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Abstract. The voltage stability is an important factor needing to be taken into consideration in planning and 

operation of electric power systems. There are several methods and techniques available to determine the voltage 

stability and identify the power system weak buses, such as the P-V and Q-V curves, singular value 

decomposition, modal analysis, V-Q sensitivity and reduced determinant. The paper compares three load flow 

analysis methods: the modal analysis, V-Q sensitivity analysis and Continuation Power Flow. 

The modal analysis method uses the power system Jacobian matrix to determine the eigenvalues necessary to 

evaluate voltage stability. The V-Q sensitivity method uses the diagonal elements of the inverse of the reduced 

Jacobian matrix. In the paper, the V-Q sensitivity and modal analysis method are applied to analyze the effect of 

a weak coupling between the reactive power (Q) and voltage angle (δ). 

The results of using the three methods to analyse the western Algerian power system are compared in terms of 

detecting the weak buses. 

 

Keywords: voltage stability, V-Q analysis, continuation power flow (CPF), modal analysis, Jacobian matrix, sub-

matrix JqV. 

 
Ocena napetostne stabilnosti z uporabo različnih metod in 

tehnik 

 

Napetostna stabilnost je pomemben dejavnik, ki ga moramo 

upoštevati pri načrtovanju in obratovanju elektroenergetskih 

sistemov. Na voljo je več metod in tehnik za določanje 

napetostne stabilnosti in prepoznavanje šibkih vodil 

elektroenergetskega sistema, kot so krivulje P-V in Q-V, 

razčlenitev singularne vrednosti, modalna analiza, občutljivost 

V-Q in zmanjšana determinanta. V prispevku primerjamo tri 

metode: modalno analizo, analizo občutljivosti V-Q in pretok 

moči. 

Metoda modalne analize uporablja jakobijevo matriko 

elektroenergetskega sistema za določitev lastnih vrednosti, ki 

so potrebne za ovrednotenje napetostne stabilnosti. Metoda 

občutljivosti V-Q uporablja diagonalne elemente inverzne 

zmanjšane jakobijeve matrike. V prispevku sta metodi V-Q 

občutljivosti in modalne analize uporabljeni za analizo učinka 

šibke sklopitve med jalovo močjo (Q) in napetostnim kotom 

(δ). 

Uporabljene metode za smo uporabili pri analizi 

elektroenergetskega sistema v zahodni Alžirije. 

 

1 INTRODUCTION 

The voltage stability is the ability of a power system to 

maintain an acceptable voltage value at all buses under 

normal operating conditions and after being subjected to 

an emergency [1]. 

 Voltage problems have been a subject of great 

concern in planning and operation of power systems due 

to the significant number of serious failures believed to 

have been caused by this phenomenon making the 

development of the voltage stability analysis an absolute 

necessity. It is closely related to the notion of a 

maximum loadability of a power transmission network 

[2].  

 Several methods have been used in the static voltage 

stability analysis such as the P-V and Q-V curves 

methods, continuation power flow (CPF) method, model 

analysis method, V-Q sensitivity method, etc [3]. 

 The P-V and Q-V curves methods are the 

most widely used methods to estimate the voltage 

stability. They are generated by a series of power-flow 

solutions and used to determine the load limit of a 

power system [4]. The P-V curves are generated by 

increasing the active-and the reactive-power load until 

the critical voltage value is reached. Unfortunately, the 

Newton-Raphson load-flow algorithm diverges: the 

load-flow Jacobian matrix becomes singular at a critical 

voltage value [5]. To amend a system ill-conditioning 

situation, the CPF method in 1992 was been proposed 

by Venkataramana Ajjarapu and Colin Christy [6]. 

 The general CPF principle is simple. It employs a 

predictor-corrector scheme to find a solution. It adopts a 

locally-parameterized continuation technique. It 

includes the load parameter, step length for the load 

parameter and state variable [7]. In CPF, the complete 

P-V curve, including the nose point and the lower part 

of the curve, is drawn [8]. 
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 The CPF technique has been widely used to 

determine the maximum loading point limit of the 

system and to identify the weak buses [9]. 

 The modal analysis method, presented in 1992 by 

Gao, Morisson and Kundur, uses the power-flow 

Jacobian matrix [10]. Besides providing an accurate 

estimate of the likely system instability occurrence 

using the system eigenvalues, the method identifies the 

elements of the power system most contributing to the 

system voltage instability (critical load buses, branches 

and generators) [11]. 

 To predict the voltage instability in complex power 

system networks, Kundur proposed in 1992 a V-Q 

sensitivity analysis method using the power-flow 

Jacobian matrix [12]. 

 The paper investigates the V-Q sensitivity, the modal 

analysis and the CPF method to assess the power system 

voltage stability. The main objective is to study the 

negative effect of a weak coupling between the reactive 

power and voltage angle. 

 The methods are tested on the westen Algerian power 

system. The results obtained are compared and 

discussed.  

 

2 VOLTAGE STABILITY ANALYSIS 

The voltage stability analysis is based on power flow 

calculations. The main factor causing the voltage 

instability is the inability of the power system to meet 

the reactive power demand. So the voltage stability is 

highly sensitive to the reactive power variation. The two 

main methods used to analyze the voltage stability by 

taking into account the reactive power variation are the 

V-Q sensitivity and modal analysis method.  

 The P-V curve method is one of the most used 

methods to forecast the voltage instability. It is used to 

determine the load limit of a power system. The curve is 

produced by running a series of the load-flow cases 

until the nose of the PV curve is reached [13]. The 

complete P-V curve is obtained by applying the CPF 

[14]. The paper proposes a simple method to plot the P-

V curve. 

2.1 Modal analysis 

The modal analysis predicts the voltage collapse in a 

power system network. It computes the smallest 

eigenvalues and associated eigenvectors of the reduced 

Jacobian matrix obtained with the load-flow calculation 

[15]. The eigenvalues are associated with the mode of 

the voltage-and reactive-power variation which provides 

a relative likelihood of the voltage instability occurrence 

[16]. The weakest bus in the system is detected by using 

the participation factor values [17].  

 The linearized steady-state system of the power 

voltage equations is given by  

 

 [
∆P
∆Q

] = [
Jpδ JpV

Jqδ JqV
] [

∆δ
∆V

]  (1) 

where: 

∆P is the incremental change in the bus real power, ∆Q 

is the incremental change in the bus reactive power, ∆δ 

is the incremental change in the bus voltage angle and  

∆V is the incremental change in the bus voltage. 

 

When using the conventional power-flow model to 

analyze the voltage stability, the Jacobian matrix (1) is 

the same as the one used to solve the power-flow 

equations employing the Newton-Raphson technique 

[18]. 

 The elements of the Jacobian matrix (1) are modified 

as follows: 

 The system voltage stability is affected by both P and 

Q. However, at each operating point P is kept constant 

and the voltage stability is evaluated by considering the 

incremental relationship between Q and V [19, 20]. 

Based on these considerations (1), if ∆P = 0, then 

 

 [
0

∆𝑄
] = [

𝐽𝑝𝛿 𝐽𝑝𝑉

𝐽𝑞𝛿 𝐽𝑞𝑉
] [

∆𝛿
∆𝑉

] (2) 

 

 ∆𝑄 = (−𝐽𝑞𝛿 . 𝐽𝑝𝛿
−1. 𝐽𝑝𝑉 + 𝐽𝑞𝑉). ∆𝑉 = 𝐽𝑅 . ∆𝑉 (3) 

 

 𝐽𝑅 = 𝐽𝑞𝑉 − 𝐽𝑞𝛿 . 𝐽𝑝𝛿
−1. 𝐽𝑝𝑉 (4) 

 

JR is the reduced Jacobian matrix of the system (2). It 

represents the linearized relationship between ∆V 

and ∆Q. 

 

If the minimum eigenvalue of JR is greater than zero, the 

system is voltage-stable. Using the left and right 

eigenvectors corresponding to a critical mode, the bus 

participation factors are calculated. The buses with a 

large participation factor are the critical buses of a 

power network [21].  

 The relative participation of bus k in mode i is given 

by bus participation factor [22]: 

 

 Pki = εki ∗ ηki (5) 

 

where: 

Pki is the kth bus participation factor of the ith 

eigenvalue, εki is the right eigenvector (column vector) 

for the  ith eigenvalue, and ηki is left eigenvector (row 

vector) for the  ith eigenvalue. 

 

The algorithm to calculate the minimum eigenvalue and 

the corresponding left and right eigenvector, for the 

reduced Jacobian matrix takes the following steps [23]: 

Step 1: Obtain the load-flow solution for the base case 

of the system and set the Jacobian matrix. 

Step 2: Compute reduced Jacobian matrix JR. 

Step 3: Compute the eigenvalue of reduced Jacobian 

matrix (λ). (If λ = 0 →, the system will collapse; 

if λ> 0 →, the system is voltage stable; if  λ< 0 

→, the system is voltage unstable). If the system 
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is voltage stable (λ> 0), find how close the 

system is to voltage instability:  

Step 4: Find the minimum eigenvalue of  JR. 

Step 5: Calculate the right and left eigenvectors of the 

reduced Jacobian matrix (εki and   ηki).  

Step 6: For the minimum eigenvalue of the bus, find the 

participation factors for the corresponding mode 

and the bus (Pki)  

Step 7: Highest Pki indicates the most participating i bus 

to the k mode in the system, i.e. the bus with the 

maximum participation factor is considered as 

the weakest bus of the system. 

 An important characteristic of any power 

transmission system operating in a steady-state is the 

strong interdependence between the real powers and bus 

voltages angle and between the reactive powers and 

voltage magnitudes [24]. This interesting property of 

coupling the Q-V variables has motivated us to analyze 

the power system eigenvalues without evaluating the 

reduced Jacobian Matrix JR. 

 Since, half of the elements of the Jacobean matrix in 

any conventional Newton method represents a weak 

coupling, it is therefore ignored. So, it is reasonable to 

set sub-matrices JpV and Jqδ of the Jacobian matrix to 

zero. Therefore, (4) reduces to 

 

 𝐽𝑅 ≈ 𝐽𝑞𝑉 (6) 

 

As the main cause of the voltage instability is the lack 

of the reactive power, such simplification avoids 

calculation of matrix JR and does not entail a great loss 

of the precision in the results. 

 While considering JR, a weak coupling between the 

reactive power and voltage angle (−Jqδ. Jpδ
−1. JpV. ∆V) is 

taken into account. When JqV is considered, such a 

coupling is completely ignored. 

 Fig. 1 shows the steps to calculate the minimum 

eigenvalue and the corresponding left and right 

eigenvectors for JqV. 

 

2.2 The V-Q sensitivity analysis 

To implement the voltage stability analysis, it is 

necessary to useJR. JR
−1is the inverse of the reduced 

Jacobian matrix. Its ithdiagonal element is the bus V-Q 

sensitivity. It represents the slope of the QV curve for a 

given operating point. The V-Q sensitivity studies 

evaluate the impact of the reactive power on the voltage 

values compliably with the following guidelines [25, 

26]: 

 A positive V-Q sensitivity is indicative of a stable 

operation. 

 A negative V-Q sensitivity shows an unstable 

operation. 

The smaller the sensitivity, the more stable the system.  

 A zero sensitivity represents a completely stable 

system. 

 If the sensitivity is infinite, then the system operates 

at the threshold of the stability limit. 

  

 

Figure 1. Flow chart for the modal analysis. 

 

 

2.3 CPF method 

Calculating the critical point at a node using the load-

flow equations is not a straightforward task as the 

Jacobian matrix of the system becomes singular when 

approaching its maximum value [27]. The CPF method 

is used to solve the problem. The load increment is 

considered as a new variable in the power-flow 

equations [6].  

 The CPF method is an iterative process that employs 

a predictor–corrector scheme (see Fig.2). The process 

starts from a known solution corresponding to the bas- 

case loading (i.e. point A) and uses a tangent predictor 

to estimate a subsequent solution corresponding to a 

different value of the load parameter (i.e. point B). 

Finally, it uses a “corrector” to find an exact solution 

(i.e. point C) by using the Newton-Raphson technique 

commonly employed in a conventional power-flow 

study [28, 29]. After that, a new prediction is made for a 

particular increase in the load value based upon the new 

tangent vector. The corrector step is now applied. The 

process is repeated until the critical point is reached. It 

is the point where the tangent vector is zero. 

Obtain the load-flow solution for the base case of the system 

and set  sub-matrix JqV 

Compute λiof  JqV 

Collapse 

Calculate εki and ηki 

Find Pki 

Bus with highest Pkiis considered as the 

weakest bus 

λi ≈ 0 

λi > 0 

Yes 

No 

Find λmin 

Yes 

The system is 

voltage unstable 

No 
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Figure 2. Predictor-corrector steps in the CPF method. 

 

In traditional power-flow equations, the injected active 

and reactive power for each bus are defined in (7) and 

(8). 

 

 Pi = PGi − PLi = ∑ ViVjYij cos(δi − δj + θij) = 0n
j=1  (7) 

 

 Qi = QGi − QLi = ∑ ViVjYij sin(δi − δj + θij) = 0n
j=1  (8) 

 

where G and L are the generation and load demand, 

respectively, on the related bus, P, Q are the real and 

reactive power at bus i, Vi∠δi is the voltage at bus i and 

Yij∠θij is the (i, j)th element of the system admittance 

matrix.  

 To simulate a load change, the loading parameter  λ 

is inserted into the demand powers PLi and QLi. 

 

 ∆𝑃𝑖 =  𝑃𝐺𝑖 − 𝜆𝑃𝐿𝑖0 (9) 

 

 ∆𝑄𝑖 =  𝑄𝐺𝑖 − 𝜆𝑄𝐿𝑖0 (10) 

 

After substituting new demand powers in Equations 9 

and 10 to Equations 7 and 8, the new set of equations 

denoted as F can be expressed as (11). 

 

 𝐹 = 𝜆(𝛿, 𝑉, 𝜆) = 0 (11) 

 

where δ is the vector of the bus voltage angles and V is 

the vector of bus voltage values. Then, the continuation 

and parameterization process are applied [30]. Details of 

the CPF method are discussed in [6]. 

 

3 CASE STUDY 

The single-line diagram of the western Algerian power 

system is shown in Fig. 3. It consists of 14 buses, three 

generators located at buses 1 (Oran), 4 (Marsat) and 3 

(Tiaret) and 17 branches (lines and transformers). The 

used parameters and data are taken from [31]. 

 The lower voltage value limit at each bus is 0.9 p.u 

and at the upper it is 1.1 p.u.  

 

Figure 3. Western Algerian power system. 

 

Initially, a base-case load-flow calculation using the 

Newton-Raphson method to determine the voltage 

stability state of the system is performed. The initial 

voltages denoted by Vi are given in Fig. 4. As seen, all 

the bus voltages are within the acceptable level (± 10%). 

 

 

Figure 4. Voltage profiles of each bus . 

 

For a steady-state of the western Algerian power 

system, the modal analysis method is applied:  

Table 1 shows eigenvalues λ of reduced Jacobian matrix 

 JR and sub-matrix JqV. 

Table 1. Eigenvalues of  𝐽𝑅 matrix and  𝐽𝑞𝑉 sub-matrix. 

Mode 𝛌 of  𝐉𝐑 𝛌 of  𝐉𝐪𝐕 Mode 𝛌 of  𝐉𝐑 𝛌 of  𝐉𝐪𝐕 

1 957.3668 931.3529 7 25.8684 21.1083 

2 79.7612 75.5996 8 62.3337 58.2345 

3 1.3470 1.2617 9 55.6630 53.6268 

4 3.4519 3.4217 10 46.3581 44.5111 

5 15.0333 12.4929 11 49.8563 47.9324 

6 17.6550 14.4854  
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The eigenvalue λ3= 1.3470 of matrix JR and the 

eigenvalue λ3= 1.2617 of sub-matrix JqV are the 

smallest ones. Hence, mode 3 is the system most critical 

mode. The eigenvectors of mode 3 of reduced Jacobian 

matrix  JR and of the sub-matrix  JqV are used to 

calculate the participation factors that indicate the buses 

contributing most to the total system voltage stability. 

Fig 5 shows the bus participation factors contributing to 

the system critical mode.  

 

 

Figure 5. Bus participation factors at a system critical mode 

 

Fig. 5 shows that the highest participation factors are at 

the buses 14 (Bechar) and 13 (Naama). The factor value 

for bus 14 is 0.5526 for reduced Jacobian matrix  JR and 

0.6252 for sub-matrix  JqV. Bus 14 is the weakest bus of 

the system and is as such contributing maximaly to the 

system voltage collapse. 

 As also, Fig. 5 shows only the buses possessing the 

participation factor. Since the voltages of the slack and 

PV buses are determined prior to the load flow analysis, 

no participation factor is considered on these buses. 

 A sensitivity is mode for the western Algerian power 

system. Table 2 shows the V-Q sensitivity values 

calculated for the base case for both the  JR and  JqV 

matrices. 

Table 2. The  V-Q sensitivity values for the base case 

Bus 

number 

V-Q sensitivity Bus 

number 

V-Q sensitivity 

𝑱𝑹 𝑱𝒒𝑽 𝑱𝑹 𝑱𝒒𝑽 

4 0.0011 0.0011 10 0.1234 0.1238 

5 0.0489 0.0508 11 0.1184 0.1195 

6 0.0376 0.0391 12 0.0199 0.0203 

7 0.0660 0.0658 13 0.3099 0.3034 

8 0.0435 0.0439 14 0.4387 0.5315 

9 0.0758 0.0755  

 

The sensibility of each bus is positive. The bus with the 

highest sensitivities, i.e., 0.4387 and 0.5315, for  JR and 

 JqV, respectively is bus 14 (Bechar) the next is bus 13 

(Naama) with the sensibilities of 0.3099 and 0.3034. 

Bus 14 is the weakest. 

 As the system voltage stability is highly affected by 

the reactive-power, the total reactive-power load is 

increased by parameter K from its base value (3.12 p.u) 

to the critical value (6.792 p.u). 

The voltages denoted as Vcr and obtained by the load-

flow calculation at a critical state, i.e., at a high reactive-

power demand, are indicated in Fig. 4. It is show that 

when the system reaches its maximum loadability 

point K = 6.792, the voltages at bus 14 (Bechar), 13 

(Naama) and 10 (Oujda) greatly decrease. 

Table 3 shows the eigenvalues of the JR matrix and JqV 

sub-matrix for loading parameter K. 

Table 3 shows that when the load increases, the 

eigenvalues positively decrease and λ3 reaches zero. 

 Table 3. Eigenvalues of the 𝐽𝑅 matrix and 𝐽𝑞𝑣  sub- matrix for different load values 

k Matrix 𝛌𝟏 𝛌𝟐 𝛌𝟑 𝛌𝟒 𝛌𝟓 𝛌𝟔 

0.000 
𝐉𝐑 960.11 86.75 1.81 4.32 15.60 19.47 

 𝐉𝐪𝐕 934.04 82.19 1.68 4.21 14.28 15.03 

1.000 
𝐉𝐑 957.36 79.76 1.34 3.45 15.03 17.65 

  𝐉𝐪𝐕 931.35 75.59 1.26 3.42 12.49 14.48 

1.500 
𝐉𝐑 955.74 75.37 1.01 2.87 14.73 16.26 

𝐉𝐪𝐕 929.77 71.47 0.97 2.91 11.23 14.20 

2.177 
𝐉𝐑 952.97 66.94 0.26 1.57 6.86 14.33 

𝐉𝐪𝐕 927.08 63.58 0.20 1.87 7.70 13.80 

k Matrix 𝛌𝟕 𝛌𝟖 𝛌𝟗 𝛌𝟏𝟎 𝛌𝟏𝟏 

 

0.000 
𝐉𝐑 29.77 70.45 57.72 49.49 51.08 

 𝐉𝐪𝐕 23.09 65.84 55.60 47.52 49.11 

1.000 
𝐉𝐑 25.86 62.33 55.66 46.35 49.85 

  𝐉𝐪𝐕 21.10 58.23 53.62 44.51 47.93 

1.500 
𝐉𝐑 23.33 57.15 54.31 44.28 49.21 

𝐉𝐪𝐕 19.83 53.42 52.29 42.51 47.31 

2.177 
𝐉𝐑 18.03 51.68 48.33 39.66 46.49 

𝐉𝐪𝐕 17.00 49.74 46.46 38.08 43.45 
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Fig. 6 shows a variation in the smallest eigenvalues of 

the JR matrix and JqV sub-matrix at a critical mode with 

respect to loading parameter K. 

 

 

Figure 6. Variation in the smallest eigenvalues of JR and JqV 

 

The minimum eigenvalues correspond to the loading 

parameter K=2.177. They indicate that the system 

operating point is close to the voltage instability.  

Table 4 shows the V-Q sensitivities of the  JR and JqV at 

the critical state. 

 

Table 4.V-Q sensitivities at a critical state 

Bus 

Number 

V-Q sensitivity Bus 

Number 

V-Q sensitivity 

𝐉𝐑 𝐉𝐪𝐕 𝐉𝐑 𝐉𝐪𝐕 

4 0.0011 0.0011 10 0.1792 0.2475 

5 0.0511 0.0532 11 0.1606 0.2239 

6 0.0393 0.0408 12 0.0204 0.0223 

7 -0.0870 0.1292 13 -1.7551 1.4953 

8 0.0119 0.0649 14 -1.5127 3.3006 

9 0.0842 0.1310  

 

 

Table 4 shows that the V-Q sensitivity coefficient value 

is infinite at the stability limit point for the JR matrix 

and is negative for sub-matrix JqV. This indicates that 

system is unstable. 

 The system voltage stability is assessed by examining 

the system PV curves obtained by increasing the load 

level up to the maximum load limit at which the system 

voltage collapses [12]. The curves are calculated by 

using the CPF method. Fig. 7 shows the P-V curves of 

each bus of the western Algerian power system. The 

curves show the bus voltage level while increasing 

loading factor K. The loading factor which is 0 is 

gradually increased in all the bus bars until reaching the 

maximum loading point. 

 

Figure 7. P-V curves of the western Algerian power system. 

 
Fig. 7 shows that the weakest bus is bus 14 (Bechar). 

The next is bus 13 (Naama). This is due to the high 

steepness of the graph of both buses. 

The point where K is 2.177 is the system critical point at 

specific operating states. The system then enters into an 

unstable state which may result in a voltage collapse. 

Fig. 8 shows the buses the most sensitive to the load 

increase. 

 

Figure 8. P-V curves for the two most sensitive buses of the 

western Algerian power system. 

 

Bus 14 (Bechar) has the lowest voltage level, i.e. 0.5125 

p.u, making it the weakest bus in the western Algerian 

power system. This result is the same as when using the 

V-Q Sensitivity and Modal analysis methods. 

 

4 CONCLUSION 

The modal analysis, V-Q sensitivity and CPF methods 

are used to investigate the stability of the western 

Algerian power system by identifying its weak buses. 

Because the high X/R ratio of power the transmission 

network, the active power mostly depends on the phase 

angles, unlike the reactive power which mainly depends 
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on the voltage value. Finding this property interesting, 

the proper analysis of voltage stability is conducted, 

irrespective of the weak coupling between reactive 

power and voltage angle. 

 The V-Q sensitivity and modal methods are applied 

by taking into account the weak coupling between the 

reactive power and the voltage angle, i.e., by 

considering the reduced Jacobian matrix and those 

obtained by neglecting the coupling. 

The biggest advantage of using sub-matrix JqV instead 

of reduced Jacobian matrix JR is its simplicity and the 

short computation time. 

 The major disadvantage of using JR instead of  JqV is 

the inversion of the matrix in each load increase that 

takes a lot of time. A time increases as the number of 

the network buses increases. 

 The performance and accuracy of each case are 

assessed by comparing the results obtained when using 

the reduced Jacobian matrix and sub-matrix JqV in terms 

of the weakest buses. The results of both cases are 

similar. 

 Using CPF confirms completeness of the result 

obtained when the modal analysis and V-Q sensitivity 

methods. The same buses are detected as the weakest 

and as such likely to give rise to a voltage collapse. 
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