
ELEKTROTEHNIŠKI VESTNIK 79(1-2): 55-60, 2012

ENGLISH EDITION

Design of Custom Processors for the FPGA Devices

Andrej Trost, Andrej Žemva

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
E-mail: andrej.trost@fe.uni-lj.si

Abstract. Programmable devices in the Field Programmable Gate Array (FPGA) technology enable design and

prototyping implementation of complex digital systems executing their tasks on central processing units (CPU)

and application-specific logic components. The paper presents development of a custom processor system in the

FPGA device. The system is based on a CPU with an accumulator easily extendable with additional instructions.

The processor core and program memory are described in a VHDL language and no additional compiler is

required. The CPU is optimized for the FPGA devices and synthesis results of 4- to 32-bit cores are presented. An

upgrade of the CPU by using peripheral units, Wishbone compatible bus and case with a graphical controller is

presented.

Keywords: digital systems, programmable devices, processor, graphical controller

1 INTRODUCTION

Field programmable gate array (FPGA) devices are used

for development and prototyping implementation of

complex digital systems. These systems are typically

based on one or more central processing units (CPU)

and custom circuit networks for efficient execution of

the tasks [1].

 The FPGA vendors provide software tools for digital

circuit synthesis from high-level description languages

VHDL or Verilog [2]. The basic tools are freely

available and can be used for educational purposes [3].

In order to include microprocessors inside the FPGA

device, a CPU core generator and a compiler tool are

required. Some families of the FPGA devices include

embedded standard hardware processor cores (for

example ARM or PowerPC). The other FPGA devices

can emulate a CPU with the general programmable

logic resources. The FPGA vendor Xilinx provide a

small 8-bit open-source processor called Picoblaze [4]

and a powerful 32-bit CPU core Microblaze, which

requires commercial tools.

 A CPU-based digital system contains the generally

used digital building blocks, such as registers, memory,

decoders and computation units with sequential control

logic or finite-state machines. Developing a custom

microprocessor is a good task for the students learning

design of complex digital systems [5]. The customized

processor cores are a common research topic [6-8].

 Optimal CPU core implementation depends on the

technology used, so a typical CPU embedded in the

FPGA device has a different instruction set architecture

compared to the standard silicon chip processors. In

order to efficiently use the custom processor, a new

compiler needs to be developed.

 The paper presents development of an educational

generic CPU core and its optimization for the FPGA

technology. The core circuit and the assembler

instructions are described in the same VHDL hardware

description language and no additional compilers are

required. A case study with a custom CPU driving a

graphical controller is presented.

2 DEVELOPMENT OF THE CPU CORE

The CPU carries out the program instructions. An

instruction set architecture (ISA) defines a set of basic

instructions that a processor understands. The

instructions and data are stored in the main memory. In

a typical embedded system, a CPU with reduced

number of instructions RISC (Reduced Instruction Set

Computer) is used. The program instructions and data

are stored in the main memory and registers in a register

file are used for quick temporary data storage.

 When building the CPU with FPGA devices, we can

simplify the architecture by utilizing the embedded

memory blocks instead of the main memory and register

file.

 We define a simple CPU microarchitecture with one

register called accumulator, which is the target register

for all data processing instructions [9]. Arithmetic and

logic instructions with two operands hold one operand

in the accumulator and receive the other operand from

the memory block.

Received April 24, 2012

Accepted May 9, 2012

56 TROST, ŽEMVA

Program instructions are binary codes composed of an

instruction code and memory address. In the first

educational processor implementation we limit the

instruction code to 4 bits which can describe in total 16

operations. The instruction codes are defined as a

VHDL constant in a custom VHDL package:

subtype koda is unsigned(3 downto 0);
constant lda: koda := "0001"; -- a = [M]
constant sta: koda := "0010"; -- [M] = a
constant add: koda := "0100"; -- a = a + [M]
constant sub: koda := "0101"; -- a = a - [M]
constant anda: koda := "0110"; -- a = a and [M]
constant ora: koda := "0111"; -- a = a or [M]
constant jmp: koda := "1000"; -- jump
constant jze: koda := "1001"; -- jump if a=0

The memory address is an 8-bit number, which is

enough for simple programs used for educational

purposes. The complete 12-bit instruction is fetched

from the memory in one clock cycle. In the FPGA

technology we can define memory blocks of a variable

data width, so the same 12-bit data is used for the

instruction operands. The proposed 12-bit CPU

microarchitecture is presented in Fig. 1.

Figure 1. Microarchitecture of the 12-bit CPU core

The processor data path contains two registers: a 4-bit

instruction code register and a 12-bit accumulator. The

memory is connected with two data busses: datain is the

source of the program instructions, while dataout is used

for storing the results back to the memory.

 The initial CPU core is described in a VHDL

language by a very compact code. A synchronous

VHDL process is used for describing the registers and

data processing instructions in the processor data path.

A signal st is a state register from a finite state machine

with two alternating states: fetch and execute. In the

state fetch, the instruction code is read from the

memory. In the state execute, the previously fetched

instruction is executed. The bus datain contains operand

data in the state execute.

if st=fetch then -- save instruction code
 code <= instr;
elsif st=execute then -- execute accumulator instr.
 case code is
 when lda => akum <= datain;
 when add => akum <= akum + datain;
 when sub => akum <= akum - datain;
 when anda => akum <= akum and datain;
 when ora => akum <= akum or datain;
 when others => null;
 end case;
end if;

The CPU controller contains two address registers: a

memory address (adr) and a program counter (PC). The

program counter holds the address of the next

instruction. The controller VHDL description is:

-- Control signals, PC and address register
wr_o <= '0';
if st = fetch then
 st <= execute;
 pc <= adr + 1; -- address of the next instruction
 adr <= address; -- addres for the operand
 if instr=sta then
 wr_o <= '1';
 elsif instr=jmp or (instr=jze and akum=0) then
 st <= fetch;
 end if;
else
 st <= fetch;
 adr <= pc;
end if;

Most of the instructions are executed in two cycles. An

exception is the jump instruction, which is executed in

only one cycle. Fig. 2 shows a detailed timing of a small

3-instruction code running on the CPU. The instruction

"lda M1" is fetched first from the address 0, and the

operand from the address M1 is fetched in the next

cycle. The operand is stored in the accumulator. The

next instruction "add M2" is executed in a similar

manner, and the value from the memory location M2 is

added to the accumulator. The result of the jump

instruction "jmp 00" is the change in the address for the

next instruction.

Figure 2. Timing waveform for instructions: lda, add and jmp

DESIGN OF CUSTOM PROCESSORS FOR FPGA DEVICES 57

Figure 3. 12-bit CPU connected with the main memory block

Fig. 3 shows the connection between the CPU and the

program memory. Memory blocks in the FPGA device

have separate read and write data busses. We used a

memory block with synchronous writing and

asynchronous reading. In the Xilinx FPGA devices,

such blocks are implemented with a look-up table

memory called distributed memory. Only one

instruction, "sta M", performs memory write operation

by activating control signal wr_o.

 The memory model is in the VHDL described with

an array, which should be initialized with the program

code:

signal m : memory := (
 lda & x"03",
 add & x"03",

 jmp & x"00",
 x"005"
);

The instruction codes previously defined in the VHDL

package can be used in memory initialization. The

content of the memory array looks like a disassembled

symbolic code and is quite readable for small programs.

The CPU programmer does not need a cross compiler

and both the processor hardware and program can be

designed in the VHDL. By extending this principle we

can design processors with a different ISA and quickly

test their operation with a VHDL simulator.

3 UPGRADE AND OPTIMIZATION

The presented CPU microarchitecture is a good initial

candidate for upgrading with new instructions and units.

Additional arithmetic, shift or logic operations with one

or two operands can be directly added to the data path.

The designer can add input and output ports for the data

connection of the CPU core in the digital system.

3.1 Input and output ports

Input and output (I/O) ports are used for the data

transfer between the CPU core and external logic. They

can be implemented by mapping certain memory

locations to the dedicated registers or with additional

I/O instructions and connections in the CPU core. The

first solution does not require any change in the

processor architecture. On the other hand, we can

double the address space by adding only two I/O

instructions and minimal logic.

3.1.1 Wishbone Bus

Wishbone is a standardized synchronous parallel

system-on-a-chip bus implementing the well-known

master Master/Slave (M/S) protocol [10]. The data

connections are a one-directional parallel, since this is

the preferred architecture in integrated circuits. The

standard proposes a variety of interconnection

architectures: point to point, data flow, shared bus or

switched network.

 The basic M/S protocol with handshaking does not

require many logic resources in digital systems. A

typical write cycle is presented in Fig. 4. The write

request is issued by the master asserting signals WE_O

and STB_O at the rising clock edge. The slave should

respond with an asynchronous acknowledge confirming

or delaying the requested operation.

Figure 4. Write cycle on the Wishbone bus

 Fig. 5 presents a new processor microarchitecture

with an input and output port. The data is transferred

from the input port to the accumulator with a new

instruction "inp M". The output port is implemented as a

register in which the accumulator data is transferred by

the new instruction "outp M". The address bus is set to

the argument value M of both instructions and the

Wishbone handshaking signals are activated.

Figure 5. Upgrade of the CPU with the I/O Wishbone bus

58 TROST, ŽEMVA

3.1.2 Synchronous memory

The contemporary programmable devices contain

embedded fully-synchronous memory blocks, by vendor

Xilinx called Block RAM. Their memory has one clock

delay for write and read cycles, so the data is available

one cycle after setting the address. The address register

is part of the memory block in order to speed-up the

synchronous memory accesses.

 Adopting the CPU core to use the synchronous main

memory is a simple task. The designer should remove

the address register from the memory data path and

route the address from the input of this register as

presented in Fig. 5 (signal adrs). The register itself is

still required to hold the next value of the program

counter in the control logic loopback.

3.2 Extending the arithmetic and logic unit (ALU)

instruction set

New instructions can be added in the CPU data path by

extending the selection statement. In order to extend the

arithmetic computation capabilities a carry flag flip-flop

can be used for storing the addition carry bit or

subtraction borrow. Two additional arithmetic

instructions should be implemented: addition with a

carry bit:

and subtraction with borrow:

These instructions directly described in the VHDL are

synthesized to additional adder structures and increase

the circuit size. The CPU design optimization should be

considered with respect to the FPGA resources.

3.3 ALU optimization

The ALU is the computational core of the processor and

presents a large portion of the used resources in a simple

CPU architecture. The ALU is a combinational circuit

with multiple bus inputs and a regular architecture. The

basic addition operation is performed by a series of full

adders. The operations can be extended by adding some

logic to the inputs or to the output of the basic full

adder.

 The ALU optimization is based on dividing the ALU

to the basic cells called arithmetic cells. Similar

structures are register cells, which can be seen as an

ALU with output register (in our case accumulator)

[11]. Division simplifies the design and logic

optimization. For an arithmetic unit with two

parameters, we can define the following operation:

 {

 ̅

The operation depends on parameter value p and input

carry ci. When p=00, the output is equal to the first

input or the input is incremented by 1. When p=01, the

output is addition with carry, and when p=10, we get

subtraction with borrow. The combination p=11 is used

to decrement the input value by 1, when the input carry

is 0.

 Logic operations can be added by a multiplexer on

the output and on two additional parameters m0 and m1.

On the multiplexer input, the bit-level operations AND,

OR and EX-OR are calculated, as shown in Fig. 6. The

multiplexer selects either the result of the arithmetic or

of one of the logic operations.

Figure 6. Basic cell of the optimized ALU

The proposed architecture is optimized for mapping the

logic into 4-input look-up tables (LUT), which are part

of the FPGA structure. One LUT per ALU bit is

required for selecting arithmetic operations and one for

logic operations. Additional signals are used for carry

calculation:

 Cprop propagate carry ci,

 Cinv invert and propagate carry, and

 Cset set ci to 1 (used for increment and subtract).

Table 1. Decoding table for the ALU instructions

sel(3:0) p(1:0) m(1:0) Cprop Cinv Cset instruct.

0000 00 00 0 0 0 lda

0001 01 00 0 0 0 add

0010 10 00 0 0 1 sub

0011 11 00 0 0 0 dec

0100 00 00 0 0 1 inc

0101 01 00 1 0 0 adc

0110 10 00 0 1 0 sbc

1x01 00 01 0 0 0 anda

1x10 00 10 0 0 0 ora

1x11 00 11 0 0 0 xora

DESIGN OF CUSTOM PROCESSORS FOR FPGA DEVICES 59

Fig. 7 presents a design excerpt with ALU and decoding

logic requiring only one LUT for implementation. The

complete ALU data path is presented in Fig. 8.

Figure 7. Determination of the input carry value

Figure 8. Data path with ALU, shifter, accumulator and carry

3.4 Subroutines and interrupts

In order to support jumps to a subroutine or an interrupt,

an address stack is required. It can be implemented as a

part of the main memory or as a separate hardware unit.

 Fig. 9 presents implementation of the stack hardware

unit, which is actually a small LIFO register added in

the control logic. The LIFO size is typically 4 to 32

memory addresses for small CPU cores.

Figure 9. Control part of the CPU with the hardware stack

3.5 Results of generic CPU synthesis

An 8-bit CPU implemented in a Xilinx Spartan-3 FPGA

device uses 30 flip-flops and 62 LUT, while a 12-bit

CPU uses 34 flip-flops and 79 LUT.

 A high-level ALU with 10 operations uses 176 LUT.

An optimized ALU with same number of operations

occupies only 31 LUT which is 18% compared to the

high-level description.

 An optimized 12-bit ALU with arithmetic, logic and

shift operations uses 46 LUT. A CPU core with 21

instructions occupies 92 LUT, 57 flip-flops and has a

maximum frequency 130MHz.

 Fig. 10 summarizes synthesis results (in LUT) for a

generic CPU core with different data widths, from 4 to

32 bits. The program memory size is either 128 words

(CPU) or 8k words (CPU8k).

Figure 10. Synthesis results for the generic ALU and CPU

4 GRAPHICAL CONTROLLER CASE STUDY

Programmable devices are used for processing high-

speed signals in real-time, for example video signals

[12]. With our case study we will demonstrate the usage

of the custom CPU in a graphical controller for

computer VGA screen at resolution 640 x 480 pixels

[13]. This is a basic monitor graphical mode and is used

extensively in mobile devices.

 Figure 11 presents components of the graphical

controller. A synchronization component (Sinhro) is

used for a characteristic VGA timing generator. The

color coding component (Color) defines the color of the

output pixels, which are internally stored in a pixel

memory (Pram). The component MovePixels is in

charge of setting image pixels in the pixel memory and

character display. This component is connected to the

custom 12-bit CPU through the Wishbone bus.

0

20

40

60

80

100

120

140

160

180

200

4 8 12 16 24 32

LUT

bit

ALU CPU CPU8k

60 TROST, ŽEMVA

 The CPU program executes algorithms for drawing

basic shapes on the screen. The Bresenham’s line and

circle drawing algorithms [14] can be implemented as

small machine language routines. The CPU native data

size (12-bits) is selected according to the algorithm

requirements and the image resolution.

5 CONCLUSIONS

In the paper we presented development of a generic

microprocessor core optimized for the FPGA

technology. The CPU circuit with a simplified basic

architecture and a lot of extension possibilities is

specifically tailored for educational purposes.

REFERENCES

[1] W. Wolf, FPGA-Based System Design, Prentice Hall, New

Jersey, 2004

[2] D. L. Perry, VHDL, 3rd ed. McGraw-Hill, 1998.

[3] D. Hanna and R. E. Haskell, “Learning Digital Systems Design
in VHDL by Example in a Junior Course,” Proceedings of the

ASEE North Central Section Conference, Charleston, West

Virginia, March 2007.

[4] PicoBlaze 8-bit Embedded Microcontroller User Guide, Xilinx

inc, 2011, www.xilinx.com

[5] V. Angelov, Volker L., 2009 “The Educational Processor Sweet-

16”, International Conference on Field Programmable Logic and
Applications, 2009, Praga, pp. 555-559

[6] G. Hempel, C. Hochberger, "A resource optimized Processor

Core for FPGA based SoCs," Digital System Design

Architectures, Methods and Tools, pp.51-58, August 2007

[7] N. Maheshwari, P. K. Jain, D.S. Ajnar: A 16-Bit Fully
Functional Single Cycle Processor, International Journal of

Engineering Science and Technology, 2011, vol. 3, no. 8, pp.

6219-6226

[8] M. Schoeberl: Leros: A tiny microcontroller for FPGAs, In
Proceedings of the 21st International Conference on Field

Programmable Logic and Applications (FPL 2011), September

2011

[9] T Böscke, MCPU - A Minimal 8Bit CPU in a 32 Macro cell

CPLD, www.opencores.org

[10] WISHBONE, Revision B.4 Specification, 2010,

http://opencores.org/opencores,wishbone

[11] F. Vahid, Digital Design. John Wiley & Sons, Inc., 2007.

[12] S. Lapanja, A. Trost, Testno okolje za razvoj vgrajenih naprav
obdelave videosignala, Elektrotehniški vestnik, vol 77, no. 2-3,

pp. 137-142, 2010

[13] A. Trost, Načrtovanje digitalnih vezij v jeziku VHDL, založba

FE/FRI, 2011

[14] A. Zingl, The Beauty of Bresenham's Algorithm,
http://free.pages.at/easyfilter/bresenham.html, 2012

Andrej Trost received his Ph.D. degree in 2000 from the

Faculty of Electrical Engineering, University of Ljubljana.

Currently he works at the same faculty as an assistant

professor teaching high-level design techniques on several

graduate and post-graduate study levels. His research interests

include the FPGA technology and digital-system design for

academic and industrial applications.

Andrej Žemva received his B.Sc., M.Sc. and Ph.D. degrees in

electrical engineering from the University of Ljubljana in

1989, 1993 and 1996, respectively. He is Professor at the

Faculty of Electrical Engineering. His current research

interests include digital signal processing, HW/SW co-design,

ECG signal analysis, logic synthesis and optimization, test

pattern generation and fault modeling.

Figure 11. An example of a digital system composed of CPU and graphical controller

