
ELEKTROTEHNIŠKI VESTNIK 82(4): 205-211, 2015

ORIGINAL SCIENTIFIC PAPER

A Generic Timing Receiver for Event-Driven Timing Systems

Benjamin Ocepek

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1000 Ljubljana, Slovenija
 Cosylab d.d., Teslova ulica 30, 1000 Ljubljana, Slovenija
E-pošta: benjamin.ocepek@cosylab.com

Abstract. An important part of the modern particle accelerators is the timing system. It is a big and complex

system that contains many different technologies and requires a wide spectrum of knowledge. Development of

such a system or even just configuring the “of the shelf” solutions can be a frustrating and time consuming job.

As a part of an internship at Cosylab d.d., I created a simple receiver for an event-driven type of the timing

system to be used in many particle accelerators. The device provides a tool for an easier and faster debugging.

The module is simple to use and at the same time also optionally generic to meet the needs of different facilities

using different variants of the timing system. Currently it is implemented on an FPGA-based development board

and can be connected to the user’s workstation using a serial interface. Software with a graphical user interface

was also created.

Keywords: timing, control, accelerator, FPGA, EPICS

Generični sprejemnik dogodkovno gnanega sistema za

sinhronizacijo takta ure

Pomemben del modernega pospeševalnika delcev je sistem, ki

skrbi, da se stvari dogajajo ob pravem času. Tak sistem je zelo

obsežen in zapleten, saj vsebuje veliko različnih tehnologij in

posledično zahteva širok spekter znanja. Razvoj takega

sistema ali zgolj pravilna nastavitev že obstoječe komercialno

dostopne rešitve je lahko neprijetno in dolgotrajno opravilo. V

članku je predstavljen sprejemnik za dogodkovno gnan sistem

za sinhronizacijo urnega takta, ki se uporablja v

pospeševalnikih delcev. Namen naprave je, da deluje kot

orodje za hitrejši in lažji razvoj ter razhroščevanje. Naprava

mora biti preprosta za uporabo, a hkrati tudi čim bolj

univerzalna, saj različne ustanove uporabljajo različne

variacije sistema. Naprava je trenutno razvita za razvojno

ploščo FPGA in je s serijsko povezavo povezana z

uporabniško delovno postajo. Razvita je bila tudi programska

oprema z grafičnim vmesnikom.

1 CONTROL SYSTEM

Particle accelerators are some of the most complex and

expensive structures built by men. They are used for

many different applications, not only for the

fundamental physics research as one would imagine, so

consequently they come in many different forms and

sizes. Bigger projects can have thousands of devices

which can come from thousands of different sources.

For the accelerator to work, all these devices need to

work together towards the desired goal. An additional

complication is that the devices can use different

communication protocols to communicate with the

environment. It is obvious that some kind of a unified

control system (CS), i.e. a “software framework”, is

needed to address all these devices in the same way.

 Usually, one of the existing CS packages is used. A

very popular solution also used for the purpose of this

project is the open-source EPICS (Experimental Physics

and Industrial Control System). It is a distributed

control system that uses a network-based client/server

model. The servers are called IOCs (input-output

controllers). They are usually connected to variety of

hardware such as diagnostic cards, power supplies,

timing cards, etc. The data acquired is then available to

the clients using the CA (channel access) network

protocol. Typical clients are the operator screens, alarm

servers, archive servers, etc. An important point is that

all data is available to the clients in the same way,

regardless of the underlying hardware or

communication protocol used by the specific device to

connect to the IOC.

 In EPICS IOCs, the values are stored and

manipulated using different types of records. Apart from

values, the records can also store other information, like

the alarm status and names of other records connected

to it. A record is a structure made of different fields

where all this information is stored. A record name and

field name combined give the name of a PV (process

variable). In order to exchange the data between the CS

building blocks, CA needs a PV name.

 The records communicating with the hardware need

to have a specified device support. The device support is

a program that provides an interface between the EPICS

records and the device.

Received 13 July 2015

Accepted 12 August 2015

206 OCEPEK

2 TIMING SYSTEM

Some parts of the accelerator have hard real-time

requirements, so a separate timing system (TS) is

required. In order to achieve the tight requirements and

determinism, TS is implemented on FPGAs (field-

programmable gate array), which is essentially a

programmable hardware.

 There are generally two TS types. They can be based

on time synchronization or they can be event-driven.

The time synchronization TSs use special techniques to

synchronize all the timing devices to the same time and

clock frequency/phase. Then a time table of the actions

to be taken is generated and distributed over the

Ethernet protocol to all the devices.

 In the event-driven TSs there are in principle two

basic types of the devices, i.e. the timing generators and

timing receivers. The generators generate an event, an

eight bit number, which is then broadcasted over a

dedicated deterministic network to each receiver. The

events can be triggered by different sources such as

external signals or periodically by internal counters. The

receivers are then programmed to respond to specific

event codes in various ways. Usually, they provide a

trigger for some other device, such as a diagnostic card

or power supply.

 The rest of the paper is focused on the event-driven

TSs, since the developed and described device is

compatible only with the event-driven TSs.

3 PURPOSE OF THE DEVICE

When developing a new timing device or configuring an

“of the shelf” solution the time spent can be

significantly reduced by using good debugging tools.

Currently the available devices for an event-driven TSs

provide rather poor debugging utilities and require quite

a lot of configuring. Therefore the developed timing

device should be easy to use and at the same time

generic.

 The generic timing receiver developed at Cosylab

can be connected to TS and can quickly determine if TS

is working. The timing events broadcasted by the event

generator can be latched by the generic timing receiver

and forwarded to the user’s workstation, where they can

be displayed in the form of a graph using the developed

software. Besides this key feature, the device can be

configured to produce pulses on expansion pins and

LEDs upon receiving the selected events. Some of the

settings that can also be configured are described below.

4 HARDWARE

ML507 development board equipped with all the

needed peripheral ports is used. It contains a Xilinx

Virtex 5 FPGA which is powerful enough and has all

the needed IP primitives. The code is written in VHDL

using the Xilinx ISE development environment.

Figure 1. Block diagram of the hardware

 It is connected to an optical fiber channel with an

SFP (small form-factor pluggable) high-speed

transceiver. For communication with the user’s

workstation, an RS-232 port is used, optionally in

combination with an external RS-232 to USB serial

converter. Some status signals are routed to the on-

board LEDs. The output pulses are also routed to LEDs

in addition to expansion pins. An SMA connector is

used as an input for an optional external clock source.

Figure 1 shows the used hardware modules.

5 FIRMWARE

The basic design idea is shown in Figure 2. A high

speed serial transceiver IP core (GTX) is used to align

to the fiber channel data stream and to perform

decoding and deserialization. The data is available as

two-byte wide frames, where one byte is considered a

timing event channel. The event characters are then

forwarded to a mapping RAM, where it is decided

which actions will be taken. Depending on the content

of the mapping RAM, an event can trigger generation of

pulses on the output, reset the internal timestamp

counter and/or forward itself and the current timestamp

to the user’s workstation through a serial interface.

Additional actions can be implemented with a relatively

little effort. The relation between the events and actions

is many to many, so more than one event can cause one

action and one event can cause multiple actions

concurrently.

 A soft-core UART (Universal asynchronous

receiver/transmitter) from the OpenCores with a custom

made UART parser is used to provide a serial interface

to the user’s workstation. The settings are stored in an

internal memory and are directly available to the user

who can see the generic timing receiver as a memory-

mapped device.

 The design is divided into different clock regions.

GTX requires a reference clock. After successful

alignment, it provides a recovered clock from the fiber

GENERIC TIMING RECEIVER FOR EVENT DRIVEN TIMING SYSTEMS 207

on which the whole TS operates. It is also known as an

event clock. The timestamp and pulse generators always

operate on the event clock. There is another clock

source driving the UART. It enables a fixed baud rate

regardless of the fiber status. Different methods of

synchronization between the clock regions have been

implemented, such as the use of dual-port RAMs and

signal synchronization modules to prevent metastability

[1].

5.1 GTX transceiver

The fiber channel operates on the line rate in the GHz

order. This means that it is not possible to use the

ordinary primitives to manipulate the data stream so

dedicated hardware is used. The version of Virtex 5

used provides a dedicated high-speed serial transceiver

called GTX that supports high data rates and a variety of

protocols. Configuring it proves to be a non-trivial task.

 The protocol employed in the event-driven TS uses

an 8B10B encoding scheme which maps the eight bit

data to the ten bit symbols. A feature of the 8B10B code

is DC balance (the number of zeros and ones emitted is

on average the same) and there are no more than five

emitted ones or zeros in a row [2].

 In addition to the 256 possible bytes, there are also

some special characters, called control characters, that

are also a valid sequence of ten bits, but they don’t have

a corresponding eight bit data byte. One of these control

characters is called the comma character which is sent

from time to time (typically every fourth character).

This enables data alignment and clock recovery on the

receiver.

 The data is transmitted in two-byte wide frames. One

byte is an event bus on which the actual event codes are

transmitted and the other byte can be used for other

purposes for various TS designs. My design supports

switching between the bytes on request.

 Another important TS aspect is determinism. It can

be achieved only if all the receivers run on the same

clock. In this case this is the recovered clock from the

fiber. Consequently the elastic buffer in GTX can be

bypassed and the delays are constant. There is another

potential problem related to the barrel shifter which is

used as part of the serial to the parallel conversion

process [3]. This can cause non determinism in the

phase of the recovered clock. It is not yet determined if

this behavior occurs in my design too.

5.2 Clocking

The GTX transceiver requires a reference clock with the

frequency within 100 ppm (parts per million) of the

event clock. The event clock is 20 times lower than the

line rate on the fiber, so for example, in case of a 2 GHz

line rate, the event clock is 100 MHz. The event clock

frequency is chosen depending on various physical

properties of a given particle accelerator, so this value

can be practically anything inside the supported bounds.

 There are two options for the reference clock

provided in the generic timing receiver. The first option

is to use an external clock source, such as a functional

generator or an accelerator master oscillator that can be

brought to the SMA connector. PLL (phase locked loop)

is used to divide the external clock by two if needed.

The second option is to use an on-board 100 MHz

Figure 2. Block diagram of FPGA firmware

208 OCEPEK

oscillator and generate the required frequency using a

DCM (digital clock manager) IP core which is

configurable “on the fly” using the DRP (dynamic

reconfiguration port) protocol. The main drawback of

this option is that DCM supports only the limited values

of the multiply and divide values for PLL used inside.

As a result, not all frequencies can be achieved that

way. A possible solution would be to use a

programmable fractional-N frequency synthesizer for

clock generation. It can generate basically any

frequency in the supported band (with less than a

100 ppm offset) [4]. It would potentially allow

implementation of another useful feature, i.e. frequency

scanning. The idea is to slowly increase the frequency

of reference clock until GTX is aligned to the fiber data

stream. This way, the knowledge of the exact frequency

of the event clock would not be required. It is not yet

determined whether this idea can be implemented.

However, adding a fractional synthesizer is a high

priority task for the future development of this device.

 All settings regarding clocking are stored in a register

array and are visible and configurable through the

UART.

5.3 Memory

The event mapping RAM is a table defining the actions

to be taken when a particular event number comes from

GTX. The events address RAM where the bitwise

content of RAM on this address determines which

actions need to be carried out. The content is

configurable through a serial interface. Since UART is

in a different clock region than the received events, a

dual port RAM is used.

 The address space is divided into three parts:

- Event mapping RAM defining what will

happen when a specific event character is

received.

- Control character mapping RAM defining what

will happen when a specific control character

is received.

- Configuration register array (a 32 bit-wide

distributed memory) is storing settings for

various components of the device.

 As the block memory (dual-port RAM) has no reset

signal, RAM is reset by manually writing default values

on all RAM addresses. This is implemented in the

software.

5.4 UART

The MiniUART IP Core from the OpenCores

(developed by Philippe Carton) is used to make an

interface between the generic timing receiver and the

user’s workstation. The core receives and sends one

byte at a time and does not include FIFO. A special

UART handler is developed to store and parse the input

strings, extract the data and decode it from the ASCII

notation. All control signals are correctly driven and

correct responses are generated with the data from the

memory coded in the ASCII notation and placed in the

right place in the string.

 When enabled, the device automatically up-streams

the received events marked for this action. Along the

event number, the local timestamp is also sent. The

timestamp is simply a current value of a 40-bit free

running counter operating on the event clock. FIFO

makes sure that no events are missed even when a high

burst of events occurs. If the FIFO overflows, the whole

upstream is disabled.

 The UART handler is implemented as a complex

FSM (finite-state machine) which proved to be a bad

decision for making it hard to add new features and

modifications. However, some tests on a small group of

data showed that all the received upstream data is

correct and undamaged. Large-scale tests with emphasis

on the simultaneous downstream and upstream

operations (read and write to the registers) are still

needed to verify that no data is lost or corrupted by

UART handler.

6 SOFTWARE

The software is developed as an EPICS IOC with the

StreamDevice 2 module acting as device support

(interface between the EPICS records and the device).

CSS (Control System Studio) is used as a platform for

the GUI (graphical user interface). Each of these

components is described below.

6.1 EPICS

Every function of the generic timing receiver has a

group of associated records. There are separate records

for the input and output signals, the so-called “getters”

and “setters”. Whenever the value of any register is to

be changed, an appropriate “setter” record is processed

and the forward link to the “getter” record is asserted

and consequentially the “getter” record is also

processed. This makes it possible to check if the data is

actually saved in FPGA.

 The other important issue solved with this approach

is what should be done at IOC initialization? The

records in IOC need to be synchronized with the FPGA

registers. This can be done in two ways. One way is to

select the default values and then write them to FPGA at

every IOC initialization. The other way is to simply read

the values from the FPGA registers and store them in

the EPICS records at every IOC initialization. Second

way is used in my case.

 The other types of records are mostly associated with

data manipulation and reset sequence. When a user

asserts the record dedicated to global reset, a global

event is posted. Each record group includes a reset

record triggered by the global event. The default values

(usually 0) stored in reset records are written to all

FPGA registers when a reset occurs.

 Display of the received timing events in a graph form

is done by using two synchronized records or two fields

of the same record; one storing event number and the

GENERIC TIMING RECEIVER FOR EVENT DRIVEN TIMING SYSTEMS 209

other storing the timestamp. In my case the timestamp is

a 40-bit wide integer but the used EPICS records can

only store 32-bit integers. To solve both problems, an

aSub type of the record is used. It is a MIMO (multiple

in multiple out) system that can call the custom-written

C subroutines (which can internally support 64-bit

integers). A C function is written to construct a

timestamp and convert it to a floating point value

presented on the output. The function also takes in the

event number and simply forwards it to the second

output. Since the record is processed only once for

every received event, the outputs are synchronized.

 For every functionality there are minimally three

records, making their total number to be some 4000

records.

 For the future development it is planned to

implement a way to save the events with the

corresponding timestamps into a text file, to be used by

other data-analyzing programs.

6.2 Stream Device

The StreamDevice 2 device support module parses and

formats the incoming and outgoing strings. It is a

supplement to the AsynDriver which handles the actual

serial transmission. The module is relatively easy to use.

It generally requires only regular serial protocol

parameters, such as the baud rate and the number of

stop bits. Additionally, it requires the so-called protocol

files. These are the ASCII files in which the “shape” of

the transmitted strings is defined. The format

converters, similar to the ones used in C, define which

part of the string is the actual data to be saved in the

record and in which notation it is written (binary,

decimal, hexadecimal, float, etc.).

 In case of the generic timing receiver, the

communication takes place in three different ways:

- When writing in the registers, the address and

data are sent to the device which saves the data

but does not respond.

- When reading from the registers, the address of

the register is sent to the device which

responds by sending back the content of that

register.

- When the event upstream is enabled, the device

automatically sends the event numbers and

timestamps without any request from the

software.

 These three ways of communication do not play well

together in terms of the StreamDevice. As a result,

when an automatic event upstream is enabled no other

communication with the device works properly. This

problem will be addressed in future.

6.3 Graphical User Interface

CSS (Control System Studio) is an application based on

the Eclipse framework [5]. It is mainly used for

development of graphical interfaces. It acts as an EPICS

client. As it communicates with IOC using the CA

network protocol, it does not have to run on the same

physical machine.

Figure 3. Main screen

210 OCEPEK

The developed GUI follows the modern style

guidelines [6]. It is not seen from the black and white

screenshots provided in this paper, but the screens

mostly use different shades of gray. The colors are used

only for important information like the status LEDs.

 GUI reflects the shape of the underlying EPICS

database. The widgets are grouped by their

functionalities. Each functionality has a status widget

and control widget (getter and setter design). In

principle everything can be done by one widget, but in

case of a transmission error, the state of the widget may

not correctly reflect the state of the register in the

device.

 The most important feature, also the one causing

most of the problems during the development, is the x-y

graph that shows the timing event number in relation to

Figure 4. Screen for choosing which events and control characters are forwarded from FPGA to serial line.

Figure 5. Screen for configuration of pulse generators and timestamp counter.

GENERIC TIMING RECEIVER FOR EVENT DRIVEN TIMING SYSTEMS 211

the hardware timestamp. The graph automatically draws

points when the event upstream is enabled. The main

problem is that the graph does not show the events

correctly when they come in short intervals. This is

partially solved by reducing the buffer size in CSS,

increasing the minimum time between redrawing and

increasing the auto-scale offset. As some points are still

missing from time to time, the system is not yet to be

fully trusted, although the graph is intended to quickly

evaluate if the right events are received and not for error

detection. The graph widget includes some useful tools,

such as different zoom options and annotations to find

the exact values of the timestamp for a specific event.

Figure 3 shows the main screen that also includes the

graph.

 In some cases, data manipulation is required to

provide a more human readable user interface. Such

operations are performed in the EPICS database

whenever possible. As there are some cases when this

cannot be done, a few scripts are written using

JavaScript that can be easily integrated in CSS.

 The “upstream configuration” tab of GUI shown in

Figure 4 enables the user to choose which events are to

be forwarded from FPGA to a serial interface. The LED

matrix reflects the bits of the mapping RAM dedicated

to the event upstream. A standard “getter” and “setter”

design cannot be developed in this case, since the use of

resources in CSS is too high when pushing the design in

this direction. Instead, a special interface is

implemented where the user writes the event number in

a decimal or hexadecimal format and chooses to enable

or disable the upstream of this event. The written

number is stored as a local PV in CSS. A script is

provided to convert the written number to string and use

it as part of the name of a PV associated with the

selected event.

 The “Pulse generators and timestamp” tab shown in

Figure 5 addresses the remaining bits of the mapping

RAM which handles generation of pulses on the output

pins and selects which event resets the local timestamp.

A reduced design with no LED matrix is chosen to

maintain the use of resources on a reasonable level.

7 CONCLUSION

The generic timing receiver is a debugging device for

the event-driven timing systems that are widely used in

particle accelerators. It has already proven to have a

potential to be a valuable debugging tool, when it was

used in testing the project regarding time distribution in

timing system.

 The presented device is still a prototype operating on

a development board. There are still a few bugs to be

solved as well as many possibilities to expand the

project. Hope is that in the future the device will be

useful for many projects in Cosylab and beyond.

REFERENCES

[1] J. Serrano, “Digital signal processing using field programmable
gate arrays,” pp. 29–38, 2008.

[2] A. X. Widmer and P. A. Franaszek, “A DC-Balanced, Partitioned-

Block, 8B/10B Transmission Code,” IBM J. Res. Dev., vol. 27,

no. 5, pp. 440–451, Sep. 1983.

[3] T. Hayes, K. S. Smith, and F. Severino, “A deterministic, gigabit

serial timing, synchronization and data link for the RHIC LLRF,”
2011. [Online]. Available:

http://www.bnl.gov/isd/documents/75367.pdf. [Accessed: 10-Jun-

2015].

[4] C. Barrett, “Fractional/Integer-N PLL Basics,” Texas Instruments -

Technical Brief SWRA029, 1999. [Online]. Available:
http://www.ti.com/lit/an/swra029/swra029.pdf. [Accessed: 12-

Jun-2015].

[5] J. Hatje, M. Clausen, C. Gerke, M. Moeller, and H. Rickens,

“CONTROL SYSTEM STUDIO (CSS),” ICALEPCS07, no.

MOPB03, Jan. 2007.

[6] A. Lüdeke, “Cognitive ergonomics of operational tools,” J.

Instrum., vol. 7, no. 10, pp. T10001–T10001, Oct. 2012.

Benjamin Ocepek is an undergraduate student at Faculty of

Electrical Engineering in Ljubljana. He has a part time job at

Cosylab d.d. as a hardware and software engineer.

