse double layer.

In our generalized Stern model the electrolyte solution
consists of water molecules, monovalent cations and an-
ions (Fig.4). As mentioned above that the dielectric con-
stant profile close to the charged surface (Fig.1) is mainly
determined by two opposing mechanisms: the depletion
of water dipoles at the charged surface due to accumu-
lated counterions (Fig.2) and the decrease in orientational
ordering of the water dipoles as a function of the increas-
ing distance from the charged membrane surface (Fig.3).

Also water molecules in the electrolyte solution can
better organize their hydrogen bonding network without
ions, therefore it is favourable that ions which disrupt
the hydrogen bonded water network are moved from the
bulk towards the charged membrane surface [2]. In accor-
dance with the predictions given in Fig.2 in our general-
ized Stern model, the dielectric constant of the solution is
approximately described by step function (Fig.5). In this
way, the orientational ordering of water molecules near
the charged metal surface (Figs.3 and 4 ) is taken into ac-
count phenomenologically.

In our generalized Stern model, the hard core interac-
tions between the cations (counterions) and the negatively
charged metal surface with effective surface charge den-
sity of is taken into account by means of the distance
of the closest approach b < a (see Fig.4). In Fig.4 a is
defined as the region of strong water orientation, where
the dielectric constant substantially differs from the bulk
value. The parameter b defines the distance of the closest
approach for counterions.

Similarly as in the Stern model [5], the charge density
in the different layers can be written as (see Eq.(6))

o(z) = Z v egni(z) (35)
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Figure 4. Schematic figure of the generalized Stern model of
electric double layer near the negatively charged metal surface,
where b is the distance of the closest approach for the counteri-
ons and a is the region of strong water orientation. The effective
surface charge density o,y accounts also for specifically bound
(adsorbed) negatively charged ions (coions).

Slika 4. Shemati¢ni prikaz pospoSenega Sternovega modela
elektri¢ne dvojne plasti v bliZini naelektrene kovinske plosce,
kjer je b razdalja priblZanja centrov kationov, a pa oznacuje po-
dro¢je mocne ureditve vodnih dipolov. Efektivna povrSinska
gostota naboja na kovinski plos¢i o.rs zajema tudi prispevek
specifi¢no vezanih koionov.

Ecff A
€1
€
>
0 a X [m]

Figure 5. Model of the dielectric constant in electrolyte solution
with respect to the distance from the charged surface. The value
of 1 =2 78.5 corresponds to the bulk value, while €2, which is
in the range of 10 - 60, and a are the model parameters of the
generalized Stern model (see Fig.4).

Slika 5. Shemati¢ni prikaz krajevne odvisnosti dielektricne
konstante elektrolitske raztopine v bliZini naelektrene kovinske
plos¢e. Vrednost €; = 78.5 ustreza vrednosti dale¢ stran od
naelektrene kovinske ploice, €2 v obmod&ju blizu naelektrene
kovinske plosce je parameter posplo$enega Sternobega modela
(glejte sliko 4).

where for monovalent ions, the valence v; is

y+ = 1 5 V_ = —'1 . (36)

The ions are assumed to be distributed according to the
Boltzmann distribution:

n;(x) = n;(00) -exp(—v; eq d(x) [KT) . 37
According to the results given in Fig. 2 the dielectric con-

stant of the solution is approximately described by the
step function (see Fig.5):

r<a
38
e>a (38)

By inserting Eqs.(35)-(38) into the Poisson equation, we
obtain the Poisson-Botzmann (PB) differential equations
(see also [9]) corresponding to the three different regions:

Qno . exp(egp(x)/kT), 0<x<b

(12gb B 2€0

-7 _ 2eqno
dx2

€2€0

-sinh(egp(2)/kT) , b <z <a (39)

250n0
€1€0

-sinh(egp(x) /kT) ,a <z < 0

The boundary condition at x = 0 is consistent with the
condition of electroneutrality of the whole system:

9

__ Oesf
dx ’

0 €2€0

(40)

The validity of the Gauss’s law at x = b and x = a, respec-
tively, is fulfilled by the following equations:

do| 20 @D
del,  dxj,,
do|  do

€2 % - = €1 de (42)

ayt

Due to the screening effect of the negatively charged
metal surface caused by the accumulated cations, we as-
sume that far away from the charged metal surface the
strength of electric field F,; tends to zero:

d¢
2 =0 . 43
dx | 0 “3)
Equations (39) are rewritten in dimensionless form:
([ K-exp(¥), o0<¢<t
a2 . b
el =4 2K -sinh(9) , <é<l (44)
( 2L-sinh(¥) , 1<E< o0

where the reduced potential ¥(z) = ego(z)/kT (Eq.(2))
and the reduced length:

£=

z, (45)
a
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and the constants are defined as:

_ e%noaQ _ e%noaQ ' (46)
EQEQk‘T €1€0/€T

Respectively, the boundary conditions for the dimension-
less case are

A o Oeffa€o

de |, eaeokT (47)
% s % , (48)

o at
% L o L (49)
% 0 (50)

In addition to Eqgs.(47)-(50) we consider also continuity
of the electric potential at x=b and x=a.

Hereafter, we take a closer look at the derivation of the
solutions of Eq.(44). Equation (44) is multiplied at both
sides by 2 %

d (dV\* _ d¥ &y
E(E) CTde ae

by taking into account the continuity of the electric poten-
tial at x=b and x=a, and integrated to get respectively:

dv\? b
/d (d_§) = /2Kexp(\ll)d\ll 0<E< o (52)

(51

dv\? , b
/d (d_é“) = /4Ksmh(\11)d\11 p <E<1 (53)

dv\? ,
/d (d—g) = /4Lsmh(\11)d\11 1<E< o0 (54)

These transformations lead to:

. Ct+2Kexp(¥), 0<¢<t
i VD+4Kcosh¥U, L<¢<1 (55)

—V8Lsinh (3), 1<é< o

where
2
_ Teff€oQ _
C = (—EQEOkT ) 2K exp (¥(0)) , (56)
b

D=C-2Kexp (\IJ <_E>) (57)

Now we proceed with the solution of Eq. (55) considered
separately in each of the three intervals. In the interval
0<¢< g we can get an analytical solution of Eq.(55)
by rearranging it as:

dé = \/C++exp(\ll)' (58)
For the sake of simplicity, let u to be equal to
u=/C+ 2K exp (¥) (59)
and we obtain
du = \/%d\ﬂ (60)
and
u? — C = 2K exp (V). (61)
Integrating Eq. (58) gives:
u(€)

VC—u

VC+u(0)  VC—u
VCHu

1
ﬁln VO—u(0) C>0

u(0)

- 2 u
—— | arctan —arctan—= | C <0
ial Vicl Vic )
In order to obtain u(€), we can transform Eq. (62) as:

_ VC 4+ u(0) VC —u

exp (VC€) eu  Jeru C>0 (63)
And for C' < 0

VIC| g) = (arctan \/% — arctan \/%> (64)
And then u is equal to:

VCP C>0

v= |C| tan(gl + arctan \u/(%) <0 (65)
where

p_ (OHu0) - (- u@)esp (VTE) (o

(VO — u(0)) exp (V)
g1 = (/10 §>, (67)

Now we refer to Eq. (59) and rewrite Eq. (65) as:

VCQ C >0
|C|tan(ql +¢2) C <0

C+2Kexp (V) =
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where
_ (VO +7) = (VIC] =) exp (VCE)
Q= , o (68)
(VIC] = 7) exp (VIC§)
v =+/C+2Kexp (¥(0)) , (69)
q2 = arctan T (70)
VIC]
Finally, from Eq. (68) we receive W as:
In[5%(Q*-1)] C>0
v= { In [% (tan? (q1 + ¢2) — 1)] C<0 7

In the interval g < & < 1, the corresponding equation
from Eq. (55):
dv

— =+vVD + 4K cosh¥ (72)
dg
is solved numerically.
In the interval 1 < £ < oo, we rearrange the corre-
sponding equation from Eq.(55) as:

e — ——9 (73)
~ V/8Lsinh % .
Integrating Eq.(73)
€ 1O qw
/ dfz——/ — (74)
1 V8L Jy(1) sinh 3
gives the following solution:
1 tanh L
=1 ( 1 75
¢ V2L " tanh % ) 7

By transforming Eq.(75), we get the final result for ¥ in
the form:

U = 4tanh™* (tanh \Ilil) exp (V2L(1 — f))) . (76)

The space dependency of the dielectric constant near
a charged metal surface is considered in both models,
within the statistical mechanical approach and also within
the generalized Stern model, where the space dependency
of dielectric constant is approximated by a simple step
function. The corresponding parameters €z and a (see
Fig.5) in the generalized Stern model are determined by

2
X [nm]

Figure 6. Electric potential ¢ as a function of the distance
from the charged surface () calculated using the statistical me-
chanical model (full line) and generalized the Stern model (cir-
cles) for oy; = —0.02 As/m?, the bulk salt concentration is
no/Na = 0.1mol/l. Model parameters within the statistical
mechanical description: width of a single lattice site a,=0.318
nm, dipole moment of water po = 5D. In the generalized Stern
model e2 = 30, e = 78.5,b = 0.0l nm and @ = 0.1 nm.
Slika 6.  Elektrostatski potencial ¢ kot funkcija razdalje
od naelektrene kovinske plos¢e (x) izraCunan v okviru
statisticno mehanskega modela (polna ¢rta) in posploSenega
Sternovega modela (krogci) za vrednosti efektivne povrSinske
gostote naboja na kovinski ploiti ce;r = —0.02 As/m?
(spodnja slika). Koncetracija soli dale¢ stran od kovinske
plo§¢e no/Na = 0.1mol/l. Modelni parametri statisti¢no
mehanskega modela: S§irina mreZnega mesta a.=0.318 nm,
dipolni momemnt vodne molekule po = 5D, koncentracija
vode dalet stran od kovinske plos¢e mow/Na = 55mol/l.
Modelni parametri posplo§enega Sternovega modela e2 = 30,
€1 =78.5,b=0.0l nmina = 0.1 nm.

o [V1

Figure 7. Electric potential ¢ as a function of the distance from
the charged surface (z) calculated using the generalized Stern
model for o.fy = —0.4 As/m? and three values of the dielec-
tric constant ez : 10, 20, 30 (see Fig.4). Model parameters are:
bulk salt concentration is no/Na = 0.15mol/l, e; = 78.5,
b=0.36 nm and a = 0.72 nm.

Slika 7.  Elektrostatski potencial ¢ kot funkcija razdalje
od naelektrene kovinske plos¢e (x) izracunan v okviru pos-
ploSenega Sternovega modela za efektivno povrSinsko gostoto
naboja na kovinski plog¢i o.;; = —0.4 As/m? in tri vrednosti
dielektri¢ne konstante es :10, 20, 30 (see Fig.4) . Ostali modelni
parametri so: koncetracija soli dale¢ stran od kovinske plosce
no/Na = 0.15mol/1, 1 = 78.5, b = 0.36 nm in a = 0.72 nm.

fitting the space dependency of electric potential calcu-
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lated by using the statistical mechanical model (Fig.6).

The inference from Fig.6 is that both approaches are
in a good agreement, when we choose a small value for
the distance of closest approach b. This is justified by
the fact that in the statistical mechanical approach the
excluded volume effect is taken into account namely by
allowing the centers of ions and water molecules to ap-
proach x=0 plane. Both models complement each other,
since the GS model is not restricted to small values of the
surface charge, making it a good supplement to the statis-
tical mechanical approach (see Fig.7).

Fig.7 presents the distribution of the electric potential
for values of the dielectric constant of 10, 20 and 30. It
becomes clear that the absolute value of the electric poten-
tial decreases with the increase in the dielectric constant.

3 Conclusions and Discussion

The presented results might be important for the im-
provement of the biocompatibility of the implant surfaces.
Namely, for the clinical success of an implant, a profound
knowledge of the interaction between the biomaterial and
the cells is needed [12]. The functional activity of cells
in contact with the biomaterial is determined by the ma-
terial characteristics of the surface as well as the surface
topography [13]. As described in this work, the contact
between negatively charged metal surface and electrolyte
solution results into rearrangement of the ion distribution
and water orientational ordering near the metal surface.
Thus, the surface electric potential is modified, which
may among others assist the protein adhesion and the pro-
liferation of the osteoblasts. Most of the models describ-
ing this phenomenon assume that the dielectric constant
in the whole system is constant.

Therefore, in this work the orientational ordering of
water dipoles and the excluded volume were explicitly
taken into account in the statistical mechanical model.
It was shown that the dipole moment vectors of water
molecules at the charged metal surface are predominantly
oriented towards the negatively charged surface while all
orientations of water dipoles far away from the charged
metal surface are equally probable. Due to accumulation
of counterions near the metal surface, we predicted that
the dielectric constant is there significantly reduced.
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