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Abstract. In this paper, a modular, configurable and versatile prototype platform for real-time video and image
processing is presented. Based on the FPGA technology and a RISC softcore processor for data processing, the
platform supports simultaneous HW/SW co-design and partitioning. This reduces application design cycle and
shortens design iterations, especially considering the later design steps. As examples, applications of two different
algorithms for motion detection are presented.
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Sočasno načrtovanje strojne in programske izvedbe video aplikacij
v realnem času z uporabo konfigurabilne prototipne platforme

Povzetek. V tem članku je predstavljena modularna, konfigura-
bilna in večnamenska prototipna platforma za obdelavo slik in
videosignalov v realnem času. Platforma temelji na tehnologiji
FPGA in mehkem procesorskem jedru RISC. Z visoko stop-
njo konfigurabilnosti je omogočeno hkratno načrtovanje pro-
gramske in strojne opreme pri realizaciji želenih algoritmov za
obdelavo signalov. S takšnim pristopom se skrajša načrtovalski
postopek in zmanjša število načrtovalskih iteracij, zlasti v kas-
nejših fazah načrtovanja. Kot zgled je predstavljena imple-
mentacija dveh različnih algoritmov detekcije gibanja.

Ključne besede: strojna oprema (HW), programska oprema
(SW), hkratno načrtovanje strojne in programske opreme, ob-
delava slik in videa, FPGA, RISC mehko procesorsko jedro,
detekcija gibanja, naključna polja Markova (MRF), iterativni
pogojni način (ICM)

1 Introduction

The main purpose of this application was to research
the theory and practice of the HW/SW co-design process
from the initial specification to the final application [1, 2].
An efficient HW/SW co-design process is the key to de-
sign real-time embedded systems applications [3, 4]. To
achieve the highest performance, the HW/SW partition-
ing should be considered in the earliest stages of the de-
sign flow. When designing HW parts, clear and distinct
SW flow should be well defined and potentially critical
SW parts should be recognized and predetermined. Thus,
meeting requested constraints in later stages of the design

Received 20 March 2003
Accepted 21 May 2003

flow requires less effort, reduces design cycles and cost.
For prototype designs, configurable platforms should be
used to speed up HW design, implementation and modi-
fication. Therefore, a modular configurable platform was
set up in order to support a wide spectrum of potential
video and imaging applications. The platform is based on
FPGA technology and utilizes a configurable RISC soft-
core processor.

Figure 1. Video system
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2 The Platform: Architecture

2.1 Video Board

The platform architecture can be divided in two main
functional domains:

• communication (video board),

• data processing (data processing modules).

The platform, presented in Figure 1, is modular. The
video board handles the data exchange between up to
4 different independent data processing modules. The
data transfer is managed with the use of a master com-
munication controller, implemented in a CPLD (Xilinx
XC95144). The modules communicate via a shared bus
through a special customized data stream protocol. Ac-
cording to the protocol, the controller handles the data
transfer in terms of passing successive data streams be-
tween neighboring modules. The data transfer is unidirec-
tional. For example, the main processing module receives
processed data from the previous module (data acquisi-
tion) and sends processed data to the next module (data
output).

The system communication frequency is 20 MHz,
with the data transfer cycle of 5 MHz (1 clock period per
each module).

2.2 The Input Module

The input module performs image/video data acquisition
from an external black and white (B/W) camera through
an 8 bit A/D converter. The input video data stream
applies to the PAL video standard. The received video
stream is decoded into sync signals and 8 bit video data
(256×256 8 bit grayscale) and forwarded to the commu-
nication data bus on the video board. The PAL input
frame rate is standard 50 frames per second interlaced,
which means total 25 frames per second non-interlaced.

2.3 The Output Module

The output module receives and decodes the processed
data from the video board and displays them onto a stan-
dard VGA monitor through an 8 bit D/A converter. The
output resolution is identical to the input decoded signal
(256×256 8 bit grayscale).

The layout of digital parts of input and output modules
is identical. It is based on Xilinx XCS40 FPGA. Besides
the dedicated functionality, input and output modules can
be optionally configured to perform additional signal pro-
cessing steps.

3 The Nios Development Board - The HW/SW
Platform

For SW implementation of image and video algorithms,
the use of a microprocessor is required. The use of ad-
ditional HW for optimization contributes to the overall
performance of the algorithm. For the highest degree of
HW/SW integration, customization and configurability, a
softcore processor was utilized.

For the main processing stage, the Altera Nios Devel-
opment Board was chosen. The core of the board is an
Altera APEX20K200E FPGA in which the Nios softcore
processor and custom HW are implemented. The board
operates at the frequency of 33 MHz.

The Nios softcore processor is a 16/32 bit softcore
5 stage pipelined RISC processor with 16 bit instruction
length. It offers a high degree of HW configurability and
customization: hardware accelerated multiplication, cus-
tom instructions, easy peripheral and custom HW inte-
gration, etc. The custom GNU compiler, assembler and
linker are provided. With the supplied design tools, the
Nios system presents a powerful HW/SW partitioning and
integration stage.

The main processing core of the Nios system, illus-
trated in Figure 2, is the Nios CPU. It is connected to
HW peripherals via a custom Altera Avalon bus. The bus
is of a parametric master/slave type. The parameterized
Avalon bus interfaces are automatically generated by a
special Altera Nios generating tool (SOPC Builder) for
every custom peripheral integrated into the design. The
Nios system for our video and imaging applications com-
prises the following components:

• Nios CPU (32 bit, 512 internal registers),

• 256 KB SRAM (external),

• 32 MB SDRAM (external) CAS 2 latency,

• 1 MB FLASH memory,

• UART communication,

• timer,

• VGA display,

• video comm.

The 32 bit version of the Nios CPU was chosen. By
utilizing custom instructions, four 8 bit pixel data can be
processed at once in one software step execution. For a
large number of iterations performing simple mathemati-
cal operations on a single pixel data, this method can re-
duce the number of software execution cycles up to four
times. Single 8 bit data can easily be extracted from the
four-byte 32 bit word if necessary.
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Figure 2. Nios system

3.1 Video Comm

Thevideo comm component serves for video data transfer
from/to the shared bus of proceeding/succeeding modules
through the video communication board. The data and
sync signals are fed into the Nios system byte by byte at
the communication frequency of 20 MHz and the data rate
of 5 MHz. As illustrated in Figure 3, thedata handling
part decodes the grant and control signals, and extracts the
pixel and sync data from the bus. Afterwards, it groups
four successive pixel data into 32 bit data words and stores
them into a 64×32 bit line memory word after word. The
line memory consists of two memory banks, each holding
contents of a whole received horizontal line of pixel data.
While the data is being forwarded to the CPU from one
data bank, the other bank is being fed with new pixel data.
After the completion of a line transfer, the banks switch
roles. Bank switching and data exchange synchronization
are performed with the use of a CPU interrupt request.

Figure 3.Video comm component

3.2 VGA Display

Standard 8 bit grayscale VGA display at the resolution
of 640×480 is implemented [5]. Because of the system
requirements, only 1 bit (black and white) 256×256 out-
put picture is displayed for monitoring purposes. As il-

lustrated in Figure 4, the component consists of a simple
state machine for sync signals generation and a dual port
RAM video memory.

Figure 4.VGA display component

4 The Basic SW Flow

The basic principle to access peripherals and custom HW
of the platform is through memory mapped registers. The
data memory map is divided into four basic regions:

• SRAM memory (256 KB)– instruction and data
memory for the fastest SW execution,

• SDRAM memory (32 MB)– picture content mem-
ory for a large number of pixel data,

• video comm component– line memory and control
register,

• VGA display component– 1 bit VGA memory bank
and control register.

The main idea of the SWflow can be summarized in
four elementary stages:

1. receive the current image,

2. when received, disable further reception and perform
algorithm processing,

3. display processed image,

4. enable further reception.

The basic SWflow is presented in Figure 5. The algo-
rithm processing in the main loop is executed only when
one complete image is received (256 new lines). The re-
ception is done line after line by the interrupt service rou-
tine. After the interrupt signal from thevideo comm com-
ponent is detected, a line of pixel data is received from
the line memory bank and stored into SDRAM memory.
The reception of the next successive picture is disabled
(STOP) and enabled only after the completion of algo-
rithm processing at the end of the main loop (START).
This allows only the processed pictures to be received.
The time frame between pictures determines the perfor-
mance of the application. It depends on the speed of the
algorithm implementation. The shorter is the execution
time of the algorithm, the greater is the frame rate of the
application.



250 Finc, Trost, Zajc, Žemva

Figure 5. SWflow diagram: the main loop (left) and the inter-
rupt routine (right)

5 The HW/SW Co-design Process

The HW/SW co-design process for the implementation
into the platform can be summarized in four main steps:

1. selection of the algorithm,

2. algorithm implementation in SW,

3. detecting critical SW parts,

4. HW/SW optimization of the algorithm.

Thefirst step in designing a video processing applica-
tion is selection of the appropriate algorithm. It depends
on the required performance and the functionality of the
final application.

The next step is implementing algorithm in SW. The
ANSI C programming language and the assembler are
supported. Generally, the preferable choice is the imple-
mentation of the SW code in ANSI C. In this way, instead
of rewriting the code from scratch, the use of an already
existing or third party code for the algorithm shortens the
design cycle. The portability of ANSI C allows also the
code to be created and tested for functionality on other
platforms (i.e. a PC).

After the SW code has been tested for functional-
ity and implemented into the target platform, the perfor-
mance analysis has to be applied. In order to meet the
required constraints, critical SW parts have to be detected
and optimized. The use of a SW profiler can be appro-
priate on a higher level for performance estimation. On
a lower level, a CPU timer can be used for the cycle-
accurate time-frame estimation of a focused part of the
SW code execution.

The final step is the SW code refinement and opti-
mization of critical SW parts in HW. The general idea is
to implement parallel structures in HW for the fastest data

processing. These are algorithm dependent and, regarding
the interface between HW and SW, can be incorporated
into the algorithm as:

1. separate HW component (memory mapped register
access),

2. custom instruction.

The custom instruction solution is integrated directly
into the CPU as an additional ALU. Comparing to the
memory mapped register solution, it omits the read/write
register operations. Therefore, it is more suitable for re-
peating single data-word operations.

In the HW/SW co-design process, the designer iter-
ates through the last two design steps until the desired
performance is achieved.

6 HW/SW Co-design Example: Motion
Detection

In order to demonstrate the HW/SW co-design process,
we decided to implement two different algorithms for mo-
tion detection. Atfirst, the algorithms were coded in
ANSI C programming language on a PC platform. The
tested SW code was then rebuilt and transferred into the
Nios system. The performance analysis with a CPU timer
was used. Afterwards, the SW critical parts were imple-
mented in HW with VHDL.

6.1 The Differential Algorithm

The simplest method to obtain data of the moving objects
is based on evaluating the image difference. Absolute dif-
ference (Ot) between equivalent pixel data (It) of two
successive images is calculated and compared to the pre-
setfixed threshold (θ). It is then labeled (l) as moving or
static object accordingly (1).

Ot = |It − It−1| ⇒
{
l = moving, if Ot > θ

l = static, if Ot ≤ θ
(1)

The absolute difference (Ot) calculation is executed
inside the interrupt routine. Thresholding is executed in
the main algorithm processing loop. All the data process-
ing is executed on four pixel data in parallel, with the use
of custom instructions.

6.2 The Markov Random Field Algorithm

Including the above observation difference calculation,
the MRF algorithm is based on the minimization of the
special energy model, which is calculated from pixel data
of three successive images [6, 7, 8]:

U(o, l) = Up(l) + Uo(l) (2)
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The energy functionU(o, l) is the sum of two terms:

1. a priori model energyUp(l):

Up(l) =
∑
c∈C

Vc(ls, lr) (3)

In the equation (3),c = (s, r) denotes any bi-
nary clique in the spatiotemporal label neighborhood
shown in Figure 6.C is a set of all cliques within the
central image.Vc(ls, lr) is a stepwise potential func-
tion defined as:

Vc(ls, lr) =

{
−β, if ls = lr

+β, if ls �= lr
(4)

Three different constant potentials are used:βs (spa-
tial), βp (past) andβf (future).

2. observation energyUo(l):

Uo(l) =
1

2σ2

∑
s∈S

[os − ψ(ls)]
2 (5)

ψ(ls) =

{
0, if ls = 0

α > 0, if ls = 1
(6)

It is defined as the centered Gaussian noise with vari-
anceσ2. Constantα presents the average value of
nonzero observations.

The minimization process of the energy function is
performed using the iterated conditional modes algorithm
(ICM). The pixel label (moving or static), producing min-
imal energy regarding the spatial and temporal neighbor-
ing pixels, is chosen. The process is repeated until the
change in energy is negligible.

Figure 6. Binary cliques

The MRF algorithm, illustrated in Figure 7, is pro-
cessing intensive and requires a large number of pro-
cessing loops and iterations per picture. Besides ele-
mentary custom instructions (Ot difference calculation,

Figure 7. MRF algorithm

Figure 8. HW clique calculation model

quantization), another critical part of the algorithm can
be assigned to custom HW: spatial cliques sum calcula-
tion. Since this is 3×3 window type calculation running
through the whole image, it requires a large number of
loop iterations and addition operations in SW (number
of read/write operations at least 9 times the number of
pixels). Our HW solution is simple and largely reduces
the number of CPU operations. As illustrated in Figure
8, it consists of three RAM blocks (internal FPGA block
RAM), each assigned to one horizontal VGA line of pixel
label data (256×1 bit). Additional logic calculates the
sum of nonzero data in the surrounding of eight pixels,
according to central pixels in the referenced line. The line
RAM blocks and the control register are memory mapped
to the CPU. Therefore, every clique calculation requires
1 line write and 1 line read cycle per referenced line (64
write/read cycles per line).

In terms of speed and number of operations, the most
critical remaining part is the last stage in the process of
the ICM method, i.e. the calculation of the observation
energyUO (5). The calculation requires a large number
of multiplications. The multiplication of two 8 bit words
results in a 16 bit word. Therefore, the dedicated custom
HW solution of 8 bit value multiplications in groups of
four (32 bit word) would introduce new problems with
the data word length and would demand complex HW so-
lutions for multiplication implementation. Thus, the four
word multiplication cannot be implemented in a custom
instruction. As custom HW, memory mapped register
type of access is preferable. To simplify and speed up
the design time, the Nios builtin HW multiplication ac-
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celeration was chosen (3 clock cycles per 16×16 bit mul-
tiplication), instead of implementing custom HW. Each 8
bit pixel data is extracted from an original four byte data
word. Afterwards, accelerated multiplication is applied.
This solution increases the number of processing cycles (4
additional 8 bit data extraction execution). Since the dedi-
cated HW solution would require the same number of reg-
ister reading cycles (memory mapped register access), the
difference in the processing time is compensated. Cus-
tom HW solution would also require pipelining, which
increases operation execution time. Therefore, the HW
design process for custom HW multiplication would not
gain any performance improvement.

In order to avoid the processing consumable division
of inverse variance in thefirst part of equation (5), the
variance was experimentally predetermined in the initial-
ization stage of the algorithm. The inverse variance is
calculated and the result is used as a constant in the main
data processing part of the algorithm.

The MRF motion detection algorithm depends on four
experimentally determined parametersβs, βp, βf andα
(βp = 10; βs = 20; βf = 30; α = 10). More weight is
given to the future (βf ) by taking,βp <βs< βf . This
simplifies dealing with motion discontinuities by taking
into account any innovation in motion in a faster way, and
better eliminating background areas which are uncovered
during motion [6]. For a specific application, these pa-
rameters must be adjusted to optimize the quality of the
results.

Owing to the large number of software loops in pic-
ture data processing, compiler supported additional loop
unrolling provides reduction of compiled instruction cy-
cles and therefore speed improvement of approximately
up to 20 %.

7 Results

As illustrated in Chart 1 in Figure 10, the maximum rate
of 16.7 frames/s was achieved at the input rate of 25
frames/s with the differential motion detection algorithm.
With the MRF algorithm, the maximum rate of 2 frames/s
was achieved (Chart 3 in Figure 10).

The comparison of frame rates and algorithm execu-
tion times, achieved with SW and optimized HW/SW im-
plementation, is illustrated in Charts 1–4 in Figure 10 for
both algorithms. Since the algorithm execution times de-
termine the frame rates of the application, the ratios of
SW and HW/SW solutions are similar in both charts for
each algorithm. In Charts 5 and 6 in Figure 10, the HW re-
source usages of the basic Nios system configuration for
the SW solution and the configuration including custom
HW for the optimized HW/SW solution of the MRF al-
gorithm implementations, are illustrated. As shown in the
charts, the performance improvement is approximately
proportional to HW resources (logic elements).

Figure 9. Visual presentation of actual motion detection

Chart 1 Chart 2

Chart 3 Chart 4

Chart 5 Chart 6

Figure 10. Charts: 1– Frame rates (differential algorithm),
2 – Algorithm execution time (differential algorithm), 3– Frame
rates (MRF algorithm), 4– Algorithm execution time (MRF al-
gorithm), 5– FPGA resource usage (LEs), 6– FPGA resource
usage (ESBs)

8 Conclusion

Based on configurable technology (CPLD, FPGA, soft-
core CPU), a powerful prototype platform for image pro-
cessing was designed in order to support HW/SW co-
design and partitioning. The high configurability and pa-
rameterization, supported with integrated design tools, al-
low flexible HW/SW integration into thefinal application.
A large spectrum of potential real-time imaging and video



applications (e.g. motion tracking, segmentation) can be
integrated. The platform is also highly suitable for educa-
tional purposes.

For demonstration, two motion detection algorithms
were implemented. According to the achieved results, the
differential algorithm is suitable for simple practical mo-
tion detection applications. The MRF algorithm realiza-
tion successfully competes with other experimental sys-
tems [7] which are mostly DSP or multi CPU based or
operate at much higher frequencies.
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