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Abstract
The paper develops a novel technique for facial land-
mark localization based on advanced correlation filters.
Specifically, it introduces a new class of advanced cor-
relation filters, named Principal Directions of Synthetic
Exact Filters or PSEFs for short, and applies them to
the problem of eye localization. To improve upon the ba-
sic performance of the PSEF filter for eye localization
two types of constraints (i.e., soft and hard constraints)
that affect the outcome of the localization procedure are
also proposed and incorporated into the procedure. The
effectiveness of the developed localization technique is
demonstrated on more than 40000 facial images pooled
from the FERET and LWF databases. The results of our
experiments suggest that the PSEF filters produce sig-
nificantly better localization results than, for example,
the Haar-cascade object detector, while ensuring a more
than 10-fold improvement in the processing time.

1 Introduction

In recent years we have witnessed an increased interest in
so-called advanced correlation filters, which have proven
extremely successful in solving complex tasks related to
pattern recognition in computer vision, e.g., face or palm-
print recognition, object detection, tracking, etc. The in-
terest in these types of filters is fueled not only by their
efficiency, but also by some of their properties, such as
mathematical simplicity, computational efficiency and ro-
bustness to distortions [1].

In general, advanced correlation filters bear a resem-
blance to templates and correlation-based template match-
ing techniques, where patterns of interest in images are
searched for by cross-correlating the input image with
one or more example templates and examining the result-
ing correlation plane for large values - also known as cor-
relation peaks. With properly designed templates, these
correlation peaks can be exploited to determine the pres-
ence and/or location of patterns of interest in the given
input image [1]. Early template matching techniques re-
lied on rather primitive templates, computed, for exam-
ple, through simple averaging of the available training

images. Contemporary methods, on the other hand, use
correlation templates (also referred to asadvanced corre-
lation filters) that are constructed by optimizing specific
performance criteria [1], [2]. Examples of existing corre-
lation filters can be found in [3], [4], [5] or [6].

In this paper we focus on a class of correlation fil-
ters called Principal directions of Synthetic Exact Filters
(PSEFs) that we have originally introduced in [2]. These
filters generalize upon the recently proposed class of ad-
vanced correlation filters called Average of Synthetic Ex-
act Filters (ASEF) [6]. Based on these filters and a num-
ber of localization constraints we develop a facial land-
mark localization procedure and demonstrate its effec-
tiveness in comparison with ASEF filters and the estab-
lished Haar cascade classifier proposed in [7].

2 Preliminaries

ASEF filters represent a recently proposed class of ad-
vanced correlation filters that have already proven suc-
cessful in various computer vision problems [6]. Similar
to other correlation filters, a pattern of interest in an im-
age is detected with an ASEF filter by cross-correlating
the input image with the given ASEF filter and examin-
ing the resulting correlation plane for possible correlation
peaks. However, ASEF filters differ from most existing
correlation filters in the way they are constructed.

Unlike the majority of correlation filters, which define
only a single correlation value per training image, ASEF
filters predefine the entire correlation plane for each avail-
able training image. As stated by Bolme et al. [6], this
correlation plane commonly features a high peak cen-
tered at the pattern of interest and (near) zeros at all other
image locations (second image in Fig. 1) [2]. Such a syn-
thetic correlation output results in a synthetic exact filter
(SEF) (third image in Fig. 1) that can be used to locate the
pattern of interest in its corresponding training image.

Obviously, SEF filters do not exhibit broad general-
ization capabilities, instead they produce distinct peaks
only for those images that were used for their construc-
tion. To overcome this shortcoming Bolme et al. [6] com-
puted a new filter by averaging all of the synthetic ex-
act filters corresponding to a specific pattern of interest.
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Figure 1: Construction of a synthetic exact filter (SEF): nor-
malized input image multiplied with a cosine window (left), the
synthetic correlation output plane (middle), the synthetic exact
filter corresponding to the training image on the left (right).

Through the averaging operation the authors ensured bet-
ter generalization capabilities of the ASEF filters when
compared to the SEFs and avoided the over-fitting prob-
lem that affects many existing correlation filters

Consider a set ofn training imagesx1,x2, ...,xn and
n corresponding image locations of the pattern of inter-
est. The first step towards computing the ASEF filter for
a pattern of interest is the construction of the desired cor-
relation outputsy1,y2, ...,yn for all n training images:

yi(x, y) = e
−

(x−xi)
2+(y−yi)

2

σ2 , for i = 1, 2, ..., n, (1)

whereσ denotes the standard deviation of the Gaussian-
shaped correlation output and(xi, yi) represents the co-
ordinate pair corresponding to the location of the pattern
of interest in thei-th training image.

Once the correlation outputs have been determined,
SEFs are calculated for alln pairs(xi,yi) as follows:

H
∗

i =
Yi ⊙X∗

i

Xi ⊙X∗

i + ǫ
, for i = 1, 2, ..., n, (2)

where,Xi = F(xi) andYi = F(yi) denote the Fourier
transforms of thei-th training image and its correspond-
ing synthetic correlation output,Hi = F(hi) stands for
the Fourier transform of thei-th SEF filterhi, ǫ denotes
a small constant that prevents divisions by zero,⊙ stands
for the Schur product and∗ for the conjugate operator.

In the final step, alln SEFs are simply averaged to
produce an ASEF filter (see second image of Fig. 2 for a
visual example) that can be used to locate the pattern of
interest in a given input image. Here, the ASEF filter in
the frequency domain is defined as [6]:

H
∗ =

1

n

n∑

i=1

H
∗

i , (3)

To apply the ASEF filters for localization of a pat-
tern of interest in an input image, the input image in first
cross-correlated with the appropriate ASEF filter and the
correlation output is then examined for its maximum. The
location of the maximum is simply declared the location
of the pattern of interest. In the frequency domain this
can be defined as follows:

Y = Xt ⊙H
∗

, (4)

whereY denotes the correlation output in the frequency
domain,Xt = F(xt) denotes the Fourier transform of
a test imagext, H stands for the ASEF filter in the fre-
quency domain and⊙ again represents the Schur product.
The procedure is also illustrated in Fig. 2.

Figure 2: Visualization of the facial landmark localization pro-
cedure (from left to right): the input image, the ASEF filter
(with shifted quadrants), the correlation output, the input image
with the detected correlation maximum.

3 PSEF filters

The filter construction procedure described in the previ-
ous section ensures high generalization capabilities of the
ASEF filters through an averaging procedure applied on
the SEF filters. However, it implicitly presumes that the
SEF filters represent a random variable drawn from a uni-
modal symmetric distribution and, thus, that their distri-
bution is adequately described by their sample mean.

To derive our PSEF filters we will make a similar as-
sumption and assume that the SEF filters are drawn from
a multi-variate Gaussian distribution. Under this assump-
tion, we are able to extend the concept of ASEF filters to
a more general form The basic reasoning for our general-
ization stems from the fact that the first eigenvector of the
correlation matrix of some sample data corresponds to the
data’s mean (or average), while the remaining eigenvec-
tors encode the variance of the sample data in directions
orthogonal to the data’s average. By using more than only
the first eigenvector of the SEF correlation matrix for the
localization procedure, we should be able to further im-
prove upon the localization performance of the original
ASEF filters [2].

Again consider a set ofn training imagesx1, ...,xn,
for which we have already computedn corresponding
SEFs for some pattern of interesth1,h2, ...,hn, (where
hi = F−1(Hi) stands for thei-th SEF filter defined
in the spatial domain). Assume also that the SEFs re-
side in ad-dimensional space and that they are arranged
into a column-data matrixζ ∈ R

d×n. Instead of sim-
ply averaging the SEFs to produce an ASEF filter, we
compute the sample correlation matrixΣ of the SEFs:
Σ = ζζT ∈ R

d×d, and adopt its leading eigenvectors as
our PSEF filters, i.e.:

Σfj = λjfj ,wherej = 1, 2, ...,min (d, n) (5)

andλ1 ≥ λ2 ≥ · · · ≥ λj · · · ≥ λmin (d,n).
One problem arising as a consequence of such a con-

struction procedure is the sign ambiguity of the PSEF fil-
ters fj . Since the computed filters can be multiplied by
−1 and still represent valid eigenvectors ofΣ, we have
to alleviate this sign ambiguity. In the experimental sec-
tion we will try to solve the sign ambiguity of our filters
through preliminary experiments on some training data.

3.1 Utilizing linearity
The landmark localization procedure using PSEF filters
is identical the one presented in Section 2, except for the
fact that we have more than a single filter at our disposal
and, hence, obtain more than one correlation output:

Yj = Xt ⊙ F
∗

j , for j ∈ {1, 2, ...,min (d, n)}, (6)
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Figure 3: Comparison of the visual appearance of an ASEF fil-
ter (left) and the combined PSEF filter (right).

whereXt = F(xt) denotes the Fourier transform of a
given test imagext, Fj denotes the Fourier transform of
thej-th PSEF filterfj andYj refers to thej-th correlation
output in the Fourier domain.

To determine the location of our pattern of interest
in the given input image, we need to examine all corre-
lation outputsYj for maxima and combine all obtained
information. A straight forward way of doing this is to
examine only the linear combination of all correlation
outputs for its maximum and use the location of the de-
tected maximum as the location of our pattern of inter-
est. Thus, we have to examine the following combined
correlation output:yc =

∑k

i=1 wiyi, whereyi denotes
the correlation output (in the spatial domain) of thei-th
PSEF filter,wi denotes the weighting coefficient of the
i-th correlation output,yc denotes the combined correla-
tion output, andk stands for the number of PSEF filters
used (1 ≤ k ≤ min (d, n)). From the above descriptions
we can deduce that ifk = 1 the combined correlation out-
put is identical to the correlation output of the ASEF filter.
On the other hand, ifk > 1 we add additional informa-
tion to the combined correlation output by including ad-
ditional PSEF filters into the localization procedure. The
presented procedure requires one filtering operation for
each PSEF filter used. However, the computation can be
speeded up by exploiting the linearity of the combination
procedure. Instead of combining the correlation outputs,
we simply combine all employed PSEF filters into one
single filter with enhanced localization capabilities, i.e.:

yc =

k∑

i=1

wi(fi ⊗ xt) = (

k∑

i=1

wifi)⊗ xt = fc ⊗ xt, (7)

wherefc =
∑k

i=1 wifi, and
∑k

i=1 wi = 1. In the pre-
sented equationsfc stands for the combined PSEF filter
and⊗ denotes the convolution operator. Note that the lo-
calization procedure with the combined PSEF filter has
exactly, the same computational complexity as the proce-
dure relying on ASEF filters regardless of the number of
PSEF filters used. For our experiments the weights of the
individual PSEF filters were selected as:wi =

λi∑
k
i=1 λi

.

An example of the visual appearance of the combined
PSEF filter obtained with the presented weighting proce-
dure (after the sign ambiguity has been eliminated - see
Section 4) is shown on the right hand side of Fig. 3.

3.2 Incorporating localization constraints
To improve upon the basic performance of the PSEF fil-
ters we incorporate two constraints into the the facial land-
mark localization procedure.

The first, which we will refer to as oursoft constraint
in the remainder, represents a weighting function that is
multiplied with the correlation output to give more weight

Figure 4: Illustration of the soft constraint concept.

to more probable landmark locations. The weighting func-
tion can be considered as sort of a prior model and is es-
timated by analyzing the locations of the landmark of in-
terest on some training data and fitting a Gaussian distri-
bution (with a diagonal covariance matrix) to these loca-
tions. The procedure is illustrated in Fig. 4. Here the first
image depicts the average of our training set of 15520
face images after the face detection step with superim-
posed coordinates of the left eye from all images in the
training set. The second image shows the estimated weight-
ing function and the third image presents isohypses of
the estimated Gaussian weighting function superimposed
over the average face.

The second constraint incorporated into the landmark
localization procedure, referred to as ourhard constraint
in the remainder, is to limit the search space for the facial
landmark of interest. When using this heuristic, we look
for the left eye only in the upper left quadrant of the im-
age and, similarly, we search for the right eye only in the
upper right quadrant of the image.

4 Experiments and results

To assess the landmark localization procedure relying on
PSEF filters we make use of two face databases, namely,
the FERET database [8] and the Labeled Faces in the
Wild (LFW) database [9]. We extract the facial regions
from all images of the two databases using the Haar cas-
cade classifier proposed by Viola and Jones [7]. After
detecting the facial regions in all images, we select 640
images from the LFW database and manually label the
locations of the left and right eye. Next, we produce 40
variations of the facial region of each of the 640 LFW
images by randomly shifting the location of the facial re-
gions by up to±5 pixels, rotating them by up to±15◦,
scaling them by up to1.0 ± 0.15 and mirroring them
around they axes. Through these transformations, we
augment the initial set of640 images to a set of25600
images (of size128 × 128 pixels) and employ them for
training of the ASEF and PSEF filters.

For testing purposes we apply the same random trans-
forms to 3815 images from the FERET database. Here,
we produce 12 modifications of each facial region, which
results in45780 facial images that can be used for our
assessment. Prior to subjecting the face images to the
proposed localization procedure, all face images are sub-
jected to a log transform and normalized to zero mean
and unit variance. In the last step the images are weighted
with a cosine window to reduce the frequency effects of
the edges encountered when applying the Fourier trans-
form [6]. To measure the effectiveness of the localization
procedure we adopt the following criterion [10]:

η =
max (‖lle − rle‖, ‖lre − rre‖)

‖rle − rre‖
, (8)
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(a) PSEF 1
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(b) PSEF 2
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(c) PSEF 3
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(d) PSEF 4
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Figure 5: Results of preliminary experiments aimed at alleviat-
ing the sign ambiguity of the computed PSEFs.

wherelle andlre denotes the location of the left and right
eye found by the assessed procedure,rle andrre denote
the reference location of the left and right eye, respec-
tively, and the expression‖rle − rre‖ represents the ref-
erence interoccular (L2) distance. For our assessment we
examine the correct localization rate for different operat-
ing points, i.e.,η < ∆ ∈ {0.10, 0.15, 0.20, 0.25}. We
use the soft constraint in all of our experiments with cor-
relation filters, and state explicitly when we also adopt
the hard constraint.

The goal of our first series of experiments is to al-
leviate the sing ambiguity of the computed PSEF filters.
To this end, we compute5 PSEF filters (corresponding
to the 5 largest, non-zero eigenvalues of Eq. 5), derive
two filters from each of the 5 PSEF filters by multiply-
ing them with+1 and−1, and normalizing the result to
zero mean and unit variance. With the 5 computed fil-
ter pairs, we conduct localization experiments with the
45780 face images of the FERET database and plot the
results in form of graphs as shown in Fig. 5. We select a
threshold of∆ = 0.25 as the relevant operating point of
our localization procedure and based on this value deter-
mine the appropriate sign of each of the five PSEF filters.
Note here that more (or less) filters than 5 could be used
for our experiments, the presented results, however, are
enough to show the feasibility of our approach.

If we take a look at the presented results in Fig. 5, we
can see that in our case the best localization results are
obtained with the first two filters being multiplied with
+1 and the remaining filters being multiplied with−1.
Furthermore, we can notice, that the best localization per-
formance is obtained with the first PSEF filter, which in
fact corresponds to an ASEF filter, while the remaining
filters perform worse.

Our second series of experiments comprises two types
of tests. The first type does not rely on the hard con-
straint while the second type does. The results for the
first type of experiments are shown on the left side of
Fig. 6, while the results of the second type of experiments
are shown on the right side of Fig. 6. Some numerical
results for different values of∆ are also summarized in
Table 1. Note that the proposed PSEF filters outperform
both tested alternatives to eye localization, namely, ASEF
filters as well as the Haar cascade classifier.

In the third series of experiments we measured the ex-
ecution times needed for the localization procedure. The
best average time, computed by conducting the (left and
right eye) localization procedure 10 times on all test im-
ages, was 46.3 ms for the Haar classifier (25.1 ms with
the hard constraint) and 1.00 ms for the correlation filters
(1.01 ms with the hard constraint).

As a final note let us say that the ASEF filters require
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Figure 6: Comparison of different localization techniques with
(right) and without (left) hard constraint.

Table 1: Localization rates (in %) at different values of the lo-
calization criterion.

η
Without hard constraint With hard constraint

Haar ASEF PSEF Haar ASEF PSEF

0.10 44.7 66.1 83.0 88.3 91.4 93.3

0.15 47.2 67.8 84.7 91.3 94.4 95.8

0.20 47.5 68.6 85.5 91.7 96.5 97.5

0.25 47.7 69.1 86.0 91.8 98.1 98.6

only a few minutes to be trained, since the rely only on
a simple averaging operation. The PSEF filters require a
few hours for their training, as this involves the computa-
tion of a large correlation matrix and its decomposition.
Finally, the Haar classifier is known to have training times
in the order of days or weeks.

5 Conclusion

We have presented a new class of correlation filters called
Principal directions of Synthetic Exact Filters and applied
them to the task of eye localization. We have shown that
the filters outperform the recently proposed ASEF filters
and the established Haar cascade classifier at this task.
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