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Abstract. Prediction of tunneling-induced ground settlements is an important task during tunnel excavation in 

urban areas. Ground settlements should be limited within a tolerable threshold to avoid damages to existing 

buildings and infrastructures during and after the construction. Machine learning (ML) methods have been gaining 

an increasing popularity in many fields, including tunnel excavations, as a powerful learning and predicting 

technique. The paper analyzes the possibilities of different machine learning methods to predict the ground surface 

settlement induced by tunneling. Three different ML approaches, including support vector regression (SVR), 

multilayer perceptron (MLP), and long short-term memory (LSTM) networks, are utilized. Two techniques are 

used for the hyperparameter optimization: particle swarm optimization (PSO) and grid search (GS) methods. To 

assess the performance of the ML methods, three performance metrics are used:  the mean absolute error (MAE), 

root mean square error (RMSE) and mean absolute percentage error (MAPE). The paper demonstrates the 

applicability of the three ML methods in tunneling-induced ground settlement prediction for real-world settlement 

datasets. The obtained experimental results indicate that the proposed ML models can accurately and efficiently 

predict the ground settlement.  
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Ocena učinkovitosti metod strojnega učenja za napoved 

posedanja tal 

Napoved posedanja tal, ki ga povzroča gradnja predorov, je 

ključnega pomena pri izkopavanju predorov v urbanih 

območjih. Posedanje tal mora ostati znotraj sprejemljivih 

mejnih vrednosti, da se preprečijo poškodbe obstoječih stavb in 

infrastrukture med gradnjo in po njej. Metode strojnega učenja 

pridobivajo vse večjo priljubljenost na različnih področjih, 

vključno z gradnjo predorov, saj omogočajo učinkovito učenje 

in napovedovanje. Prispevek analizira možnosti uporabe 

različnih metod strojnega učenja za napoved posedanja tal, ki 

ga povzroča gradnja predorov. Uporabljeni so trije pristopi 

strojnega učenja: regresija s podporo vektorjev, večplastni 

perceptron in nevronske mreže dolgega kratkoročnega 

spomina. Za optimizacijo hiperparametrov sta uporabljeni dve 

tehniki: optimizacija z rojem delcev in metoda iskanja po mreži. 

Za oceno učinkovitosti metod strojnega učenja so uporabljene 

tri metrike: povprečna absolutna napaka, kvadratna srednja 

napaka in povprečna absolutna odstotkovna napaka. Prispevek 

prikazuje uporabnost treh metod strojnega učenja za napoved 

posedanja tal na realnih podatkovnih zbirkah. Eksperimentalni 

rezultati kažejo, da predlagani modeli strojnega učenja 

omogočajo natančno in učinkovito napoved posedanja tal. 

1 INTRODUCTION  

The increasing traffic pressure has led to the construction 

of metro tunnels in urban areas, as the metro tunnels have 

become one of the most practical methods to alleviate 

traffic jams. During construction of metro tunnels, the 

ground surface settlement will be induced and can cause 

a significant damage to the surrounding infrastructures, 

during and after the construction. Settlement prediction 

is important for monitoring of changes and 

implementation of strategies for prevention of severe 

structural damages. The ground settlement mechanism 

and the undergoing processes caused by the tunneling are 

complex. Therefore, various methods have been 

proposed for prediction of the tunneling-induced ground 

settlement, including empirical, analytical, numerical 

and machine learning methods. Traditional approaches 

often rely on empirical or analytical methods, developed 

using field measurements, prior engineering knowledge 

and theoretical assumptions. An approach using 

Gaussian normal distribution to represent the tunneling-

induced ground settlement was initially proposed by 

Peck [1]. It was further modified by numerous researches 

[2-4]. Analytical methods have been developed based on 

fundamental equations of the elastic theory. [5-9] 

propose multiple analytical methods for tunneling-

induced ground settlement. While the empirical and 

analytical methods are convenient and straightforward, 

they are limited in their ability to capture the tunnel 

boring machine (TBM) operation features and 

complexity of geological characteristics. Numerical 

simulations such as the Finite Element Method (FEM) 

[10, 11] and Finite Difference Method (FDM) [12, 13] 

Received: 13 January 2025 
Accepted: 7 March 2025 

 

Copyright: © 2025 by the authors. 

Creative Commons Attribution 4.0 
International License 

 

mailto:mamira.serifovic-trbalic@fet.ba
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


14  ŠERIFOVIĆ TRBALIĆ, PRLJAČA, PAPARO, LORUSSO 

provide a more sophisticated approach. They take into 

account the TBM operation and the geological and 

geometry features. In the past two decades, machine 

learning (ML) approaches have been applied in various 

studies to predict the ground settlement caused by the 

TBM tunneling. Examples of such ML-based prediction 

models include artificial neural networks (ANNs) [14], 

decision trees (DT), random forest (RF) [15, 16], back-

propagation neural networks (BPNNs) [17], support 

vector machine (SVM) [14, 17], extreme gradient 

boosting (XGBoost) [18] and extreme learning machine 

(ELM) [17]. To improve the prediction accuracy, the 

deep learning (DL) models, such as long-short term 

memory (LSTM) [19], deep neural networks (DNN) 

[14], 1d convolutional neural networks (Conv1d) [19] 

and gated recurrent units (GRU) [19], have been applied. 

However, prediction of a tunneling-induced ground 

settlement, can usually use monitoring datasets of a 

limited scope. Also, in the literature, there is no 

systematic and quantitative analysis of the performance 

of the available ML algorithms to predict an univariate 

tunnel-induced ground settlement.  

 The paper analyzes the applicability of the ML 

methods in the tunneling-induced ground settlement 

prediction for real-world settlement datasets. It presents 

results of a ground settlement analysis for real settlement 

data induced by tunneling of a metro line tube through 

urban areas using TBM. Three different ML approaches, 

i.e. the support vector regression (SVR), multilayer 

perceptron (MLP), and long short-term memory (LSTM) 

networks, are utilized. Two techniques are used for the 

hyperparameter optimization: the particle swarm 

optimization (PSO) and the grid search (GS) method. The 

rest of the paper is organized as follows. Section 2 

describes the analyzed data and the ML methods. Section 

3 presents the experimental results. Section 4 draws 

conclusions. 

2 METHODS  

In the proposed ML-based approach to the ground 

settlement prediction the ground settlement data are first 

processed to select the relevant data by an outlier 

detection, resampling and interpolation. The processed 

data are divided into the training and test set. The two sets 

are further used for training and performance evaluation 

of the ML models. Two optimization methods, i.e. PSO 

and GS, are used to optimize the hyperparameters of the 

ML models, to fine-tune the model performance. Data 

processing, ML algorithms, hyperparameter optimization 

and evaluation metrics, are briefly described below. 

2.1 Data processing 

The dataset used in our study are collected from the first 

of the two tunnels under construction crossing beneath 

the densely populated area of Firenze, Italy. Since most 

of the tunnel excavation is conducted below the urban 

areas with heavy traffic roads with major transportation 

services, it is necessary to minimize the ground 

settlement and the consequent damage to the existing 

infrastructures. A part of the tunnel alignment and the 

adjacent infrastructure are presented in Fig. 1. A large 

number of the ground surface sensors are utilized, to 

measure the overall settlement during the tunnel 

construction. The recording frequency is once or two 

times per day, depending on the conditions of a particular 

construction work progress. Therefore, the measurement 

data are resampled at a one-day frequency. As the data 

quality significantly affects the performance of the ML 

models, the data processing includes the outlier detection 

based on a z-score before resampling and linear 

interpolation of the missing values. The outliers are the 

data points that significantly differ from other data points 

in the dataset. Assuming the data follows a normal 

distribution, the outliers are removed using the z-score 

method. It is a statistical measure that indicates how 

many standard deviations a data point is from the mean 

of the dataset. To remove outliers using the z-scores, each 

data point z-score is calculated first, 

 ( ) /score i meanZ x x = −  (1) 

The data points with the z-scores above +3 or below -3 

are then marked as an outlier and filtered out from the 

dataset. 

 For the settlement prediction, in total 18 settlement 

measurement points (sensors) are selected. The sensors 

 

Figure 1. Tunneling alignment. 
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are distributed along the route of the tunnel, thus covering 

different parts of the urban area (e.g., tree-lined areas or 

purely asphalted areas).  

 In the first experiment, the four sensors are used (with 

approximately 80 m distance between them). For each 

sensor, approximately 2/3 of the total recorded length is 

taken as the training dataset for the three ML models: 

SVR, MLP and LSTM. The remaining 1/3 of the total 

recorded length is used for testing.  In the second 

experiment, the measurement data are assigned to the 

training and the test sets which receive the data from 14 

and 4 sensors, respectively. In both experiments, the 

settlement prediction is done a day ahead. 

 The sampling frequency being one day, the 

measurement data are a short and sparse one-dimensional 

time series. Therefore, it is necessary to select the 

appropriate size of the rolling window for each ML 

method. The size of the rolling window determines the 

length of the input data samples, i.e., it determines the 

number of the previous time steps used for prediction. As 

such, it is a very important parameter. By using the 

rolling windows, the original single-dimensional data is 

expanded into multidimensional data ML models. 

According to the data analysis and conducted 

experiments, the suitable rolling window size is set to 5. 

2.2 Machine learning algorithms 

After an extensive analysis of the ML algorithms used in 

other studies for the tunnel-induced ground settlement 

prediction, we analyze three ML algorithms which have 

been proven to be efficient and are frequently used 

prediction models, SVR, MLP, and LSTM. 

2.2.1 SVR  

The Support Vector Machine (SVM) [20] is an effective 

technique used to solve the classification (Support Vector 

Classification, SVC) and regression (Support Vector 

Regression, SVR) problems. SVR finds the regression 

function that can adequately map given input dataset x 

and target value y as follows: 

 ( ) ( )f x x b= +  (2) 

where   is the function weight vector, b is the bias and 

  is the nonlinear mapping from the input space to the 

output space. To avoid overfitting the training data 

samples, SVR finds function ( )f x  such that the model 

bias is less than or equal to given error threshold   and 

that can be achieved by minimizing the objective 

function (Eq. (3)): 
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where  defines the margin of an acceptable error around 

the predicted value, C is a regularization parameter 

defined by the user to minimize the associated error and 

maximize the margin. 
i

 and 
i

  are the positive 

numbers and are the measured distances between the data 

points to the regression margins.  

 Eq. (3) can be rewritten as Eq. (5) where ( , )i jK x x  is 

the kernel function which transforms the data point from 

the low-dimensional to the high-dimensional space; 
i

and 
i
 are the Lagrange multipliers and 

svn is the 

number of the support vectors. 
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The common kernel types in SVR include the linear, 

polynomial, sigmoid and radial basis function (RBF) 

kernels. The different kernel functions can be denoted as 

follows: 

• Linear kernel:  

 ( , ) T

i j i jK x x x x=  (7) 

• Polynomial kernel: 

 ( )( , )
d

T

i j i jK x x x x r= +  (8) 

• Sigmoid kernel: 

 ( )( )( , ) tanh T

i j i jK x x x x r= +  (9) 

• RBF kernel: 

 ( )2

( , ) expi j i jK x x x x= − −  (10) 

Prior to model training, the hyperparameters, i.e., the 

type of the kernels (either linear, polynomial, sigmoid, 

Gaussian or Gaussian Kernel Radial Basis Function 

(RBF)) and their corresponding parameters, i.e. C, 

gamma and epsilon values, are optimized using the PSO 

and Grid Search algorithm of the same range of the 

values of the above hyperparameters. Since the ground 

settlement data exhibits a complex, non-linear 

relationship, it is logical to use a non-linear kernel, such 

as the RBF kernel, for the SVR modeling. As expected, 

the RBF kernel is used as a result of the two 

hyperparameter optimization techniques. 

2.2.2 MLP 

A multilayer perceptron (MLP) is a type of the 

feedforward neural network architecture that consists of 

multiple layers of neurons, including an input layer, one 

or more hidden layers, and an output layer, that are 

connected from one layer to the next one [21]. MLP is a 

universal function approximator. It is a widely used type 

of the neural networks, particularly for supervised 

learning tasks, such as classification and regression. 

Connections between the adjacent layers are 

characterized with weights and biases, while the 

activation functions are used to introduce the non-

linearity allowing the network to learn non-linear 
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relationships between the input and output vectors. MLP 

employs a supervised learning technique called the 

backpropagation (BP) algorithm for training the network. 

It is an optimization procedure based on the gradient 

descent. The BP learning involves feeding a data from 

the training set to the input of the network, propagating it 

across the layers from the input layer to the output layer 

via hidden layers and then calculating the output of the 

network. The difference between the output to the desired 

output gives an error. From the error, the gradient of the 

error is calculated. It is then propagated back, from the 

output layer to the input layer (backpropagation). This 

makes it possible to modify the weights values of the 

network, always intending to decrease the network error 

and therefore the learning. Both hyperparameters 

optimization techniques tend to optimize the MLP 

hyperparameters, like the neuron counts in hidden layers, 

learning rate, maximum number of iterations, alpha value 

and activation functions, to improve the MLP 

performance. 

2.2.3 LSTM  

The LSTM algorithm is a type of RNN (Recurrent Neural 

Network), which can learn long-term dependencies in the 

sequence data [22]. The LSTM algorithm introduces the 

LSTM cell, where each cell consists of a memory cell and 

input, forget and output gates. The memory cell added to 

the LSTMs cell remembers the previous steps. The input 

gate controls the information flow from a previous step 

to the memory cell. The forget gate controls whether the 

information in the previous step is remembered or 

forgotten. The output gate controls the information flow 

to be the output, which is relative to the vectors of the cell 

memory output, previous output, and current input. When 

the information is inputted to the LSTM algorithm, the 

gates judge the information. The information that 

conforms to the rules is left, otherwise it is forgotten. 

Thus, by selectively remembering the information, the 

problem of long sequence dependencies in the neural 

network can be solved. The corresponding functions of 

each gate structure are given as: 

  ( )1,t i t t ii W h x b −=  +  (11) 

  ( )1,t f t t ff W h x b −=  +  (12) 

  ( )1,t o t t oo W h x b −=  +  (13) 

where 
ti , 

tf and 
to are the vector of the input, forget and 

output gate, respectively, of a LSTM cell at the t-th time; 

 is the sigmoid activation function mapping the real 

number to  0,1 ; 
ib , 

fb  and 
ob  are the bias weights for 

the input, forget and output gate, respectively;  
1th −

denotes the past hidden state and 
iW , 

fW and 
oW are the 

weight matrices.  

The output of the hidden layer at the t-th time step can be 

written as: 

 tanh( )t t th o C=   (14) 

where tanh is a hyperbolic tangent function mapping the 

real number to [−1,1] and 
tC is the vector of the memory 

cell at a t-th time step: 

  ( )1tanh ,t c t t cC W h x b−=  +  (15) 

 
1 tt t t tC f C i C−=  +   (16) 

where 
cW is the weight matrix and 

cb are the bias weights 

for the memory cell. 

Finally, output of the LSTM cell at the t-th time step can 

be obtained by: 

 
t ty Wh b= +  (17) 

where W is the weight matrix between the hidden nodes 

and the output vectors and b are the bias weights of W. 
 The ground settlement may be significantly affected 

by the time-dependent impacting factors. For example, 

impacting excavation works may lead to a large daily 

ground settlement which may change slowly during and 

after the construction of tunnel structures. As LSTM can 

learn long-term dependencies in the sequence data and 

the ground settlement at the predicted point depends on 

the tunneling information of the surrounding section, the 

LSTM captures the settlement information at long 

intervals. When LSTM outputs through the output gate, 

it considers not only the current input, but also the 

information beyond the current input through the input 

and forget gates, i.e., it simultaneously considers the 

tunneling information of the surrounding sections. 

 When implementing the LSTM network, numerous 

LSTM hyperparameters, such as the number of the 

neurons, batch size, epoch, learning rate, and dropout 

rate, can importantly affect the network performance and 

are therefore tuned by both hyperparameters optimization 

techniques  

2.3 Hyperparameters optimization  

The hyperparameters optimization techniques find the 

optimal combination of the hyperparameters for the ML 

models which achieve the best performance on the data 

in a reasonable amount of the time. Hyperparameters are 

different from the internal model parameters, such as the 

neural network weights for MLP or kernel function for 

SVR, which can be learned from the data during the 

model training phase. Therefore, the choice of the 

hyperparameters optimization method becomes a key 

issue in the ML algorithm. Among the many different 

hyperparameter optimization techniques, we use an 

evolutionary algorithm, i.e. the Particle Swarm 

Optimization (PSO) and a deterministic algorithm, i.e. 

the Grid Search (GS) algorithm. 

2.3.1 Particle swarm optimization  

The Particle Swarm Optimization (PSO) is an 

optimization algorithm designed to solve the problem of 

finding an optimal target value by iteratively improving 

the candidate solutions, here termed particles [23]. The 

PSO algorithm consists of a swarm of particles and each 

particle is represented by its position vector k

iX , velocity 
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vector k

iV and fitness, where k is the current generation 

and i is the ith particle. The predominant objective of the 

PSO algorithm is to find the optimum fitness and the 

corresponding location. For the PSO algorithm, it is 

necessary to define the fitness function, and the PSO 

parameters, such as the swarm size, generations, initial 

velocity vectors and position vectors. In every iteration 

of the algorithm, for each particle, the velocity and 

position vectors will be updated as well as the 

corresponding best fitness value and position of the 

swarm, until the termination criteria are reached, using 

the following equations: 

 ( ) ( )1

1 1 2 2

k k k k k k

i i i i g iV V c r P X c r P X+ = + − + −  (18) 

 1 1k k k

i i iX X V+ += +  (19) 

where 
1c  is the cognitive learning factor, 

2c is the social 

learning factor,  is a constant called the momentum that 

regulates how much the previous velocity value affects 

the velocity at the present step, 
1r , 

2r  are the random 

numbers in the range, 
iP is the personal best location of 

the i-th particle and 
gP  is the global best among all 

particles. The PSO method is employed to optimize the 

hyperparameters of the ML algorithms by defining the 

hyperparameters of the ML algorithms as particles. It 

reduces the error of the settlement prediction model 

through a constant updating the particles.  

 PSO is more complex than the GS algorithm, but it 

supports all types of the hyperparameters and is 

particularly efficient for large configuration spaces. The 

main limitation of PSO is that it requires an appropriate 

population initialization, to avoid converging slowly or 

only identifying a local instead of a global optimum. 

Therefore, a proper population initialization requires a 

prior programmer experience or the use of population 

initialization techniques. 

2.3.2 Grid Search 

The Grid Search (GS) is a hyperparameter optimization 

method, which is a simple and exhaustive searching 

through a user-specified subset of the hyperparameter 

space. The GS algorithm first creates a matrix of all 

possible combinations of the hyperparameter values. 

Each combination of the hyperparameters values is used 

for training and evaluation of the ML model, and the 

performance metric is recorded. The performance metric 

can be any metric relevant to the specific problem, such 

as the accuracy or mean square error. After the 

performances of all possible combinations are 

determined, the combination that results in the best 

performance is chosen. Then, the model is trained again, 

this time using the best combination of the 

hyperparameters, and the final model is used for 

prediction.   

 GS can be easily implemented and parallelized, and it 

guarantees the identification of the best combination 

within the specified search space. The method is 

particularly beneficial for models with a limited number 

of the hyperparameters, such as SVR in our analysis 

where only four hyperparameters are tuned. 

2.4 K-fold cross-validation 

The k-fold cross-validation is a robust technique used to 

improve the generalization performance of the ML 

model. It divides the original training data set randomly 

into k subsets (known as folds), where  they are used as a 

new training set, and the remaining subset is used as a 

new test set. The process iterates k times with a different 

subset reserved for a testing purpose each time. The 

model performance is evaluated by the mean prediction 

error of the k subsets. The fitness function is given by 

 
1

1 k

i

i

Fitness MAE
k =

=   (20) 

where 
iMAE is the prediction error for the i-th validation 

set. 

 Because of the limited amount of the data, the three-

fold cross-validation method is used in combination with 

the hyperparameters optimization algorithms. 

2.5 Evaluation metrics 

To assess the performance of the ML methods, three 

performance metrics are used:  the mean absolute error 

(MAE), root mean square error (RMSE) and mean 

absolute percentage error (MAPE). Their values are 

calculated as follows: 

 
1

1 n

i i

i

MAE r p
n =

= −  (21) 

 ( )
2

1

1 n

i i

i

RMSE r p
n =

= −  (22) 

 
1

100 n
i i

i i

r p
MAPE

n r=

−
=   (23) 

where 
ir is the actual measured value of settlement,

ip is 

the predicted value of the settlement, and n is the number 

of the data samples.  

 

3 EXPERIMENTAL RESULTS 

The three ML algorithms, i.e. SVR, MLP and LSTM, in 

combination with the hyperparameters optimization 

algorithms, i.e. PSO and GS, are applied to the tunneling-

induced ground settlement prediction problem with a 

real-world settlement dataset obtained from the tunnel 

construction site in Firenze, Italy. The same set of ML 

model hyperparameters and the same range of 

hyperparameters values are used for both 

hyperparameters optimization methods. The three-fold 

cross-validation method overcomes the data scarcity data 

and improves the robustness of the prediction model. For 

the settlement prediction, 18 settlement measurement 

points (sensors) are selected. The sensors are distributed 

along the route of the tunnel, thus covering different parts 

of the urban area (e.g., tree-lined areas or purely 

asphalted areas). A Python code is generated to develop 
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an ML model with a hyperparameters optimization for 

the prediction of the tunneling-induced settlement.  

 In the first experiment, four measurement points some 

80 m distant from each other are selected. For each 

measurement point, approximately 2/3 of the total 

recorded length is taken as a training dataset for the ML 

models (SVR, MLP and LSTM). The remaining 1/3 of 

the total recorded length is used for testing.  

 Fig. 2 and 3 show the tunneling-induced ground 

settlement for the measurement point 04-006. There are 

120 data points for the sensor. After preprocessing the 

data, the first 80 data samples are used for training and 

the rest for testing. All ML models, with hyperparameters 

optimized with PSO and GS, are analyzed. Figs. 4 – 9 

show the prediction results for the other three 

measurement points. Table 1 presents the values of the 

evaluation metrics: MAE, RMSE and MAPE for each 

measurement point, ML model and hyperparameters 

optimization method.  It can be noticed that for each ML 

model, a better performance is mainly achieved when 

using the GS optimization. The value of the test data for 

the 06-003 sensor is significantly lower compared to the 

value of the training data, resulting in a slightly worse 

performance of each ML models. The sensor is located at 

different types of the urban area unlike the other three 

sensors (in an alley with trees), and it exhibits a bit 

different settlement curve. Among the analyzed ML 

models, SVR shows a good stability and a good 

prediction accuracy (Table 1). The traditional ML 

algorithms, such as SVR, tend to achieve a higher 

accuracy for small datasets compared to the MLP and 

deep learning algorithms, like LSTM. The LSTM 

network is prone to overfitting, especially when working 

with small datasets like in our experiment, where LSTM 

shows to a poor performance.  Figs. 2 – 11 show that most 

of the settlement measurement data in one phase have 

positive values that may significantly decrease during 

later phases of the tunnel construction. A proper choice 

of the rolling window size assures enough historical data 

to allow the ML models to accurately predict the ground 

settlement values. In our experiments, the best 

performance is obtained when using the 5 size window.  

 In our second experiment, we analyze the 

generalizability of the ML model. The measurement data 

from a group of 14 consecutive sensors are assigned to 

the training set, while the data from another group of 4 

sensors located at other locations along the route are 

assigned to the test set. Table 2 presents the values of the 

evaluation metrics: MAE, RMSE and MAPE for the test 

data, ML model and hyperparameters optimization 

method. Figs. 10 and 11 show the prediction results 

obtained when using the ML models in combination with 

the PSO and GS hyperparameters optimization 

techniques, respectively. As seen, each ML model 

predicts the future settlement along the route within a 

reasonable accuracy, confirmed also by the performance 

metrics values presented in Table 2.   

 It should be noted that the ML model performance is 

significantly affected by the size of the rolling window, 

and of the training dataset and the hyperparameter values 

of the models, and the value of k used for the k-fold cross-

validation. 

 

 
 

 

 

 

Table 1. Prediction results for the test data for four measurement points. 

 

 

Table 2. Prediction results for the test data for 18 measurement points. 

 
 

 

Hyperparameters 

optimization 

methods 

Measurement 

points 

Machine learning model 

SVR MLP LSTM 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

PSO 

04-006 0.017027 0.022363 0.001299 0.024737 0.030606 0.001893 0.044738 0.055646 0.003431 

05-021 0.033032 0.034982 0.003839 0.029308 0.031728 0.003429 0.228177 0.238505 0.026426 

06-003 0.558196 0.673347 0.155314 0.643909 0.708595 0.147152 1.614758 1.912369 0.301144 

07-016 0.177437 0.237796 0.032794 0.326333 0.348464 0.057831 0.422524 0.448524 0.072715 

GS 

04-006 0.026032 0.037614 0.001989 0.017350 0.023350 0.001324 0.036941 0.047521 0.002822 

05-021 0.017663 0.021123 0.002042 0.025566 0.026781 0.002988 0.093183 0.104332 0.010764 

06-003 0.260884 0.302590 0.063892 0.417931 0.451850 0.097591 1.585103 1.863784 0.297303 

07-016 0.137926 0.240986 0.028278 0.277085 0.341541 0.051752 0.255465 0.27916 0.045282 

Hyperparameters 

optimization 

methods 

Machine learning model 

SVR MLP LSTM 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

PSO 0.017027 0.022363 0.001299 0.024737 0.030606 0.001893 0.044738 0.055646 0.003431 

GS 0.137926 0.240986 0.028278 0.277085 0.341541 0.051752 0.255465 0.27916 0.045282 
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Figure  2. Prediction results for the 04-006 measurement point. PSO and: (a) SVR, (b) MLP and (c) LSTM model. 
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(b) 

 
(c) 

 

Figure  3. Prediction results for the 04-006 measurement point. GS and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  4. Prediction results for the 05-021 measurement point. PSO and: (a) SVR, (b) MLP and (c) LSTM model. 
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(b) 
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Figure  5. Prediction results for the 05-021 measurement point. GS and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  6. Prediction results for the 06-003 measurement point. PSO and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  7. Prediction results for the 06-003 measurement point. GS and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  8. Prediction results for the 07-016 measurement point. PSO and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  9. Prediction results for the 07-016 measurement point. GS and: (a) SVR, (b) MLP and (c) LSTM model. 
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Figure  10. Prediction results for the measurement data for the PSO optimization. Prediction results for the entire dataset: (a) SVR, 

(c) MLP and (e) LSTM model. Prediction results for the test set: (b) SVR, (d) MLP and (f) LSTM model. 
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4 CONCLUSION 

An accurate prediction of future ground settlements 

during a metro tunnel construction can enable 

constructors to implement timely and appropriate control 

measures to mitigate the ground settlement and thereby 

prevent accidents and infrastructural damages resulting 

from excessive settlements. The paper analyzes the use 

of the machine learning algorithms in combination with 

hyperparameters optimization techniques for the 

tunneling-induced settlement prediction. The mean 

absolute error (MAE), root mean square error (RMSE) 

and mean absolute percentage error (MAPE), are used as 

an evaluation metrics. The obtained results indicate that 

the ML algorithms have a great potential to predict the 

tunneling-induced settlement. SVR, MLP and LSTM 

algorithms show a good performance and they accurately 

predict the evolution of the tunneling-induced 

settlements. In both experiments, the SVR method is 

assessed to be a useful solution for predicting the 

tunneling-induced settlements when the datasets are 

small. 

 In our future work, more ML and hyperparameter 

optimization methods will be analyzed, to improve the 

multi-step settlement prediction.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure  11. Prediction results for the measurement data the GS optimization. Prediction results for the entire dataset: (a) SVR, (c) 

MLP and (e) LSTM model. Prediction results for the test set: (b) SVR, (d) MLP and (f) LSTM model. 
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