
ELEKTROTEHNIŠKI VESTNIK 86(1-2): 47–53, 2019
ORIGINAL SCIENTIFIC PAPER

Massively Parallel Combinational Binary Neural
Networks for Edge Processing

Tadej Murovič1, Andrej Trost2
1ON Semiconductor Adria,
Letališka 33, 1000 Ljubljana, Slovenia
2Laboratory for Integrated Circuit Design, Faculty of Electrical Engineering, University of Ljubljana,
Tržaška 25, 1000 Ljubljana, Slovenia

1E-mail: Tadej.Murovic@onsemi.com

Abstract. Binary Neural Networks (BNNs) have reached recognition performances close to those achieved by
classic non-binary variants, enabling machine learning to be processed near-sensor or on the edge. The paper
researches massively parallel combinational BNN logic and how it is to be used in real-world deployment
situations which include training and constructing networks for imaging, cybersecurity and high-energy physics
applications. For each field, a hardwired Verilog Hardware Description Language (HDL) code is built. It is
synthesized for an FPGA system to create designs for a set of concrete edge processing problems. Synthesis
results show that BNNs use minimal resources and achieve less than 30 ns inference delays, which is crucial
for high-speed applications, less than 2 W power consumption and less than 60 k FPGA slices. It is shown
that parallel BNNs enable efficient hardware machine learning performance for a variety of edge processing
problems.

Keywords: BNN, Edge Processing, FPGA, Binary Neural Networks, Massively Parallel Neural Networks, HDL
Design, Machine Learning

Masivno vzporedne kombinacijske binarne nevronske
mreže za obdelavo na robu

Binarne nevronske mreže (BNM) dosegajo podobne
zmogljivosti prepoznavanja kot klasične nebinarne različice
in omogočajo izvedbo strojnega učenja v bližini senzorja ali
na robu. Članek raziskuje masivno vzporedno kombinacijsko
logiko BNM in njihovo uporabo v napravah s področja
obdelave slik, kibernetske varnosti ter visokoenergijske fizike.
Za vsako izmed področij uporabe smo izdelali model vezja
v strojno-opisnem jeziku in ga sintetizirali v tehnologijo
programirljivih vezij FPGA. Masovno vzporedna vezja
binarnih mrež porabijo malo strojnih virov in energije (do
60k FPGA rezin in 2 W) in dosežejo sklep prej kot v 30 ns,
kar je ključno za hitre aplikacije. V članku smo pokazali,
da omogočajo masivno vzporedne BNM učinkovito strojno
strojno učenje za vrsto nalog s področja računalništva na
robu.

1 INTRODUCTION

Edge processing enables systems to effectively apply
machine learning algorithms close to the sensor and only
output processed data, drastically reducing data rates.
With the recent research into real-time, latency-sensitive
applications, such as Advanced Driver-Assistance Sys-
tems (ADAS) [1], High-Energy Physics [2] and Cyber-

Received 21 January 2019
Accepted 18 February 2019

security [3], a need has come for low latency, always-
on deep learning hardware systems. In addition to low
latency, there is also the issue of power and size as
applications are heavily affected by cost and power
supply. State-of-the-art deployments must thus have a
very low latency while fitting into a very small area and
power constraints.

Binary Neural Networks (BNNs) have only recently
been developed and defined by [4]. They are shown to
reach a similar recognition accuracy as their floating-
point versions while using only simple bit-wise oper-
ations and having a much smaller memory footprint.
Their binary properties and simple operations make
them prime candidates for embedded machine learning
solutions on the edge. Research papers report efficient
BNN deployment in Field Programmable Gate Array
(FPGA) [5] and Application-Specific Integrated Circuit
(ASIC) [6], [7] technologies. All of their BNN architec-
tures use a similar structure configurable both in terms of
latency and size producing considerable overhead, which
is not desired in ultra-low power solutions. Progress
toward that direction has been made by BinarEye [7]
by developing an always-on ASIC neural processor for
mobile platforms. Their solution achieves state-of-the-
art performance in terms of size and power consump-
tion while sacrificing configurability. Work by [6] goes



48 MUROVIČ, TROST

one step further by hard-wiring BNN interconnections
making the network purely combinational. This way the
best power and size performance for ultra-low power,
always-on, latency critical systems is achieved.

In the paper we present trained and synthesized com-
binational circuits of BNNs on the edge via FPGA tech-
nology. FPGAs are seeing more usage lately because,
in contrast to CPUs and GPUs, their completely recon-
figurable digital circuitry enables them to create more
efficient designs for specific applications. While our
designs are also directly applicable to ASIC solutions,
one apparent issue is that combinational BNN designs
are not optimal as ideally one would like to change the
weights and thresholds of the network while the chip is
already deployed. Previous work with BNNs on ASIC
[7], [8] has its network parameters stored in dedicated
memory blocks. Doing a large number of memory ac-
cesses is far from optimal in terms of inference latency,
i.e. the time needed for a neural network logic to produce
a valid output and power consumption. Additionally,
memories usually occupy the largest percentage of the
final design size. FPGAs thus represent the most efficient
way of achieving combinational parallelism on the edge,
while maintaining full circuit reconfigurability.

In the paper, three different application areas requiring
ultra low-latency, size and power consumption solutions
are researched:

• Speed, Power and Cost-Critical Imaging Solutions.
Visual systems are arguably the most important
and widely used sensor systems. Cameras and their
related machine learning algorithms are currently
flag-shipped by convolutional neural networks in
security, mobile and automotive markets. Systems
are getting faster while requiring better machine
vision performance and lower cost.

• Flow-based IP packet classification hardware.
Modern IP networks need to classify possible ma-
licious traffic. Because of the 100 Gb/s speed, this
must be done with the lowest possible latency.

• Particle Collision Classification for High Energy
Physics. Particle accelerators collide particles to
break them into fundamental building blocks of
nature. These collisions are numerous and not all
can be processed. Therefore, a latency-critical hard-
ware is needed close to collision sensors to trigger
data capture if the event represents something worth
exploring.

For each application a representative original or mod-
ified dataset to construct and train a small BNN is used.
Its weights and thresholds are then used to create a
fully combinational hardwired Verilog Register Transfer
Level (RTL) code, which is synthesized for an FPGA
system. While previous works only show that BNNs
are effective on classic machine learning datasets and
that there is a possibility to create very efficient parallel

logic, we are the first to create multiple designs for a
set of real-world applications.

In Section 2, the theory behind floating-point, quan-
tized and binary neural networks and their massively
parallel models is briefly explained. In Section 3, our
tools, datasets and network construction flow for each
application field are introduced. BNN circuitry synthesis
results are shown and commented on in Section 4. In
Section 5, our conclusions are drawn.

2 BACKGROUND

Artificial neural networks are mathemati-
cal/computational models vaguely based on the
workings of biological neural networks. They are
comprised of a set of interconnected simple processing
elements called artificial neurons whose weighted
connections and activation thresholds describe the
behavior of the network. The sum of multiplications of
neuron inputs and their corresponding weights is added
to the neuronal bias or threshold. The resulting value is
then processed through a non-linear activation element
which sets the output of the neuron. This element
usually represents a simple mathematical function, i.e.
a step/sign, linear function or sigmoid function.

Computer vision and pattern recognition systems use
artificial neural networks for sample pre-processing,
feature extraction, regression, clustering, detection and
recognition/classification. There are many different vari-
ations and topologies of neural networks, such as multi-
layer perceptrons, recurring, Hamming and recently con-
volutional networks. One of the simplest classification
networks are multilayer perceptrons which are also used
in this paper.

Multilayer perceptrons have fully connected layers,
meaning every neuron at an individual layer is connected
to every neuron in the next layer but never to neurons
in the same, previous or next-to-next layers. It is proven
that one can create linear boundaries in real-valued
space with a single-layer perceptron network, piece-
wise linear boundaries with two-layer networks and
arbitrary complex boundaries with three or more layered
networks. Three-layer perceptrons can thus approximate
Bayesian decision functions with the least-square error.

Neural networks can be trained to produce a certain
output based on its inputs with backpropagation. Neu-
ronal weights and biases are first randomly generated
and then trained using our training set of labeled sam-
ples/features. For every input, we know what the output
should be, from which we can calculate the error the net-
work has generated. With backpropagation the network
parameters are corrected using the derivatives of the
error function throughout the network starting from the
outputs via stochastic gradient descent. The derivatives
are predominately described with the selected activation
function, which is usually easily differentiable. We can



MASSIVELY PARALLEL COMBINATIONAL BINARY NEURAL NETWORKS FOR EDGE PROCESSING 49

calculate the effect each weight and bias will have on
the final output error, which we then change by its
gradient multiplied by some learning factor so that the
error will decrease. The error function gradients for
every parameter are derived using the derivation chain
rule, which means that we can easily propagate the
error gradient through the network. By iterating and
correcting our network parameters for the whole training
set multiple times, we build the desired feature space
boundaries for effective classification. Backpropagation
always finds the local minimum in the cost/error func-
tion, which might not be optimal. This can be avoided
by training the network multiple times using different
starting parameters. Moreover, trained networks might
be over-fitted meaning that they perform poorly on the
testing set as they have not learned anything fundamental
or general about the problem and have only created
a one to one mapping of the training inputs to the
desired class. This can be mitigated using fewer neurons
or layers, a larger and/or more diverse training set,
using regularization terms with the cost function (try
to “push” all weights to be around 0, so not to explode
in value) and batch normalization (each layer's outputs
are normalized).

Network size can change during training by using
either pruning techniques or constructive techniques.
Pruning techniques iteratively remove network intercon-
nections and neurons which have a negligible effect on
the performance. Constructive techniques work the other
way with a small number of neurons, which are then
iteratively added to improve the performance on both
the training and testing set.

Performance of neural networks is usually measured
with RMSE - (root mean squared error) for regression
problems and for classification problems with accuracy
(number of correct classifications vs all observations),
recall (number of positive correct classifications vs all
observations), precision (number of positive correct
classifications vs all positive observations) and F1 −
score (2∗(Recall∗Precision)/(Recall+Precision))
[9].

2.1 Quantized Neural Networks
Previously described neural networks use full pre-

cision parameters and activations. This can be over-
whelming for real-time deployment and small memory
applications. Moreover, fixed-point arithmetic requires
fewer resources than floating-point arithmetic when de-
signing FPGA or ASIC solutions. Researchers have
recently developed neural networks where all parameters
and activations are presented in an N-bit fixed-point
representation. This creates networks that are much
smaller, faster, have a lesser memory footprint and are
simpler, which enables them to be effectively used in
real-time applications and be introduced to hardware
implementations. These networks are trained via back-

propagation either directly using fixed-point values or
are trained using floating-point representation, which is
then quantized. Their performance in recognition tasks
has been shown to reach the accuracy of their floating-
point cousins, while their fixed-point design enables
them to be straightforwardly implemented in FPGA and
ASIC technologies.

2.2 Binary Neural Networks
BNNs represent the extreme case of quantized neural

networks, where all (full binarization) or some (partial
binarization) weights and activations are constrained to
values of +1 and -1. These signed values can be easily
changed to 1 and 0 for a true digital representation. By
binarizing network parameters, we can achieve smaller
size and memory footprints of neural network imple-
mentations while reducing the complexity of calcula-
tions. Previous works show that BNNs reach similar
recognition and detection performances as floating-point
or fixed-point networks [4], [5]. In this paper, we focus
on fully binary neural networks as opposed to only
partially binary, which still require some floating or
fixed-point operations and are thus not optimal for tiny
power/size/latency hardware deployment.

The most prominent improvement of binary networks
can be seen in their neural activation models. Non-
binary networks use a large number of full precision
multipliers and adder in addition to complex logic for
neuron activation. A usual inference operation uses a
weight multiplier for every neuron input. These val-
ues are then added together and used with a certain
activation function, which is usually ReLU (clipped
linear function). Figure 1 shows the most general neuron
activation model.

Figure 1. Typical floating/fixed-point neuron activation model.
Every input is multiplied with its corresponding weight, these
results and bias are summed and the sum is processed by some
activation function.

Binary activation models for BNNs are, on the other
hand, constructed of simple XNOR gates which repre-
sent binary multiplication and population count modules,



50 MUROVIČ, TROST

as the usual activation function for BNNs is the sign
function. By counting weighted input bits and comparing
that number to a certain threshold one can efficiently
implement sign activation. Moreover, by changing the
threshold, we can also include the bias and batch nor-
malization terms [5]. Figure 2 shows the typical BNN
neural activation model.

Figure 2. Binary neuron. Inputs are bit-wise XNOR'ed with
their corresponding binary weights. The results are summed
and compared with a certain threshold. Based on this compar-
ison, the activation is purely binary.

The issue still remains that in fully-connected neural
networks, every input neuron is connected to every out-
put neuron in each layer of the network. It is important
to note that convolutional layers for CNNs are actually
special cases of fully-connected layers and vice versa. To
achieve low latency and small logic size, the overhead of
memory access and multiplexing logic can be drastically
reduced by making the architecture fully parallel with
hard-wired weights and thresholds [6].

3 PARALLEL BINARY NEURAL NETWORK
DEPLOYMENT

3.1 Training and RTL development
Our selected datasets are binarized and divided into

training and testing subsets. These data formats are
then used as inputs to the main Python script, which
trains our binary MLP networks for binary classification
problems. Training is done with backpropagation using
the straight-through estimator which assumes that the
gradient of a step function can be approximated with the
value of 1 when in the neighbourhood of the step. This
estimator must be used as otherwise the sign activation
function does not allow gradient-decent optimization.
Networks are trained using real-valued representation
which is then binarized for inference testing. Learning
algorithms are based on [4], where an in-depth explana-
tion of binary neural network training and their perfor-
mance is given. The software implementations of these
algorithms are taken from GitHub repositories of [10].

These rely on different machine learning libraries, which
are standard in research and industry neural network
development: Theano, pylearn2 and Lasagne. Training
is repeated multiple times with different network sizes
and parameters (Figures 3, 4 and 5). The best performing
network in relation to its size is then estimated and taken
to be implemented in FPGA. The resulting network
is afterward formatted into hardware appropriate form.
The procedure is similar to the one in [5], where all
thresholds, batch norms and weights are transformed
into positive binary (weights) and integer (thresholds)
values.

Finaly, we create our combinational BNN layer RTL
models, which take the form of Verilog files. These are
then exported to Vivado 2017.4 Synthesis Tool where the
final synthesis and FPGA implementation for Xilinx's
Zed Board is made. Our binarization scripts for each
dataset as well as our final per layer Verilog files for
each application are available online [11].

3.2 Cybersecurity
Packet classification is an essential procedure in mod-

ern IP networks, especially in the framework of cyber-
security or intrusion detection systems (IDS). Machine
learning algorithms are used in such systems to detect
and block malicious attacks and suspicious incoming
data. Flow-based IDS are required to use only IP packet
header data (source address, destination address, time-
to-live, protocol etc.) and network flow information
(speed of packets passing, density of packets, etc.). This
way the size of data to process is drastically reduced
because there is no need to access the actual user data
inside a packet. Equally as important is the fact that
not monitoring packet data maintains user anonymity,
which is nowadays of an increasing concern [12]. As
our networks are ever growing in size and speed there
has never been more need for ultra-fast and efficient IDS
packet classification algorithms. While most of them still
use CPU-based classification, which is flexible as the
algorithm code can be quickly updated in case new and
unknown attacks become obvious, they are inherently
sequential in nature and can struggle to reach the latency
and throughput demands of modern networks, where
data speeds can go up to 100 Gb/s. In this scenario,
FPGAs and GPUs represent the move towards hard-
ware solutions, which can dramatically improve packet
processing speeds while maintaining specific algorithm
configurability. Here we emphasize the use of FPGAs
as in contrast to GPUs their tabula-rasa circuit concept
enables them to be optimally massively parallel for any
kind of machine learning algorithm and reach the desired
performance. Configurability is maintained as circuits
can be changed dynamically off-site and from inside the
protected network [13].

Recently, artificial neural networks have been proven
to efficiently and accurately classify incoming packets,



MASSIVELY PARALLEL COMBINATIONAL BINARY NEURAL NETWORKS FOR EDGE PROCESSING 51

which makes them prime candidates for implementation
in hardware-based network machine learning classifiers.
In this case, parallel binary neural networks can play
a major role in developing efficient intrusion detection
systems [3].

The UNSWNB15 dataset [13], [14] was created by
the Australian Center of Cyber Security by simulating
modern intrusion attacks. It has 9 types of attacks with
49 generated flow features. For our training, all features
are binarized to get a purely binary vector as input.
Original features have different formats ranging from
integers, floating numbers to strings. Integers, which for
example represent a packet lifetime, are binarized with
as many bits as to include the maximum value. Another
case is with features formatted as strings (protocols),
which are binarized by simply counting the number of
all different strings for each feature and coding them in
the appropriate number of bits. Floating-point numbers
are reformatted into fixed-point representation. In the
end, transforming all features into bits ended with 593-
wide binary vectors. All vectors are labeled as bad (0)
or normal (1). For training and testing, we used 25767
vectors (IP packets) randomly selected from the dataset.
The data is also randomly divided into thirds, where the
two-thirds are used for training and the remaining third
for testing. The ratio of normal to bad vectors is 2:1.

Figure 3. Packet classification accuracy with 1/2/3 layer BNN
vs layer neuron number, where each layer has the same number
of neurons. With 1 layer and 100 neurons we can achieve an
accuracy of over 90%, while still having a relatively small
circuit.

Figure 3 shows packet classification accuracy by
our BNN. We can observe that increasing the number
of layers does not have much influence on the final
performance. Moreover, the curves seem to converge at
an accuracy of around 90-91%. With that in mind, we
opted to use 1 layer with 100 neurons, as that gives us
the best accuracy, while keeping the networks size at

a minimum. The final accuracy of our implementable
BNN is 90.74%.

3.3 Exotic Particle Search in High-Energy Physics

Particle accelerators are used to speed up the build-
ing blocks of matter (usually protons) to high energy
densities and then to collide them together in hopes
of detecting new exotic particles that represent more
fundamental constitutes of nature. After the particles are
“crashed”, their resulting particle shower is captured by
different sensors around the point of impact. Sensors
detect their kinematic properties from which the nature
of the particles can be inferred. This way, the scientist at
CERN discovered the Higgs boson in 2013, solidifying
the accuracy of the standard model of particle physics
[15].

The search for new particles is based on statistical
models and large amount of data, where it is practi-
cally impossible to sift through all the data from all
collisions, most of which hold no relevant informa-
tion. Accelerators thus use special trigger hardware to
classify collisions as background or signal, the latter
of which represents candidates for interesting events.
Devices must achieve a large number of classifications
per unit of time with as little latency as possible because
events occur at a rate of 1011 per hour at CERN’s
Large Hadron Collider, which leads to sub-microsecond
inference requirements. Recently, development has been
made using FPGAs with quantized neural networks
for triggers which achieve good accuracy and latency
performance on some datasets [2]. The need for latency
critical machine-learning systems and FPGA technology
hardware options naturally leads us to explore hardware
BNNs for collision trigger systems.

For our experiments, we use data produced using
Monte Carlo simulations of collisions gathered in the
SUSY (Supersymmetry) dataset [15], [16]. In addition
to low-level kinematic features, there are also derived
features discovered by physicists to help discriminate
between events. Collisions are labeled as belonging
to a signal (1) or background (0). For training and
testing, we use 50000 data vectors. The data is also
randomly divided into thirds, where two-thirds are used
for training and the remaining third for testing.

Figure 4 shows that by using 2 layers the accuracy
increases to over 70% with the least amount of neurons
(75 neurons per layer are selected). The final accuracy
of our implementable BNN is 72.18%. The performance
is drastically worse than in the other examples in this
work. This stems from the fact that exotic particle
event classification from the SUSY dataset is an ex-
tremely difficult problem, where even the state-of-the-art
benchmark research achieves an accuracy around 80%
with much larger and more complex non-binary neural
networks [15].



52 MUROVIČ, TROST

Figure 4. Particle classification BNN accuracy of around 70%
is achieved with 2 layers and 75 neurons in each layer.

3.4 Imaging
Machine vision is one of the most widely researched

machine learning areas. Recently, autonomous driv-
ing/ADAS and security markets have been trying to
achieve cheap and simple solutions to image classifi-
cation. BNNs naturally represent a new step in devel-
oping super-high frame-rate, low-cost machine vision
solutions.

The MNIST dataset [17] is considered the exemplary
problem of machine learning. Most neural networks are
firstly tested on this dataset to see if they even work.
The dataset has 60000 images of handwritten digits
from 0 to 9 and their labels. Recently, it has been
shown that BNNs achieve results similar to floating-
point neural networks, but with a fraction of their weight
and calculation heaviness [4], [7], [5]. These networks
are still relatively large and complex in respect to size,
latency and power requirements of actual real-world
deployment. For example, the network for MNIST from
the seminal work [4] has 3 layers and 4 k neurons each.
Therefore we argue that currently our expectations for
achieving state-of-the-art accuracy in embedded systems
on the edge on difficult benchmark machine learning
datasets is too high and we should relax the goals
of our machine vision chips to achieve the required
performance. We relabel the MNIST dataset to transform
the digit multiclass classification problem to binary
classification in the sense that our BNNs must only
detect if the digit in the number is above or below a
certain threshold (in our case 4).

In Figure 5 we can see that the accuracy of the binary
digit classification is mostly dependent on layer size and
not their number, therefore we decide to use 150 neurons
in 1 layer. The final accuracy of our implementable
BNN is 96.13%. This accuracy is comparable to a more
difficult MNIST problem (classify each digit) and a

Figure 5. BNN for binary digit classification. Additional layers
do not increase much the accuracy and we can use only one
layer and 150 neurons to achieve over 96% accuracy.

much larger neural network.

4 SYNTHESIS RESULTS

After, constructing and training our networks we built
Verilog models of fully parallel/combinational BNN
circuits. These are then synthesized for the Xilinx Zynq
7000 Zedboard FPGA and their resource usage is pre-
sented in Table 1.

Field Inputs Network Delay [ns] Power [W] LUT
IDS 593 1x100 19.624 1.568 51353

HEP 301 2x75 24.692 0.68 19140
IM 400 1x150 21.432 1.474 44670

Table 1. Resource usage and performance of our binary MLP
BNNs shown per application field. All inputs are one bit, as is
the true/false binary output. IDS - Intrusion-Detection System;
HEP - High-Energy Physics; IM - Imaging

Synthesis tools create an optimized circuitry from
FPGA slices that functionally performs exactly as coded
in its input files. Our cases have the added benefit of
using zero registers (unless we want to buffer input or
output data coming in or from our network respectively).
Final synthesis results show that our parallel circuits
achieve an inference latency of below 30 ns for all
applications which is sufficient to be comfortably used
in every deployment scenario presented in this paper.
Additionally, power consumption falls below that of
FPGA examples of quantized [2] and binary [5] neural
network examples found in other works. The number
of LUTs needed in any given design is below that of
FPGAs in the lower price range (sub 60 k LUTs). This
enables parallel BNNs to be readily deployed by most
researchers and to be ideal for cost and performance
driven market.



MASSIVELY PARALLEL COMBINATIONAL BINARY NEURAL NETWORKS FOR EDGE PROCESSING 53

5 CONCLUSION

We identify and present application fields for hardware
machine learning algorithms on the edge and show how
to design massively parallel combinational binary neural
networks on FPGAs for binary classification problems
starting from specific datasets. Network sizes and their
classification performance are presented for cybersecu-
rity, high-energy physics and imaging application fields.
The design synthesis results show that parallel BNNs
enable efficient hardware machine learning deployment
on the edge while consuming minimal resources in terms
of size, cost and power and achieve sub 30 ns inference
delays, which is crucial for high-speed applications.
The presented problems can be deployed on a low-
end FPGA, enabling powerful machine learning clas-
sification systems to be widely used by researchers and
industry professionals alike. We do argue however that
further work is required to invent new architectures or
logic optimization techniques for parallel binary neural
networks to achieve an even better performance for near-
sensor/edge applications.

REFERENCES

[1] S. Virmani and S. Gite, “Performance of convolutional neural
network and recurrent neural network for anticipation of driver’s
conduct,” in 2017 8th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1–
8, July 2017.

[2] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast
inference of deep neural networks in fpgas for particle physics,”
Journal of Instrumentation, vol. 13, no. 07, p. P07027, 2018.

[3] L. V. Efferen and A. M. T. Ali-Eldin, “A multi-layer perceptron
approach for flow-based anomaly detection,” in 2017 Interna-
tional Symposium on Networks, Computers and Communications
(ISNCC), pp. 1–6, May 2017.

[4] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks,” in Advances in Neural Infor-
mation Processing Systems 29 (D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, eds.), pp. 4107–4115, Curran
Associates, Inc., 2016.

[5] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W.
Leong, M. Jahre, and K. A. Vissers, “Finn: A framework for fast,
scalable binarized neural network inference,” in FPGA, 2017.

[6] M. Rusci, L. Cavigelli, and L. Benini, “Design automation for
binarized neural networks: A quantum leap opportunity?,” in
2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5, May 2018.

[7] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst,
“Binareye: An always-on energy-accuracy-scalable binary cnn
processor with all memory on chip in 28nm cmos,” in 2018
IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4,
April 2018.

[8] A. Ardakani, C. Condo, and W. J. Gross, “A convolutional
accelerator for neural networks with binary weights,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, May 2018.

[9] N. Pavešić, Razpoznavanje vzorcev: uvod v analizo in
razumevanje vidnih in slušnih signalov. Fakulteta za elek-
trotehniko, 2000.

[10] M. Courbariaux, “Binary net.”
https://github.com/MatthieuCourbariaux/BinaryNet, 2016.

[11] “Bnn deployment.” Deployment [Available Upon Acceptance],
2019.

[12] G. Karatas and O. K. Sahingoz, “Neural network based intrusion
detection systems with different training functions,” in 2018
6th International Symposium on Digital Forensic and Security
(ISDFS), pp. 1–6, March 2018.

[13] W. Jiang and V. K. Prasanna, “A fpga-based parallel architecture
for scalable high-speed packet classification,” in 2009 20th
IEEE International Conference on Application-specific Systems,
Architectures and Processors, pp. 24–31, July 2009.

[14] “UNSW-NB15 Dataset,” 2015 (accessed September 10,
2018). https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/.

[15] P. Baldi, P. Sadowski, and D. O. Whiteson, “Searching for exotic
particles in high-energy physics with deep learning.,” Nature
communications, vol. 5, p. 4308, 2014.

[16] “SUSY Dataset,” 2014 (accessed September 10, 2018).
https://archive.ics.uci.edu/ml/datasets/SUSY.

[17] “MNIST Dataset,” 2004 (accessed September 10, 2018).
http://yann.lecun.com/exdb/mnist/.

Tadej Murovič recieved his Master's degree from the Faculty of
Electrical Engineering, University of Ljubljana in 2017. His research
includes the development and implementation of signal processing
algorithms and hardware applications of machine learning. Presently
he works as an Algorithm Design Engineer for ON Semiconductor's
Intelligent Sensor Group where he develops hardware CMOS solutions
for radar and imaging sensor technologies inside the automotive
market.

Andrej Trost received his Ph.D. degree from the Faculty of Electrical
Engineering, University of Ljubljana in 2000. Currently he works at
the same faculty as an associate professor teaching high-level design
techniques on several graduate and post-graduate study levels. His
research interests include the FPGA technology and digital systems
design for academic and industrial applications.


