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Abstract. To assure a complex control of the permanent-magnet spherical actuator (PMSA), an optimized 

electrifying strategy based on the cuckoo algorithm is proposed. An electromagnetic analysis in mode and the 

PMSA torque values of the rotor and stator coils of different angles are obtained. A position-torque black-box 

model is set-up using the random forest method. Combined with the spin and tilt trajectory, the cuckoo algorithm 

optimizes the electrifying strategy resulting in a 5% ~ 18% power-loss reduction. Simulations and experiment 

show that by using the proposed strategy, the PMSA control system ensure a stable and effective performance of 

a reduced power-loss rate, thus providing a reference for the PMSM high-precision trajectory tracking control. 
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Algoritem za krmiljenje sferičnega pogona s trajnim 

magnetom 

 
V članku je predstavljen algoritem za krmiljenje sferičnega 

pogona s trajnim magnetom. V prvem koraku smo s pomočjo 
elektromagnetne analize določili vrednosti navora rotorske in 
statorske tuljave pod različnimi koti. Nato smo s pomočjo 
metode naključnega gozda vzpostavili model za nastavitev 
navora. Na osnovi teh vrednosti smo z upoštevanjem smeri 
vrtenja in nagiba optimizirali krmiljenje, ki zmanjša izgubo 
moči za 5  do 18 %. Eksperimentalni rezultati kažejo, da lahko 
s predlagano metodo zagotovimo stabilno in učinkovito 

delovanje z manjšo izgubo moči. 
 

1 INTRODUCTION 

Because the spherical actuator (SA) can realize a multi- 

degree-of-freedom (DOF) motion, and has the 

advantages of a small volume, light weight and fast 

response speed, it can solve the problems of a large 
volume, slow response speed and low positioning 

accuracy of the traditional multi-DOF motion device. 

Therefore, as a new direct actuator, SA can be used in 

robot joints, satellite attitude control, panoramic camera 

system and power-assisted wheelchair. 

 At present, scholars propose the DC type, variable 

reluctance type and other different SA structures, 

especially permanent-magnet actuator (PMA) because 

of its low loss, high efficiency and simple structure, 

which has been widely concerned. For PMSA, 

electromagnetic modeling and high-precision control 

have become the main research directions. In terms of 

electromagnetic modeling, Li Zheng calculates the 

magnetic field and torque of the traditional PMSA, and 

proposes a simplified torque calculation model and a 

nonlinear system dynamics model which allopther 
reduce the amount of calculation [1]. In [2], a new type 

of a 3-DOF deflection PMA is proposed. The PMA 

magnetic field and torque distribution are analyzed and 
calculated, the rotor magnetic field is calculated and a 

back EMF model is set-up. In [3], Yan Liang proposes a 

superposition PM modeling method using the Halbach 

array distribution on the SA rotor. The magnetic array is 

divided into a radial and tangential part, and the 

corresponding mathematical model is presented. The 

scheme improves the modeling accuracy and facilitates 

a magnetic field analysis. In [4], a dynamic decoupling 

control algorithm is proposed based on a fuzzy 

controller and neural network identifier to improve the 

PMSA static and dynamic model of the control system. 
In [5], a robust iterative learning control algorithm is 

presented to improve the PMSA trajectory tracking 

performance. In [6-7], Liu Jingmeng proposes a 

dynamic decoupling control strategy and an adaptive 

control system combining a backstepping and synovial 

control, both of are advanced robustness.In [8-11], Guo 

Xiwen investegates the SA position tracking, complex 

continuous trajectory planning and power on the 

strategy. In  [12], a new type of the stator coil is 

proposed. In it, the position and the rotation motion are 
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carried out separately which solves the complex control 

algorithm problem when one coil participates in both 

motions. In [13], Bai Kun proposes a method to realize 

a PMSA directional control by using a real-time 

measurement of the existing rotor magnetic field in the 

feedback loop, the obtained trajectory control results are 

good. In [14], Nishiura proposes a compensation 

method to eliminate the cogging torque to improve the 

controllability of the system. In [15], the motion is 

divided into the rotation and tilt motion and a 

decoupling control is adopted. In [16], Nguyen studies 
the control problem of a multi-DOF actuator with an 

uncertain torque model and unmodels the system 

parameters. The obtained tracking performance of the  

controlled rotor orientation is good. However, due to the 

different SA structures and large number of the stator 

coils, modeling is quite complex. 

 In recent years, some data-driven modeling and 

optimization schemes have been widely used in some 

fields [17-19]. Among them, a random forest algorithm 

can well handle the large data analysis method of multi-

dimensional samples. Its smaller adjustment parameters, 
high prediction accuracy and strong generalization 

ability, effectively avoids the occurrence of the "over 

fitting" phenomenon, it is suitable for the operation of 

various data sets and assure a good robustness. 

Compared with the traditional particle swarm 

optimization (PSO) algorithm, simulated annealing 

method and ant colony algorithm, it easily to falls into a 

local optimization and has a large amount of 

calculations. The Cuckoo algorithm has fewer 

parameters and a faster speed. Being well combined and 

being strongly compatibilied  with other algorithms, it is 
often used to solve the optimization problems [20-23]. 

 Therefore, based on the random forest method, the 

PMSM torque-position information is modeled in a 

black box, and the cuckoo algorithm is used to optimize 

the power consumed by the strategy. Second 2 of this 

paper introduces the basic principle of the random 

forest. Section 3 presents the PMSA torque-position 

data using a virtual displacement method and set-up a 

PMSA torque-position black box model by using the 

random forest algorithm. In Section 4, the cuckoo 

algorithm is used to optimize the power consumed by 

the PMSM strategy. The results are compared with the 
pseudo inverse matrix (PIM) algorithm and PSO 

algorithm. The final data analysis shows that using the 

cuckoo algorithm reduces the PMSA power losses. In 

Section 5, the cuckoo algorithm is experimentally 

verified and its ability to optimize the PMSA power 

consumption is further verified by the error analysis of 

the spin and tilt motion. 

2 BASIC PRINCIPLES OF THE RANDOM FOREST 

ALGORITHM 

Basically, the Random forest algorithm is a variant of a 

bagging algorithm based on the decision tree [24-25]. It 

can be used to solve the classification and regression 

problems. From the practical application point of view, 

the random forest algorithm is highly accurate for 

almost any kind of data prediction, and because of its 

own algorithm mechanism, it can directly process high-

dimensional samples without reducing in dimensions. 

2.1 Bagging sampling method 

Each sample of the bagging method is obtained by 

sampling the net proved initial data set. It is a sampling 
method based on repeatable random sampling. It uses 

Bootstrap resampling to select the n-training samples 

randomly from the original sample set. The process is 

then cycled treen -times to get a training set. When 

generating the treen  training subsets, each training 

sample can be extracted at a repeated training, there will 

always be some samples unextracted. The probability 

that a sample will not be extracted is: 

       
0

1
(1 )np

n
                                  (1) 

 where n  is the total number of the samples in the 

initial data.When n  is large enough, equation (1) 

converges to 
1

0.368
e
 . That indicates that about 

37% of the samples will not be extracted when the 

sample data is large enough. 

2.2 CART decision tree algorithm 

The CART decision tree algorithm uses the binary 

recursive segmentation method to divide the original 

sample set into two subsets, so that there will be two 

branches on each non-leaf node. When a node splits, the 

splitting rules follow the principle of the minimum Gini 

index, The Gini probability distribution index ( ( )G p ) 

is: 
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( ) (1 ) 1
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 where K is the total number of the characteristic 

samples in the node and pk is the probability of the K-

class feature sample in the node. 

 The Gini index of the sample set D ( ( )G D ) is:  
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 where Ck is the sample set and D is the sample subset 

of class K. 

 The Gini index divided by each point ( ( )splitG D ) is: 

2

1

( )= ( )
i
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i

D
G D G D

D


         

   (4) 

 where i = 1.2 and D1 and D2 are two subsets divided 

by D. 
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2.3 Random forest algorithm construction 

 Suppose the random forest is composed of a series of 

CART decision trees, with the following edge functions: 

 

K( , ) ( ( , ) ) max ( ( , ) )k k k k
j Y

a I h a I h j 


   X Y X Y X

       

   

(5) 

 where X  is the input vector at most different 

categories of J . j is a certain class of J  categories, 

Y  is the correct classification vector, I  is the indicator 

function and ka   is the function of the average value. 

 The generalization error ( eP ) of the random forest 

can be expressed as follows: 

 
, (K( , ) 0)e X YP P X Y                (6) 

 where 
,X YP  is the classification error probability 

function for given input variable X  . 

 Maximum generalization error .maxeP  of the random 

forest can be expressed as follows:  
2

.max 2

(1 )
e

s
P

s

 
                       (7) 

 where  is the average correlation coefficient of the 

decision tree and s  is the average strength of the 

decision tree. 

 The algorithm flow is as follows: 

Step 1. From original sample set

 1 2, ,... mD X X X , the m  samples are randomly 

selected to form a new sample set D used as a training 

sample of the decision tree. 

Step 2. If each sample has M-features, constant k 

should be less than M. Each time the decision tree split 

growth needs to select a partition attribute, the k 
features are randomly selected and the Gini index is 

used to select the optimal partition attribute to partition 

the current sample. 

Step 3. After the n decision trees are obtained by 

repeating steps 1 and 2, a random forest model is 

formed by using the relative majority voting method. 

 

3. POSITION TORQUE MODELING BASED ON 

THE RANDOM FOREST ALGORITHM 

PMSA is composed of a rotor ball, stator coil, stator 

shell and output shaft. Its basic structure is shown in 

Figure 1. 

There are 40 permanent magnets on the rotor ball. They 

are divided into four layers. The angle between each 

two layers is 30 °with an angle of 36 ° between the two 

adjacent PMs permanent magnets. There are 24 

electrified coils on the stator shell. They are 

symmetrically distributed on the equator line of the 

stator spherical shell. There are 12 electrified coils in 
the upper and  lower  stator  spherical shells.  The  angle 

 

 

Figure 1. PMSA Structure . 

  
between two coils is 45 ° and the coils in each layer are 

evenly arranged. The angle between the two coils is 30 

°. The PMSA tilt motion range is 0-37 ° and the spin 

range is 0-360 °. 

 As there is no ferromagnetic material in PMSA, the 

magnetic circuit saturation can be ignored. The virtual 

displacement method is used to analyze the 

electromagnetic torque between a single stator coil and 

40 permanent magnets. The PMSM model set-up based 

on the finite element analysis software ANSYS is 

shown in Figure 2. 

 

Figure 2. PMSA ANSYS model. 

 

 When there is a small displacement between the 

stator winding and the rotor pole, the change in the 

electric energy input power of the system eW  is 

according to the energy law equal to the sum of 

mechanical energy change mW  and magnetic field 

energy storage change 
fW  expressed as: 

    
e m fW W W                        (8) 

 And hypothetically as: 

      
f mW W                           (9) 

  



AN OPTIMIZED ELECTRIFYING STRATEGY FOR THE PERMANENT-MAGNET SPHERICAL ACTUATOR BASED ON THE … 11 

When a motor rotates at a small angle, the following 

result is obtained: 

mW
T







                        (10) 

For the whole magnetic-field system, the solution is: 

  

0

( )

B

mW HdB dv                  (11) 

 Using the above method, the torque of 40 permanent 

magnets with the coil spin angle of 0-360 ° and tilt 
angle of 0  - 37 ° of a unit current is obtained. Due to the  

PMSA symmetry, the data generated by the two coils at 

a symmetrical position of the spherical center are the 

same at each position. Therefore, 12 pairs of the models 

are needed to use random forest method to set-up a 

PMSA torque model. 

 

Figure 3.  Learning curve of the random forest parameters. 

 

 The relationship between the position and torque is 

obtained by modeling the basic data obtained by the 

above method. The value of the initial parameter 

test_size is 0.9, which means that the training set 

accounts for 10% of the original data. The value of the 

n_estimators is 10, which represents the number of trees. 

The value of the max_depth is 10, which represents the 

maximum depth. The value of the max_features is 0.1, 

which represents the maximum number of the features 

to construct the decision tree. The value of the 

min_samples_split is 2, which represents the minimum 

number of the samples that can be divided by the node. 

The value of the min_samples_leaf is 1, which indicates 

the minimum number of the samples contained in leaf 

nodes. According to the above parameters, the PMSA 

position torque model is set-up. The score of the cross 

validation is 0.6113. The results show that the model is 

not accurate sufficiently. To obtain an optimal 
parameter setting and create an accurate model for the 

next step of the research. The learning curve is studied 

by controlling variables. The results are shown in Figure 

3. 

 Figure 3 (a) shows that with the increase in the value 

of the test_ size, the score of the model gradually 

decreases, and when the value is between 0 and 0.8, the 

score of the model changes slowly and after 0.9, the 

score decreases. As a larger value of the test_size means 

less data to participate in training, the accuracy of the 

model decreases. However, if a large amount of the data 
is used for training to obtain a particularly good model, 

the time to set-up a the model reduces considerably. The 

results in Figure 3 (b) show that the increase in the 

number of the trees improves the score of the model. 

When the number of the trees exceeds 25, the score 

fluctuates around 0.65, this indicates that the impact of 

increasing the number of the trees is small when it 

exceeds a certain value, and the increase in the number 

of the trees also increases the modeling time. For the 

maximum depth, the results in Figure 3 (c) show that 

when the depth is between 0-25, it has a great impact on 
the score of the model. When the depth is above 25, the 

score of the model is maintained at 0.83. This indicates 

that the maximum depth has no impact on the random 

forest model when it exceeds a certain value. The results 

of Figure 3 (d) illustrate that when the max_feature 

value is a specific value or sqrt, the score of the model 

will not be affected. When it is set to None, it means 

that there is no limit on the number of the features per 

tree, and the score of the model will be greatly 

improved. Figure 3 (e) shows the minimum number of 

the samples min_ samples_ split that the node can be 

divided learning curve between 1 and 20. A comparison, 
show that the score oscillation of the model decreases 

with the increase in the value between 1 and 20. Figure 

3 (f) presents the learning curve of min_samples_leaf. 

The results show that when the value of the 

min_samples_leaf is 2, the score of the model is the 

highest, and when it exceeds 2, the score of the model 

shows a downward trend. 

 The study of the learning curve of the above 

parameters moves to verify a combination of the 

parameters and to obtain the optimal modeling 

parameters see in Table 1. 
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Table 1. Optimal parameters of Random Forest modeling 

Basic parameters Parameter value 
test_size 0.85 

n_estimators 100 

max_depth 20 

max_features None 

min_samples_ split 3 

min_samples_ leaf 2 

 

According to the value of the test_size, the 

characteristic matrix samples are grouped as shown in 

Table 2.  

Table 2. Sample division 

Basic data Training set Test set 

13718 2058 200 

 

The position torque model is evaluated for the 

relationship between the position and torque, and the 
scores are shown in Table 3. 

Table 3. Model  scores 

Model Score Model Score 

1 0.984070 7 0.982764 

2 0.985754 8 0.983946 

3 0.985905 9 0.985860 

4 0.983570 10 0.981280 

5 0.983083 11 0.983614 

6 0.983875 12 0.982772 

 

The results show that the scores of each model are 

above 0.98. This means that the 12 PMSA position 

torque models created by the random forest method are 

accurate and reliable. 

 

4. ELECTRIFYING STRATEGY BASED ON THE 

CUCKOO ALGORITHM 

The Cuckoo algorithm was proposed by Yang and DEB, 

Cambridge scholars in 2009 [26]. It is a heuristic 

algorithm to simulate the cuckoo parasitic breeding. The 

algorithm combines the cuckoo breeding process with 

the Levy's flight search mode of birds. 

4.1 Basic principle of the cuckoo algorithm 

If the position of the i  nest in the first generation is 

expressed as 
( )t

ix  , the random search path is expressed 

as ( )L  . Then the CS algorithm nest finding path and 

location update formula is as follows: 
(t 1) (t) ( )i ix x L      1,2,...i        (12) 

 where    is the step size control variable,  
(t 1)

ix 
is 

the new nest position and   is the point-to-point 

product. 

     
(t) (t)

1
( ) 0.01 ( )i bL x x

v 


             (13) 

 where β is a given coefficient of the variation, 
(t)

bx  is 

the optimal individual position in each current nest, and 

after the position is updated, there will be : 

   
(t 1) (t) (t) (t)( )i i j ix x rand x x             (14) 

 where 
( )t

jx   is a nest near the current nest. In the 

end, the best nest position in the test value is still 

recorded as ( 1)t

ix   . 

 The specific steps of the algorithm are shown in 

Figure 4. 

 

Figure 4. Cuckoo algorithm flow chart. 

4.2 PMSA optimal electrifying strategy  

The PMSA is driven by an electromagnetic torque. 

When the stator coil is electrified, the magnetic field is 

generated, and PM on the rotor ball generates a torque 

which drives the rotor ball to spin and tilt. If the current 

flowing into coil j    is 
jI  , then the force on the rotor 

ball is 
jF  , which is a tangent to the surface of the rotor 

ball. 

( , )j j rF F I B                        (15) 

 where rB  is the radial component of the air-gap flux 

density. According to the Newton's third law, 

corresponding torque 
jF   on the rotor ball is 

jT . 
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( , )j j rT F I B r                        (16) 

If more than one stator coil is energized, the 

resultant torque on the rotor ball is: 

1 1
( , )

n n

j j rj j
T T F I B r

 
    

  
  (17) 

where n represents the number of the energized 

coils. The rotor rotation can be expressed as: 

T Ja                               (18) 

where J is the moment of inertia and a  is the 

acceleration. By decomposing it in the Cartesian 

coordinate system, we  get: 

x x x

y y y

z z z

T J

T J

T J











 

&

&

&

                            (19) 

It can be seen that when the current is applied to 
different coils, the generated torque can make the rotor 

ball move in space. 

Due to it'sl structure, PMSA can complete a 3-DOF 

motion. Spin and tilt are it's most typical motions. 

Figure 5 shows the spin and tilt motion. Any 3-DOF 

motion can be regarded as a combination of the spin and 

tilt motion. The PMSA spin and tilt motion are taken as 

research objects, and the corresponding power on the 

strategy is formulated. 

According to the actual experimental torque, the 

spin motion only needs to apply a 0.1 Nm torque to the 
Z axis. The tilt motion is selected to tilt along the Y 

axis, and a torque of 0.1 Nm is applied to the X axis. 

 

Figure 5. Spin and tilt motion. 

 

For the above two kinds of motion, a point is selected of 

every degree to calculate the current of the coil. The 

value of 30 points is needed for both the spin and tilt 

motion. 

 For each optimization point, the relationship between 

a given torque, the torque generated by 24 coils and the 

current is shown in below formulae: 

x

=Y

Z

T

T

T

 
 

 
 
  

T A I                           (20) 

1 2 24

1 2 24

1 2 24

1 2 24

...

= ...

...

[ , ,......, ]

x x x

y y y

z z z

T

T T T

T T T

T T T

I I I

  
  
  
   
 

A

I

                   (21) 

 where T  is the moment matrix, XT , YT and ZT
 represent are the given torque on the X axis, Y axis 

and Z axis, respectively, XiT ， YiT ，and ZiT  are the 

components of the torque produced by the unit 

current of 24 coils at a certain position on the X axis, 

Y axis and Z axis, respectively obtained by the 

position torque model of a random forest. A  is the 

corner characteristic matrix, iI   is the current of 24 

coils given by the obtained power on the strategy, and 

I  is the current matrix of each coil. The torque 

produced by 24 coils under the unit current and the 

given torque of the X axis, Y axis and Z axis are 

known. 
 Then, according to the optimization point, the cuckoo 

algorithm is used to optimize the current. Objective 

function Q  is as follows: 

24
2

1

( )i

i

Q Min I


                         (22)  

 The objective function shows that the copper 

consumption of the coil is minimal and the energy is the 

optimal when PMSA is in the motion control mode. For 

the PSO algorithm, the formula is the fitness function. 

 For the above objective function, there are the 

following constraints: 

1 1 2 2 24 24 x

1 1 2 2 24 24

1 1 2 2 24 24

...... =

...... =

...... =

3 3

x x x

y y y Y

z z z Z

i

T I T I T I T

T x T I T I T

T x T I T I T

I

  


  


  
  

         (23) 

 The magnitude of the current flowing into each coil 

is between – 3A and 3A, and the negative sign indicates 

that the direction of the current is opposite. The range of 

the current represents the PSO position interval. Finally, 

the current values of 24 groups are obtained. 

1 2 24[ , ,......, ]TI I II                  (24)
 

 Combined with the black box model established by 

the random forest algorithm, the PIM, PSO and cuckoo 
algorithm are used to solve the current of the PMSA 

spin and tilt motion and the results are compared and 

analyzed. Figures 7 and 8 show comparison results of 

the sum of squares of the currents for the spin and tilt 

motion, respectively, in the three algorithms. 
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Figure 6.  Sum of the squares of the three currents in the spin 
motion. 

 

Figure 7.  Sum of the squares of the three currents in the tilting 
motion. 

 
Based on the results of the PIM algorithm used a 

benchmark, the percentage reduction of the results 

obtained by the cuckoo and PSO algorithm. The 

percentage of the power-loss reduction is the 

optimization rate. 

 

Figure 8.  Spin motion optimization rate. 

 

Figure 9. Tilt motion optimization rate. 

 

According to the results in Figures 6 and 7, the cuckoo 

and PSO algorithm are greatly improved in terms of the 

spin or tilt motion compared with the traditional PIM 

algorithm. The results in Figures 8 and 9 show that the 

optimization rate of the cuckoo and PSO algorithm is 
5% - 10%. When solving the tilt motion, the 

optimization rate of the cuckoo algorithm is 8% - 18% 

and that of the PSO algorithm  is 5% - 10%. It can be 

seen that the optimization rate of the cuckoo algorithm 

is higher than that of the PSO algorithm, and there are 

only a few points that have a lower optimization rate 

than the PSO algorithm. The possible reason is that the 

PSO position update process has a direction, so it may 

fall into the local optimum. However, the cuckoo 

algorithm uses the Levy's flight and random walk 

position update, so it will not fall into a trap problem of 

a local optimum. Therefore, the optimization rate of the 
cuckoo algorithm is higher than that of the PSO 

algorithm.  

5. EXPERIMENT 

The PMSA experimental set-up is shown in Figure 10. 

It is mainly composed of a PMSA  prototype, control 

circuit, power supply and host computer. The control 

circuit is controlled by an ARM chip. The driving 

circuit outputs 24 channels of adjustable driving current. 

The MEMS sensor is mainly used in position detection. 

The host computer calculates the position current 

information and sends the calculated current parameters 

to the ARM control chip to drive PMSA to realize the 
three degrees of the freedom motion. 

 

 

Figure 10. PMSA experimental platform . 
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According to the simulation results, the overall 

optimization rate of the cuckoo algorithm is higher than 

that of the PSO algorithm. The power of the 24 coils 

corresponding to each point in the PMSA running track  

is tabulated in the host computer for the experiment. 

The PMSA position is fed-back to the host computer in 

real time. Compared with the PIM algorithm, the spin 

trajectory error curves of the cuckoo algorithm are 

shown in Figure 11. 

 

Figure 11. Spin trajectory error curves based on the cuckoo 
electrifying strategy. 

 

Similarly, compared with the PIM algorithm, the tilt 

trajectory error curves of the cuckoo algorithm to 

optimize the power on the strategy are shown in Figure 

12. 

 

Figure 12.  Tilt trajectory error curves based on the cuckoo 
electrifying strategy. 

 

The experimental results show that the power on the 

control strategy based on the cuckoo algorithm 

completes the PMSA spin and tilt motion very well, but 

according to the error curves, there is still some jitter in 
the motion process, which may be caused by the friction 

between the PMSA support structure and the rotor. 

Compared with the power on the strategy based on the 

PIM algorithm, the components of the power on the 

strategy based on the cuckoo algorithm are less than 2 

mm on the X axis, Y axis and Z axis. It is proves that 

the power on the strategy based on cuckoo algorithm is 

feasible. 

6. CONCLUSION 

A virtual displacement method is used to obtain the 

PMSA torque-position data at different positions and a 

random forest method is used to model the 

electromagnetic torque characteristics produced by the 

coils at different positions. Using a model, taking a 

typical tilt and spin motion as an example, the current 

values of 24 coils are obtained by solving the PIM and 

cuckoo algorithm. A comparative analysis of the 
simulation and experimental results show that the 

square sum of the current values calculated by the 

cuckoo algorithm is less than that of the PIM algorithm, 

which further proves the correctness and feasibility of 

the proposed cuckoo optimization algorithm.  
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