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Abstract. Proportional navigation (PN) is a missile guidance law usually used for low maneuvering targets. PN
generates a commanding lateral acceleration normal to the Line of Sight (LOS) which commands the missile
to steer toward a target. PN is determined by measauring the LOS angular velocity. For a maneuvering target,
PN yields a non-zero final miss distance. The advanced guidance laws such as integrated guidance and control
(IGC) or optimal missile guidance yield better results, but are much more difficult to implement. The paper
presents variants of the traditional PN, which offer a similar result but require only the measurement of the
LOS rate. The guidance laws are simualted on a 6DOF dynamic model and the results are compared with those
obtained with the traditional PN guidance law.
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Analiza učinkovitosti proporcionalne navigacije in metod
vodenja na modelu izstrelka s šestimi stopnjami prostosti

Proporcionalna navigacija (PN) je način vodenja izstrelkov,
ki se običajno uporablja za nizko manevrirajoče tarče. PN
zagotavlja lateralno pospeševanje pravokotno na vidno črto
(LOS), kar usmerja izstrelek proti cilju. PN temelji na mer-
itvi kotne hitrosti LOS. Pri manevrirajoči tarči PN povzroči
neničelni končni odmik od cilja. Napredni načini vodenja, kot
sta integrirano vodenje in nadzor (IGC) ali optimalno vodenje
izstrelkov, zagotavljajo boljše rezultate, vendar so bistveno bolj
zahtevni za implementacijo. Prispevek predstavlja različice
tradicionalne PN, ki ponujajo podobne rezultate, a zahtevajo
le merjenje hitrosti spremembe LOS. Pravila vodenja smo
simulirali na dinamičnem modelu izstrelka s šestimi stopnjami
prostosti (6DOF). Rezultate smo primerjali z rezultati, pri-
dobljenimi s tradicionalno metodo proporcionalne navigacije.

1 INTRODUCTION

Proportional navigation (PN) is perhaps the most used
missile guidance method [1]. The main idea of PN
is to generate lateral commanding accelerations which
are normal to the instantaneous line of sight from a
missile to the target. The intensity of the commanding
lateral accelerations is proportional to the angular rate
of the line of sight (LOS) angle. The commanding
accelerations are forwarded to the autopilot subsystem
which can be a linear or nonlinear controller [2, 3, 4] and
has to make sure that the missile achieves the required
accelerations determined by measring the LOS rate. If a
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missile achieves the required commanded accelerations
and the target is not maneuvering, the target intercept is
guaranteed. However, if the target is maneuvering then
there might be some non-zero final miss distance. This
can be solved by adding a correcting term to the com-
manded lateral accelerations. The term is proportional to
the targets lateral acceleration. The approach is called an
augmented proportional navigation [5]. As it is difficult
to accurately estimate the target lateral accelerations. To
remedy this, novel and more advanced missile guidance
techniques are introduced such as integrated guidance
and control [6, 7]. They can be based either on the
optimal control [8, 9] or sliding mode control [10,
11, 12]. However, most of these new methods require
measurement of the range, target velocity or LOS rate
and are more difficult to implement then PN. Since PN
is directly proportional to the LOS rate, it acts as a
proportional controller in the guidance loop is given in
the Figure 2. To improve steady-state performance and
transient response, a PID controller is utilized. Though
PID control is a very researched topic in the control
system theory it had not been used in missile guidance
algorithms before 2001 [13, 14]. The new approach is
called the neoclassical missile guidance [13, 14]. It is
a modification of the PN guidance law which delivers
a zero miss distance (ZMD) when maneuvering with a
deterministic or stochastic maneuver. It will be shown
that the neoclassical guidance acts as a high-pass filter
which differentiates the LOS rate. Its derivative is pro-
portional to the targets lateral acceleration. Another [15]
similar modification using feedforward and feedback
control signals to make the real missile acceleration
close to the commanded acceleration generated by the
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PN guidance law [15]. The approach is called pseu-
doclassical proportional navigation. The literature only
considers the linearized guidance and missile dynam-
ics. Our paper implements PN, neoclassical navigation
and pseudo-classical navigation guidance methods on a
6DOF missile with a linear autopilot and a maneuvering
target and compares these three types of the guidance
laws. Our novelty of paper includes simulation of neo-
classical and pseudoclassical missile guidance methods
in three dimensions with a six-DOF missile model and
a maneuvering target and a comparison between the
PN, neoclassical and pseudoclassical missile guidance
methods. This paper is organized as follows: Section
2 presents the missile 6-DOF model along with the
aerodynamic coefficients used for its implementation.
Section 3 explains the classical PN. Section 4 describes
the missile autopilot used for three guidance methods.
Section 5 shows actuator model. Section 6 explains
the neoclassical missile guidance method and section
7 explains the pseudoclassical missile guidance method.
Section 8 shows the target model with a lateral acceler-
ation in three dimensions. Section 9 presents the Monte
Carlo simulations for the range of target maneuvers
and compares the three given algorithms, graphs and
methods for the sinusoidal target maneuver. Section 10
draws the final conclusion.

2 MISSILE 6-DOF DYNAMIC MODEL

The missile motion is defined by six nonlinear differ-
ential equations of the first order. These equations are
given by:

Ṗ = L/Ix (1)

Q̇ = PR (Iz − Ix) /Iy +M/Iy (2)

Ṙ = PQ (Ix − Iy) /Iz +N/Iz (3)
u̇ = vR− wQ+ Fx/m (4)
v̇ = wp− uR+ Fy/m (5)
ẇ = uQ− vP + Fz/m (6)

where u, v and w are the missile velocities along the
x, y and z axes of the missile body frame. P , Q and
R are the rotational angular velocities of the x, y and z
axes of the missile body frame. L, M and N are are the
moments acting along the x, y and z axes of the missile
body frame. Fx, Fy and Fz are the total forces acting
along the missile body axes. Forces acting along missile
body axes are calculated as follows:Fx

Fy

Fz

 =

T0
0

+mg

 − sin θ
sinϕ cos θ
cosϕ cos θ

+

FAx

FAy

FAz

 (7)

where T is the thrust force, g is the gravitational
acceleration and m is the mass of the missile, assumed
to be constant. Angles θ, ϕ and ψ are the Euler RPY
angles which the describe orientation in reference to the
fixed inertial reference frame. Forces FAx, FAy and FAz

are the aerodynamic forces acting along the missile body
axis. They are highly nonlinear functions depending on
all the state variables and mostly upon the Mach number,
angle of attack α and sideslip angle β. The angle of
attack and the sideslip angle are calculated as follows:

α = arctan
w

v
(8)

β = arctan
v

u
(9)

For a cruciform missile, these aerodynamic forces are
calculated as follows [16]:FAx

FAy

FAz

 = −qS

Cx0
+ Cx2

(
α2 + β2

)
CNβ
CNα

 (10)

where S is the wingspan reference area, q = 0.5ρv2m is
the dynamic pressure, vm =

√
u2 + v2 + w2 is the total

missile velocity and ρ is the air density. Coefficients Cx0
,

Cx2 and CN are aerodynamic coefficients measured
at different angles of the attack, sideslip angles and
Mach number. These numbers can be determined in a
wind tunnel or using a special software such as Missile
DATCOM. For subsonic flights, these coefficients do
not vary considerably. For a complete model, moments
acting on the missile airframe need to be calculated.
The aerodynamic forces act at the point called the
center of pressure while the missile rotates around its
center of gravity. These two points are displaced by
distance rx. Wing deflections and missile rotation also
cause moments which need to be calculated. The total
moments are calculated as follows [16]:LM
N

 =

 0
−rXFAZ

rXFAY

+ qS

vm

CLPP
CMQQ
CNRR

+qS
CLδEδE
CMδV δV
CNδP δP


(11)

where CLP , CMQ and CNR are the aerodynamic sta-
bility coefficients, CLδE , CMδV and CNδP are the
aerodynamic control coefficients and δE , δV and δP
are the aileron, flaps and rudder deflections respectively.
To define the whole model, a transformation from the
angular velocities to the derivatives of the Euler RPY
angles are defined as follows:ϕ̇θ̇

ψ̇

 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

PQ
R

 (12)

Table 1 shows the used missile parameters [17] for the
simulation inside Matlab and Simulink.

3 PROPORTIONAL NAVIGATION

The PN generates commanding signals in terms of the
lateral accelerations normal to the line of sight which are
proportional to the angular rate of the line of sight [18].
Figure 1 shows the geometry of the PN in one guidance
plane. The commanding lateral acceleration is given by:
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Ix Iy, Iz m Cx2

0.024 kgm2 0.958 kgm2 11.25 kg 0.484
Cx0

CNδP CMδV CLδE

2.04 0.0905 0.0905 0.0905
CN CMQ CNR CLP

3.298 −10 −10 0.0905
T rx ρ S

750N −0.119m 1.225 kg/m3 0.0314m2

Table 1: Missile parameters.

Figure 1: Geometry of the PN.

ac = Nvcλ̇ (13)

where λ is the line of the sight angle, vc is the missile
closing velocity and N ≥ 3 is the effective navigation
ratio.The LOS rate can be measured using infrared or
electro-optical sensors. [19] uses machine learning to
estimate the LOS rate and its PN usage. In order to
calculate the closing velocity, the target velocity has to
be known which requires the use of an active radar. [20,
21, 22] estimate the closing velocity based on the missile
velocity to assume that the target is not moving and
still achieving the zero miss distance. This PN variant
is called the true PN [20]. It is given by:

ac = Nvmλ̇ (14)

In the three dimensions, the LOS rate is generalized as:

ω = λ̇ =
−r × vm

r2
(15)

Therefore, the 3D true PN guidance law can be defined
as:

ac = Nvm × ω (16)

The second element of vector ac is the commanded
lateral acceleration in the horizontal guidance plane and
the third element is the commanded lateral acceleration
in the vertical plane. The first element can be discarded.
The guidance space can be divided into the horizontal
and vertical guidance plane. The commanded lateral
accelerations need to be generated for each of these
planes.Assuming a small line of the sight angle, a lin-
earized guidance model is obtained. Its relative distance

y of the missile from the target is calculated using the
following differential equation:

ÿ = at − am (17)

The model determines the LOS angle using the follow-
ing expression:

λ =
y

vc (tf − t)
(18)

where tf is the total flight time and is assumed to
be constant. The block diagram in Figure 2 shows the
linearized guidance loop where G1(s) is the missile
seeker dynamics modeled as a first order linear system
and G2(s) is the missile dynamics. The Guidance loop

1
s2

1
vcltgo

s G1(s)

NvclG2(s)

aT = ÿT + y λ λ̇

−

Figure 2: Linearized guidance loop.

dynamics is given as:

G(s) = G1(s)G(s) (19)

Despite being a a linearized model, it provides accurate
results.

4 AUTOPILOT DESIGN

The missile subsystem ensuring real missile accelera-
tions equal to the command accelerations by the guid-
ance law is referred to as the autopilot. When roll angle
ϕ is zero, there will be no cross-coupling between the
pitch and yaw channels of the motion. This is achieved
using a PD controller with a measured roll angle in
the feedback loop. The controller design is shown in
Figure 3. The inner feedback loop is a damping loop
which ensures minimal oscillations in the roll angle
response. The outer loop ensures that the roll angle is
always equal to zero. When the missile is stabilized
in the roll channel, the pitch and the yaw movement
are controlled independently. The main goal of the
autopilot is to ensure that the missiles lateral acceleration
is equal to the commanded lateral acceleration for te
vertical and horizontal guidance plane. Therefore, there
is one controller for the vertical plane and one for the
horizontal guidance plane. The two controllers have the
structure given in the Figure 3. The missiles lateral
accelerations are given in the wind frame whose x axis
is colinear with the wind direction. The derivative of
the rotating velocity vector is given in body frame. The
velocity derivative has to be transformed into the wind
body frame via the following transformation matrix:

TW
B =

cosα cosβ − sinβ sinα cosβ
sinβ cosα cosβ − sinα sinβ
− sinα 0 cosα

 (20)
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KAϕ KPϕ Missile ϕ− −

ϕ̇
+ϕref = 0 +

Figure 3: Roll controller design.

The missiles lateral accelerations are given by:axay
az

 = TW
B

u̇v̇
ẇ

+

PQ
R

×

uv
w

 (21)

where ay and az are the missile horizontal and lateral
accelerations normal to the velocity vector in the wind
frame and ax is the acceleration along the velocity
vector. As during the terminal guidance phase, the
missile does not change its velocity. It is usually zero.
Figure 4 shows the design of the lateral acceleration
controller for vertical guidance plane. The aerodynamic

KAθ KPθ Missile az− −

θ̇
+azc +

Figure 4: Lateral acceleration controller design.

coefficients change with respect to the Mach number,
angle of attack, sideslip angle and other state variables.
Therefore, it is advisable to create multiple controllers
for various operating points. The design approach is
called gain scheduling [4, 23]. Similarly as subsonic
flights, these aerodynamic coefficients do not vary much,
so it is enough to design only one controller.

5 CONTROL SURFACES AND ACTUATORS

The presented missile dynamic model has three system
inputs. The tactical missiles usually have the four control
surfaces given in the × or + configuration(see Figure
5). Combined motion of the four control surfaces gives
either the elevator, rudder or aileron control deflections.
In the + configuration, surfaces 1 and 3 rotating in
the same direction give rudder deflections. Similarly,
surfaces 2 and 4 rotating in the same direction give
elevator deflections. If surfaces 2 and 4 have an indepen-
dent servo mechanism, their rotation gives the aileron
deflections. In the × configuration, the autopilot pitch
and yaw axes are each 45◦ from the planes of the
adjacent control surfaces [16]. This implies that each of
the four control surfaces is deflected equally for the both
pitch and the yaw maneuvers. This means that the ×
configuration requires less surface deflections compared
to the + configuration. The autopilot calculates the
elevator, rudder and aileron deflections. The computed

Pitch

1

3

42 Yaw

1

3

42 Roll

1

3

42

+ Configuration

Pitch

12

3 4

Yaw

12

3 4

Roll

12

3 4

× Configuration

Figure 5: Missile wing configurations.

deflections are transformed into four wing deflections
using the transformation matrix given by the following
expression:

δC1

δC2

δC3

δC4

 =


−1 cosϕP −sinϕp
−1 sinϕP cosϕp
1 cosϕP − sinϕp
1 sinϕP cosϕp


δP1C

δP2C

δP3C

 (22)

where values δP1C , δP2C and δP3C are the elevator,
rudder and aileron commanding deflections calculated
by the autopilot. Values δC1, δC2, δC3 and δC4 are the
fin deflections required by each wing. The commanded
fin deflections are usually limited. Angle ϕP is the angle
by which the autopilot frame is rotated compared with
the wings. For the angle ϕP = 0, the missile is in the
+ configuration while the angle ϕP = 45◦ yields the
× configuration. The fins servomechanism ensures the
fins to rotate for a commanded amount which yields real
fin deflections δ1, δ2, δ3 and δ4. Fins are controlled by
pneumatic, hydraulic and electric actuators depending
on the maximum required fin moment. The fin transfer
function is modeled as a second order transfer function:

GFin(s) =
ωn

s2 + 2ξωns+ ω2
n

(23)

The fin servomechanism is implemented using a simple
PID controller. Rreal fin deflections are then transformed
back into the elevator, rudder and aileron deflections
using the following transformation:

δEδV
δP

 =

−1/4 −1/4 1/4 1/4
1/2 0 1/2 0
0 1/2 0 1/2



δ1
δ2
δ3
δ4

 (24)

With the done transformations, the dynamic model is
now more accurate since it takes into account also the
saturation, dynamics and configuration of the actuators.
The tactical missiles are considered in the × configura-
tion.
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6 NEOCLASSICAL MISSILE GUIDANCE

The traditional approach to the missile guidance is to
generate the commanding lateral acceleration propor-
tional only to the LOS rate. It is known as the propor-
tional navigation approach which produces miss distance
in case of a maneuvering target. The modern approach
is based on the optimal control which guarantees zero-
miss-distance but needs much more details about the
system and kinematic variables. The neoclassical guid-
ance approach guarantees the zero-miss-distance (ZMD)
as the other modern guidance laws, but it only requires
measurements of the LOS rate. In [15, 18, 24], the miss
distance is given by:

y(tf ) = L−1 {Q(s)yT (s)} (25)

where:

Q(s) = eN
∫ s
∞ H(σ)dσ (26)

H(s) = G(s)/s (27)
yT (s) = L{yT (t)} (28)

where L is the Laplace transform and yT (t) is the deter-
ministic input which can be either the target maneuver or
the initial condition and G(s) is the transfer function of
the control dynamics and missile seeker assumed to be
asymptotically stable. The zero miss distance distance is
achieved at Q(s) = 0. Equation 26 can be written as:

Q(s) = eNF (s)/eNF (∞) (29)

where,

F (x) :=

[∫
H(σ)dσ

]
σ=x

(30)

For Q(s) to be zero, eNF (s) → ∞ which requires
F (∞) → ∞. Therefore, H(s) needs to be determined
for which F (∞) → ∞. Transfer function H(s) is
written as:

H(s) =
b(s)

a(s)
=
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + a1sn−1 + · · ·+ an
(31)

When r = deg [a(s)] − deg [b(s)] is relative order of
transfer function H(s), we get:

F (∞) = lim
σ→∞

∫
H(σ)dσ =

{
0 if r ≥ 2

∞ if r = 1
(32)

Since H(s) = G(s)/s, the interpretation of expression
32 is the following. If the dynamic of the guidance
loop given by G(s) is biproper, i.e. the degree of the
numerator is the same as the degree of the denominator,
the miss distance will be zero for each flight time and
each deterministic or random target maneuver [13, 14,
25] In general, as G(s) is a proper transfer function,
a guidance controller composed of the lead networks
should be added. However, since the pure lead controller
can amplificy the noise, the lead-lag controller should be
a variant of PN. It is called ZMP-PNG and is PNG with

an additional lead controller. The guidance controller can
be expressed in the following way:

K(s) =

r∏
i=1

(τZis+ 1) (33)

Since the PD controller can increase the noise, the
following controller can be used:

K(s) =

r∏
i=1

(τZi
s+ 1)

(τPis+ 1)
(34)

It should be noted that the former controller does not
yield a proper guidance transfer function. Nonetheless,
if the additional lag is not too large, a near ZMD can be
achieved. Finally, a neoclassical ZMD-PNG commanded
lateral acceleration is given by:

ac = Nvm

r∏
i=1

(τZi
s+ 1)

(τPis+ 1)
λ̇ (35)

It is shown that the second derivative of the LOS rate
is directly proportional to the target lateral acceleration
[18]. Therefore, the neoclassical high-pass filter acts as
a LOS rate differentiator and acts in a sense equivalent
of using both the LOS rate and the target acceleration
for the commanded acceleration generation.

7 PSEUDOCLASSICAL MISSILE GUIDANCE

The PN guidance law is so popular that it is considered
as classical [15]. The pseudoclassical missile guidance
gives a modification of the classical PN guidance law
which utilizes a classical control theory based on the
feedback and feedforward control signals. As mentioned
above, PN demonstrates a good performance against
non-maneuvering targets. The modern guidance laws can
produce good results but they require the target accel-
eration to be measured to obtain the required variables.
The pseudoclassical guidance modifies the classical PN
guidance law by using the measured real missile accel-
eration. The commanded acceleration generated by the
pseudoclassical guidance is given by:

aA = G4(s)ac +G3(s) (ac − aM ) (36)

where aM is the real missile lateral acceleration and ac
is the commanded lateral acceleration generated by PN
or other similar guidance law. Transfer functions G3(s)
and G4(s) are design parameters which guarantee the
stability of the closed loop system.The pseudoclassical
guidance law is given in Figure 6. The modified guid-
ance law can be:

G3(s) =
k1 (τ10s+ µ)

τ2s+ 1
(37)

or
G4(s) = k2 (38)
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G3(s)

G4(s)

Missile
ac + + aA+ aM

−

Figure 6: Modified guidance law.

8 TARGET MODEL

In order to simulate and compare PN, neoclassical
and pseudoclassical missile guidance, a kinematic target
model is used. The guidance system disturbances are
given as target lateral accelerations in the xz and xy
inertial planes given by aTh and aTv, respectively. They
are normal to the targets velocity. The target velocity is
given by its velocity in the horizontal (xy) and vertical
(xz) plane as vTxz

and vTyz
respectively. Let xT , yT and

zT denote the targets relative positions in the inertial
frame along the x, y and z axes, respectively. Let θh
and θv be the targets velocity vectors orientations with
respect to the x axis in horizontal and vertical plane
respectively. Equations governing the target orientations
are given by:

θ̇h = aTh
/vTh

(39)

θ̇v = aTv
/vTv

(40)

with given initial orientations θh0
and θv0 . The targets

relative position in the inertial frame can now be defined
by the following differential equations:

ẋT = vTh
cos θh + vTv

cos θv (41)
ẏT = vTh

sin θh (42)
żT = vTv

sin θv (43)

for the given initial conditions xT0
, yT0

and zT0
.

9 SIMULATION

Let us assume that the target is located at the initial
distance of 1000m and at the height of 100m from
the missile and let the targets total velocity in the xy
plane be 30m/s and let the targets total velocity in the
xz plane be 25m/s with zero initial headings in both
planes. The initial RPY angles are ψ0 = θ0 = ϕ0 = 0
which means that there is initial pitch heading error
equal at 5.7◦ which has to be corrected. The initial mis-
sile velocitiy in the body frame is

[
100 0 0

]T
m/s.

The maximum total missile velocity is 127m/s. The ini-
tial target headings are θh0 = θv0 = 0. The neoclassical
commanded acceleration is given with:

ac = 5vm
0.203s2 + 0.387s+ 1

0.0001s3 + 0.038s2 + 0.087s+ 1
λ̇ (44)

The pseudoclassical missile guidance law is defined as:

aA = ac +
5

0.25s+ 1
(ac − aM ) (45)

Monte Carlo simulations are conducted for each of
the guidance methods with the target horizontal lateral
acceleration ranging from 0m/s2 to 4g and the target
vertical lateral acceleration ranging between −2g to
0m/s2. Figures 7, 8 and 9 graphically show the miss
distance for each Monte Carlo run for each guidance law.
The point at the origin indicates the zero miss distance.
The average miss distances are shown in Table 2.

Figure 7: Monte Carlo simulations for PN.

Figure 8: Monte Carlo simulations for the neoclassical guid-
ance.

PN guidance
average miss[m]

Neoclassical guidance
average miss [m]

Pseudoclassical guidance
average miss[m]

2.5637m 0.6107 m 2.4534 m

Table 2: Average miss distance for each guidance method.

It can be seen that, on average, the neoclassical
guidance gives the best mean final miss distance and a
significant improvement compared to the PN guidance
law. The pseudoclassical missile guidance law improves
only the marginal final miss distance compared to the
PN guidance law. Table 3 shows miss distances for these
three types of the navigation. It can also be seen that
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Figure 9: Monte Carlo simulations for the pseudoclassical
guidance.

aTV
aTH

PN guidance
miss

Neoclassical
guidance miss [m]

Pseudoclassical
guidance miss [m]

0 0 0 0 0
−g g 0.05143 0 0.022096
−g 2g 0.013269 0 0
−g 3g 1.5325 0 0.74961
0 4g 14.853 6.3425 15.373
−g 4g 15.8815 6.2665 14.3231
−2g g 4.4281 1.9184 4.4162
−1.5g g 0 0 0
−1.5g 1.5g 3.0638 0.37573 2.5126

Table 3: Miss distances for various target maneuvers.

the neoclassical guidance gives the smallest miss dis-
tances, while the pseudoclassical navigation gives only
a marginal improvement compared to the PN guidance.
Even though the neoclassical guidance guarantees the
zero miss distance when the total guidance transfer
function is biproper which is not achieved here since
in our case study the LOS angles are not small and the
guidance loop is not linear. Furthermore, for some angles
of the attack and sideslip angles, a higher order missile
dynamics is introduced and the model confidelity is not
of the second order. Let us now show the simulation
where the target horizontal lateral acceleration is given
by:

aTh = 2g sin (ωt) (46)

and the target vertical acceleration is:

aTv = −g sin (ωt) (47)

where ω = 0.8 rad/s and both accelerations are normal
to the total velocity vector and both of these acceleration
vectors are normal to each other. Figure 10 shows that
the missile intercepts the target with the neoclassical
guidance. Similar missile paths are obtained in case
of the PN and pseudoclassical guidance. Figures 11
and 12 show commanded lateral accelerations in the
horizontal and vertical guidance plane respectively. It
can be seen that the neoclassical guidance requires

smaller missile accelerations compared to the PN and
the pseudoclassical guidance.

Figure 10: Missile and trajectory paths in case of sinusoidal
target maneuvers.
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Figure 11: Commanding horizontal lateral accelerations.

0 2 4 6 8 10 12 14

t[s]

-15

-10

-5

0

5

10

15

a
v
[m

/s
2
]

PN

Neoclassical

Pseudoclassical

Figure 12: Commanding vertical lateral accelerations.
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10 CONCLUSION

Th study briefly introduces PN and two PN variants
called the neoclassical guidance and the pseudoclassical
guidance. Each of these guidance methods requires only
measurement of the LOS rate for their mechanization
and implementation compared to the modern guidance
laws which require much more information such as
the range and closing velocity. Each of these guid-
ance methods generates commanded lateral accelerations
which are normal to the velocity vector (or LOS). A
6-DOF missile mathematical model is presented with
aerodynamic coefficients. A wings and actuator dynamic
model is also shown. A missile autopilot is presented. Its
main idea is to ensure a zero roll angle which splits the
guidance space into a vertical and horizontal plane. This
is ensured via a roll PD controller with an inner damping
loop. Two more controllers are used to ensure that the
real missile accelerations are equal to the generated
commanded accelerations. The Monte Carlo simulations
show that the neoclassical guidance yields the smallest
average final miss distance while the pseudoclassical
guidance yields only a marginal improvement. It is
also shown that the neoclassical guidance requires the
smallest missile accelerations compared to the other two
guidance methods.

REFERENCES

[1] N.A. Shneydor. Missile Guidance and Pursuit: Kine-
matics, Dynamics and Control. 1. Elsevier Science,
1998.

[2] M.A. Abd-elatif, Long-jun Qian, and Yu-ming Bo.
“Optimization of three-loop missile autopilot gain un-
der crossover frequency constraint”. In: "Defence Tech-
nology" 12.1 (2016), pp. 32–38. DOI: https://doi.org/
10.1016/j.dt.2015.08.006.

[3] Ahmed Awad and Haoping Wang. “Roll-pitch-yaw
autopilot design for nonlinear time-varying missile
using partial state observer based global fast termi-
nal sliding mode control”. In: "Chinese Journal of
Aeronautics" 29.5 (2016), pp. 1302–1312. DOI: https:
/ / doi . org / 10 . 1016 / j . cja . 2016 . 04 . 020. URL:
https : / / www. sciencedirect . com / science / article / pii /
S1000936116301108.

[4] A. Hiret, G. Duc, and J.P. Bonnet. “The Applica-
tion of Gain-Scheduling H Controllers for a Missile
Autopilot”. In: "IFAC Proceedings Volumes" 31.21
(1998). 14th IFAC Symposium on Automatic Control
in Aerospace 1998, Seoul, Korea, 24-28 August 1998,
pp. 59–64. URL: https : / / www . sciencedirect . com /
science/article/pii/S1474667017410597.

[5] F. Imado, T. Kuroda, and A. Ichikawa. “Is the aug-
mented proportional navigation really useful ?” In:
Proceedings of the 35th SICE Annual Conference.
International Session Papers. 1996, pp. 1307–1312.
DOI: 10.1109/SICE.1996.865457.

[6] Johnny H. Evers et al. “Application of Integrated
Guidance and Control Schemes to a Precision Guided
Missile”. In: 1992 American Control Conference. 1992,
pp. 3225–3230. DOI: 10.23919/ACC.1992.4792745.

[7] D. Williams, J. Richamn, and B. Friedland. “Design
of an integrated strapdown guidance and control sys-
tem for a tactical missile”. In: Guidance and Control
Conference. DOI: 10.2514/6.1983-2169.

[8] William R. Yueh and Ching-Fang Lin. “Optimal con-
troller for homing missile”. In: Journal of Guid-
ance, Control, and Dynamics 8.3 (1985). _eprint:
https://doi.org/10.2514/3.19997, pp. 408–411. DOI: 10.
2514/3.19997. URL: https://doi.org/10.2514/3.19997.

[9] Ernest Ohlmeyer and P. Menon. “Nonlinear
integrated guidance-control laws for homing
missiles”. In: AIAA Guidance, Navigation,
and Control Conference and Exhibit. _eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.2001-4160. DOI:
10.2514/6.2001-4160. URL: https://arc.aiaa.org/doi/
abs/10.2514/6.2001-4160.

[10] Z. Hui-bo et al. “Design of second-order sliding mode
guidance law based on the nonhomogeneous distur-
bance observer”. In: Journal of Control Science and
Engineering 2014 (2014), pp. 1–10. DOI: 10 . 1155 /
2014/890824.

[11] D. Lianos, Yuri Shtessel, and Ilya Shkolnikov. “Inte-
grated guidance-control system of a homing interceptor
- Sliding mode approach”. In: Aug. 2001. DOI: 10 .
2514/6.2001-4218.

[12] Yuri B. Shtessel, Ilya A. Shkolnikov, and Arie Levant.
“Guidance and Control of Missile Interceptor using
Second-Order Sliding Modes”. In: IEEE Transactions
on Aerospace and Electronic Systems 45.1 (2009),
pp. 110–124. DOI: 10.1109/TAES.2009.4805267.

[13] Pini Gurfil, Mario Jodorkovsky, and Moshe Guelman.
“Neoclassical Guidance for Homing Missiles”. In:
Journal of Guidance Control and Dynamics 24 (2001),
pp. 452–459. URL: https : / / api . semanticscholar . org /
CorpusID:119685062.

[14] Pini Gurfil. “Zero-miss-distance guidance law based on
line-of-sight rate measurement only”. In: 11.7 (2003),
pp. 819–832. DOI: 10.1016/S0967-0661(02)00208-3.

[15] Rafael Yanushevsky. “Pseudo-Classical Missile Guid-
ance”. In: AIAA Guidance, Navigation and Control
Conference and Exhibit. DOI: 10.2514/6.2007- 6781.
URL: https://arc.aiaa.org/doi/abs/10.2514/6.2007-6781.

[16] George M. Siouris. Missile Guidance and Control
Systems. Springer-Verlag New York, 2004.

[17] John Harris and Nathan Slegers. “Performance of a fire-
and-forget anti-tank missile with a damaged wing”. In:
Mathematical and Computer Modelling 50.1 (2009),
pp. 292–305.

[18] P. Zarchan. Tactical and Strategic Missile Guidance.
AIAA Tactical Missile Series v. 219. American Institute
of Aeronautics and Astronautics, 2007.
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