
ELEKTROTEHNIŠKI VESTNIK 79(1-2): 35–40, 2012
ENGLISH EDITION

Detecting Fortresses in Chess

Matej Guid, Ivan Bratko
Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana,
Tržaška c. 25, Ljubljana, Slovenia
Email: matej.guid@fri.uni-lj.si

Abstract. We introduce a computational method for semi-automatical detecting fortresses in the game of chess.
It is based on computer heuristic search and can be easily used with any state-of-the-art chess program. We
also demonstrate a method for avoiding fortresses and show how to find a break-through plan when one exists.
Although the paper is not concerned with the question whether it is practical or not to implement the method
within the state-of-the-art chess programs, the method can be useful, for example, in correspondence chess or
in composing chess studies, where a human-computer interaction is of great importance, and the time available
is significantly longer than in ordinary chess competitions.

Keywords: fortress, chess, computer chess, game playing, heuristic search

1 INTRODUCTION

In chess, fortresses are usually regarded as positions
when one side has a material advantage, however, the
defender’s position is an impregnable fortress and the
win cannot be achieved when both sides play optimally.
The current state-of-the-art programs typically fail to
recognise fortresses and seem to claim a winning ad-
vantage in such positions, although they are not able to
achieve actually the win against adequate defence.

The position in Fig. 1 is taken from the book Dvoret-
sky’s Endgame Manual [1]. The current state-of-the-art
chess programs without an exception choose to take the
black queen with the knight (1.Na4xb6), which leads to
a big material advantage and to high evaluations that
seemingly promise an easy win. However, it turns out
that after 1...c7xb6 (black pawn takes the white knight)
the backed-up evaluations, although staying high, cease
to increase in further play. In fact, black position be-
comes an impregnable fortress and the win is no longer
possible against an adequate defence.

Detecting fortresses is an unsolved task, at least in
computer chess. It is possible (although not proven) that
detection of fortresses in chess is nowadays possible by
using Monte-Carlo Tree Search (MCTS) [2], [3], [4].
However, the state-of-the-art chess programs are based
on heuristic search, and it seems rather impractical and
even inefficient to supplement them with the MCTS
algorithms for the purpose of detecting fortresses only.
This is probably just another reason why currently the
strongest chess programs are not able to detect fortresses
such as the one shown in Fig. 1.

Received December 6, 2011
Accepted April 1, 2012

In this paper, we will introduce a novel method for
detecting fortresses. It is based on computer heuristic
search. We intend to demonstrate that due to lack
of changes in backed-up heuristic evaluations between
successive depths that are otherwise expected in won
positions, fortresses can be detected effectively. We will
also show how to avoid fortresses and possibly find a
break-through plan when one exists.

2 DIRECTION-ORIENTED PLAY

The purpose of a heuristic evaluation function is to guide
the game-tree search. Heuristic evaluation functions have
to enable a program to find a direction of play towards
a win, not only to maintain a won position. Backed-
up heuristic values should in some way also reflect
the progress towards the end of the game, and should
therefore change as the search depth increases. Given
a won position, if backed-up heuristic values remained
the same with an increasing level of search, this would
just ensure that the value “win” is maintained, without
any guarantee of eventually winning, since the program
would not be able to discriminate between a position
with a slight advantage from the one that is clearly won.

This actually happens when one of the state-of-the-
art chess programs is confronted with the simple task
of winning the king and rook versus the lonely king
endgame without the use of chess tablebases, and is
limited with a sufficiently low search depth. It turns
out that the program behaves in the following way:
when using a search depth of 4 and higher, it assigns
the same heuristic evaluations to all winning positions
in this endgame (i.e., the numerical value of 4.92),



36 GUID, BRATKO

Figure 1. In the left side diagram, the white player is to move and has a winning positional advantage. State-of-the-art chess
programs without any exception choose the move 1.Na4xb6 (white knight takes the black queen), which leads to a big material
advantage. However, after 1...c7xb6 (black pawn takes the white knight) 2.h3-h4 (otherwise Black plays 2...h5-h4 with a draw)
2...g5xh4 3.Qb2-d2 h4-h3! 4.g2xh3 h5-h4 Black’s position (see the diagram on the right side) becomes an impregnable fortress
and the win is no longer possible against adequate defence. Nevertheless, as GM Dvoretsky indicates, white has a winning plan
at disposal: Qb2-d2! followed by, Ka2-b3, Na4-b2, Kb3-a4, Nb2-d3-c1-b3. By executing this plan, White can gain the a5-pawn
and win the game.

regardless of the search depth.∗ That is, although the
program’s evaluation function assesses positions in this
endgame as won, it fails to distinguish between non-
equally promising positions for achieving the final goal:
delivering checkmate. This results in a rather ridiculous
play by the winning side.

In 100 simulations mate-in-16 positions where the
program played against the black player defending opti-
mally (using tablebases), the program did not manage to
deliver checkmate within prescribed 50 moves in several
games, even at a 12-ply search. For example, at a 10-
ply search the program did not win in 19 games, and the
average length of the won games was 32 moves. Despite
the fact that the program is aware of the 50-move rule†,
it does not help it to always avoid the draw, when the
depth of search is limited.

The same program, when using the shallow search
of only 2 plies (i.e., when the phenomenon does not
occur), checkmates the opponent in 100% of the games
played from randomly chosen positions, also finishing
the task in considerably less moves on average. It is
worth noting that the backed-up evaluations of the 2-
ply search were on average increasing as the simulated
games were proceeding, while at search depths where
the phenomenon occurs they always stayed the same,
unless the depth of search sufficed to find a principal

∗The program where this phenomenon occurs is “RYBKA 2.1c 32-
bit”. In the year 2006, this was the highest rated chess program. The
phenomenon no longer occurs in the later versions.
†The basic rules of the game according to FIDE say: “The game

may be drawn if each player has made at least the last 50 consecutive
moves without the movement of any pawn and without any capture.”

variation that ended in checkmate (when the heuristic
evaluation is no longer necessary).

3 HOW TO DETECT FORTRESSES?

Our proposed method for detecting fortresses is based
on a very simple idea: if a position is a fortress, the side
with a material advantage cannot demonstrate progress
towards a win. Hence, backed-up heuristic evaluations
obtained at various consecutive levels of search will
not reflect the direction of the play towards a win, but
will remain the same from a certain search depth on.
Moreover, in such positions, several moves typically
lead to the same directionless play and thus backed-up
heuristic values of these moves should be the same or
nearly the same from a certain depth of search on.

Figs. 2 and 4 illustrate the above point. The position
in Fig. 2 is an elementary fortress [1]. White cannot
overcome the barrier established on the squares between
f8, f5, and h5, against an adequate defensive play by
Black. Fig. 4 shows backed-up heuristic evaluations of
the RYBKA chess program∗ at the levels of search in
the range from 2 to 20 plies for the best five moves (or
perhaps better: of the first five among several moves that
lead to exactly the same backed-up heuristic evaluation
value at a 20-ply search). Evaluations of none of the five
moves reflect a progress towards a win. Moreover, the
evaluations of all the five moves are practically the same

∗In the experiments, we used chess programs RYBKA and HOU-
DINI 1.5a. At the time of writing this paper, both programs are regarded
as ones of the top chess programs.



DETECTING FORTRESSES IN CHESS 37

Figure 2. GM Dvoretsky: “This is an elementary fortress.
White cannot overcome the barrier. If the black king returns to
f4, Black takes g5 under control by means of Bf6. An advance
of pawns brings no change.”

from the search depth of 9 plies on. Such behaviour
of a program indicates that the Black’s position is an
impregnable fortress.

4 HOW TO AVOID FORTRESSES OR FIND A
BREAK-THROUGH?

Let us return now to the position on the right side
diagram in Fig. 1. White has a huge material advan-
tage (the queen versus the bishop) and this material
advantage is clearly reflected in backed-up evaluations of
any heuristic-search-based chess program at any search
depth. However, these evaluations remain practically
the same at any search depth. With the RYBKA chess
program, for example, the backed-up evaluations remain
within the interval [-6.80,-6.74] at all search depths in
the range from 2 to 20. That is a clear indicator of
an impregnable fortress. In order to avoid the fortress,
the program should have foreseen this before grabbing
the queen with the knight a few moves earlier (see the
left side diagram in Fig. 1) and should have looked for
alternative plans at that point.

Let us consider a different scenario. Suppose a
heuristic-search-based chess program detects a potential
fortress by using our proposed method. In the position
in Fig. 3, the backed-up evaluations of the several
highest ranked moves according to any state-of-the-
art chess program remain practically the same at all
levels of search up to 20 plies. How can a program
find a possible break-through, providing that such a
break-through exists? As GM Dvoretsky indicates, in
the diagram of Fig. 3 White can win with a rather
spectacular sacrifice of two of the three remaining white

Figure 3. GM Dvoretsky: “It again seems as White cannot
overcome the barrier, but in actuality, he can by means
of a spectacular break-trough.” White wins with 1.g3-g4!
f5xg4 (1...h5xg4 2.h4-h5!) 2.f4-f5! Other plans are insufficient
against correct defence.

pawns [1]. Chess programs typically do not consider
such a break-through as promising, since it involves los-
ing material and consequently leads to inferior backed-
up evaluations. Eventually, at sufficiently high search
depths, the backed-up evaluations of the move that
involves a sacrifice, also leading to successful break-
through, would surpass the backed-up evaluations of
the other moves. However, this usually occurs beyond
search horizons of chess programs, and consequently the
programs fail to find such a break-through.

In the diagrammed position in Fig. 3, the RYBKA
chess program does not recommend the break-through
move 1.g3-g4 even up to the search depth of 30 plies.
Only when set to return exact backed-up heuristic values
of all possible moves in the diagrammed position, 1.g3-
g4 becomes the program’s first choice after reaching
the search depth of 17 plies (see Fig. 5). Obtaining
backed-up evaluations of all moves is much more time
consuming compared to the normal behaviour of the
program, and it is often not feasible under ordinary
tournament conditions. Therefore, how can a break-
through such as the one presented in this example be
detected using a practical chess program?

We recommend the following procedure. When it
becomes clear that the principal variation does not
demonstrate a progress towards a win (i.e., when the
backed-up evaluations remain practically the same at
all levels of search from a certain search depth on), it
may be beneficial to analyse all possible moves up to
some feasible search depth. If some move demonstrates
increasing backed-up evaluations with an increasing
level of search, such as the move 1.g3-g4 at the search



38 GUID, BRATKO

Figure 4. Backed-up heuristic evaluations of the RYBKA chess program at different levels of search in the range from 2 to 20
plies for the best five moves in Fig. 2 according to the program. The evaluations of other programs are qualitatively very similar.

Figure 5. Backed-up heuristic evaluation of the RYBKA chess program for the position in Fig. 3 at different levels of search
in the range from 2 to 20 plies, when the program is set to return exact backed-up heuristic values of all possible moves. The
values for the first five program’s choices at the highest depth of search are displayed. Under default settings, the program does
not recommend 1.g3-g4 at any given level of search.

Figure 6. RYBKA’s backed-up heuristic evaluations of two Black’s best responses to the move 1.g3-g4 in Fig. 3 according to
the program. They do not cease to increase with the search depth, indicating a successful break-through in what earlier seemed
to be a fortress.



DETECTING FORTRESSES IN CHESS 39

Figure 7. Cumulative time spent with an increasing search
depth to obtain the backed-up heuristic evaluation of the
RYBKA chess program for the position in Fig. 3 at different
levels of search in the range from 2 to 20 plies, when the
program was set to return exact backed-up heuristic values of
all possible moves.

depths from 2 to 10 in the present example (see Fig.
5), it may be useful to devote more attention to such a
move. Note that these shallow-depth evaluations may be
significantly lower compared to those of the program’s
first choice.

Fig. 6 further illustrates this approach. We analysed
two Black’s responses to 1.g3-g4 that are the best re-
sponses according to the program, namely 1...f5xg4 and
1...h5xg4. Their backed-up evaluations do not cease to
increase, and eventually become higher than the backed-
up evaluations of the moves previously evaluated as the
best.

Fig. 7 shows how the computer time increased with
the depth when the program RYBKA was set to return
exact backed-up heuristic values of all possible moves
for the position in Fig. 3 (at 1.83 GHz and 2.0 GB
RAM). This is of interest to see whether the proposed
approach is feasible in practice. In the present case, the
computer needed less than 10 seconds to analyse all the
possible moves up to depth 12. Note that a 12-ply search
may already suffice to detect a fortress (see Figs. 5 and
9). It is worth mentioning that fortresses typically occur
with fewer pieces on board, and usually demand far less
time for searching than regular middlegame positions.

5 AN EXPERIMENT WITH TWELVE
FORTRESSES

We selected 12 positions from the aforementioned book
that were recognised as fortresses by GM Dvoretsky
[1]. The positions were analysed by the RYBKA and
HOUDINI chess programs. The programs’ backed-up
evaluations of the search depths in the range from
2 up to 20 plies were obtained. Our claim was the
following: backed-up evaluations in positions that could
be regarded as fortresses will not behave as it is usual for
winning positions, that is, they will not tend to increase

with an increasing depth of search [5]. Four positions of
the experimental data set are displayed in Fig. 8.

Figure 8. Positions of the white player are impregnable
fortresses. Despite the huge material advantage of the black
player in each of these positions, Black cannot win against an
adequate defence by White.

The results of the experiment are demonstrated in Fig.
9, and confirm the above claim. For each of the twelve
positions it holds that the backed-up evaluations remain
practically the same from a certain search depth on,
regardless of the program used. It is interesting to ob-
serve slight oscillations in the evaluations of HOUDINI.
However, the demonstrated changes in the evaluations
across several search depths are negligible compared
to the expected changes in general of the backed-up
heuristic values with the depth in won or lost positions
(e.g., compared to Fig. 6).

6 CONCLUSIONS

We introduce a novel idea for detecting fortresses in the
game of chess. We demonstrate that a heuristic-search-
based program is able to detect fortresses on the basis of
backed-up values obtained at different levels of search.
If a particular position is a fortress, the program is not
able to show any progress towards a win and thus the
backed-up values cease to change significantly from a
certain search depth on. Moreover, it is rather typical
of such positions that several alternative moves lead to
the same (or rather similar) backed-up heuristic values
at deeper levels of search.

We also demonstrate a possible way to avoid
fortresses and how to find a break-through in a position
that seems to be a fortress. Namely, when the backed-
up evaluations remain practically the same at all levels
of search from a certain search depth on, it may be



40 GUID, BRATKO

Figure 9. Backed-up heuristic evaluation of the RYBKA (left) and HOUDINI (right) chess programs for twelwe positions that
were regarded as fortresses by GM Dvoretsky.

beneficial to analyse all possible moves up to some
feasible search depth. If some move demonstrates posi-
tive changes in backed-up evaluations with an increasing
level of search, it may be useful to devote more attention
to such a move.

Future work may include a more detailed formulation
of the algorithm for detecting fortresses, its implemen-
tation in a chess program, and its evaluation on a statis-
tically significant set of test cases. Also, more empirical
evidence would be helpful in order to determine whether
the proposed method can be afforded by chess programs
under various time constraints in a tournament play.

However, the method as presented in this paper
can already be useful, for example, in correspondence
chess or at composing chess studies, where a human-
computer interaction is of great importance, and the time
available is significantly larger than in ordinary chess
competitions. In the era of strong chess engines, one
of the important roles of a human in correspondence
chess is to guide the engine(s) to the most promising
continuations. One of the conclusions of this paper
useful for competitors in correspondence chess is that
a certain continuation may not be winning, when the
backed-up evaluations, although staying high, cease to
increase in further play.

The findings presented in this paper also represent a
contribution to the understanding of the computer heuris-
tic search in general. Namely, if backed-up heuristic
evaluations of seemingly promising alternatives (e.g., for
solving a particular problem) cease to increase between
successive depths of search, such alternatives may not
be promising at all – even if the corresponding backed-
up heuristic values obtained by heuristic search are
extremely high.

REFERENCES

[1] M. Dvoretsky, Dvoretsky’s Endgame Manual, 2nd edition. Rus-
sell Enterprises, Inc., 2008.

[2] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo Planning.
The European Conference on Machine Learning, pp. 282–293,
Springer, 2006.

[3] M.H. Winands, Y. Björnsson, J. Saito, Monte-Carlo Tree Search
Solver. Computers and Games, Lecture Notes in Computer
Science, vol. 5131, Springer, 2008.

[4] R. Coulom, Efficient selectivity and backup operators in Monte-
Carlo tree search. Computers and Games, Lecture Notes in
Computer Science, vol. 4630, Springer, 2007.

[5] M. Guid, Search and Knowledge for Human and Machine
Problem Solving. Ph.D. Thesis, University of Ljubljana, 2010.

Matej Guid received his B.Sc. (2005) and Ph.D. (2010) degrees in
computer science at the University of Ljubljana, Slovenia. He is a
researcher at the Artificial Intelligence Laboratory, University of Ljubl-
jana. His research interests include heuristic search, computer game-
playing, automated explanation and tutoring systems, and argument-
based machine learning. Chess has been one of his favorite hobbies
since childhood. He was also a junior champion of Slovenia a couple
of times, and holds the title of FIDE master.

Ivan Bratko received his B.Sc. (1970) and M.Sc. (1975) degrees
in electrical engineering from the Faculty of Electrical Engineering,
and the Ph.D. degree from the Faculty of Computer and Information
Science (1978), all from the University of Ljubljana. He is professor
at the Faculty of Computer and Information Science, University of
Ljubljana. He is the head of Artificial Intelligence Laboratory since
1985; he also collaborates with Department of Intelligent Systems at
the Jozef Stefan Institute. He is full member of the Slovenian Academy
of Sciences and Arts (SAZU) since 2003, and member of Academia
Europaea (since 2010). He received the ambassador in science award
from Republic of Slovenia (1991), became a Fellow of ECCAI (Euro-
pean Coordination Committee for Artificial Intelligence) in 2001, and
received the Zois award for outstanding scientific achievements from
the state of Republic of Slovenia in 2007. His best known work is
the book Prolog Programming for Artificial Intelligence (4th edition,
Addison-Wesley 2011).


