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Abstract 

The paper describes a traffic optimization problem and 

its solving by using genetic algorithms. To evaluate the 

adequacy of individual solutions, a traffic simulator was 

built. The paper provides the basis for genetic 

algorithms and traffic simulators and presents our 

solution in more details. Our traffic simulator was 

designed by using an innovative approach that reduces 

the simulation time by preserving the amount of data 

needed to be processed. The paper also shows 

optimization results and plans for our future work. 

1 Introduction 

The amount of motor vehicles has been increasing over 

the years, mostly because of the new technology in 

automation. Today cars are relatively cheep and 

accessible, which enables most of the population to own 

one. Motor vehicles have been around for many years 

and most of the traffic networks were built in the past 

when the demand was not as high as today. A lot of 

research has been done on optimizing the currently 

existing networks to provide to users the best service 

possible. Most of the solutions are focused on traffic 

management systems that simulate the current traffic of 

a given network and can predict traffic in near future. 

Some of the solutions even offer a way to increase the 

flow of the network. Our approach optimizes the 

network by changing the type of intersections in the 

network to increase traffic flow and decrese cost. 

2 Genetic algorithm 

Genetic algorithm is a search heuristic that mimics the 

process of natural evolution. They consist of adaptive 

methods that simultaneously address the crowd of 

simple objects, where the units are used to solve search 

and optimization problems, or NP-problems. These 

algorithms are characterized by the locality, which 

means they have tendency to converge towards local 

optima, non-hierarchical structure, already mentioned 

co-treatment of simple objects and functionality that is 

the result of interaction between the facility in question. 

Belong to a group of evolutionary algorithms; they are 

based on the principles of natural evolution and the laws 

of genetics, where the population over several 

generations have to develop with the principle of natural 

selection and survival of the best [4]. 

In thir paper we will not go further than this with the 

description of the basics of genetic algorithms [1] and 

the mathematical background of it [5]. The 

implementation of a genetic algorithm for our project 

and more details about it are described hereafter. 

2.1 Implementation of our genetic algorithm 

Our implementation of the genetic algorithm is very 

similar to the basic one [3]. In Figure 1 we can see the 

pseudo-code of the implementation of our algorithm, 

which generates strings (individuals) that are actually 

the layout of traffic intersections in our city. 

 

 

Figure 1: Pseudo-code of our genetic algorithm 

As shown in the pseudo-code (Figure 1), at the 

initialization of the algorithm we create an initial 

population of strings made by one string from the actual 

XML file and other “n-1” strings generated randomly. 

The next step is to evaluate the first population and save 

the performance scores. After that we enter the while 

loop where we sort the strings (individuals) inside the 

population by their performance score, so we can later 

select the best set of parents that are suitable for 

generating the descendants in the next phase – 

generating the new generation. 
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In the process of generating a new generation, two basic 

operations are applied - the crossover and mutation. The 

mutation operator has a probability parameter, which is 

very important to prevent irretrievable loss of good 

solutions in our space search. More information about 

these two basic operators will be described in the next 

subparagraphs. 

After the new generation is made, we need to evaluate it 

and sort it by strings’ performance scores. The next step 

is to merge our old population and our new generation 

and select the best “n” strings, which will live in the 

new population. 

In our case, the genetic algorithm runs in an infinite 

loop until we stop it manually. 

2.2 Fitness function 

Fitness function is the most important feature of genetic 

algorithms, because it gives comparable scores and has 

to be implemented for each problem individually. 

The role of the fitness function is to assign a 

performance score, represented as a numerical value, to 

each string (individual) from our population or 

generation. The performance score is used to compare 

strings and select the best ones from the set of all strings 

later on. The rating itself is supposed to represent the 

capacity and efficiency of the string (individual). 

In our case, the fitness function gets the results from the 

evaluator and calculates the average time spent waiting 

at intersections of all agents. This is the performance 

score of our string (individual). More details about the 

evaluator will be described in the next paragraphs. 

2.3 Basic operators 

In the following subparagraphs we will describe in more 

details the basic operators that are present in our genetic 

algorithm with appropriate examples.  

2.3.1 Reproduction 

During the reproduction process, two strings get 

selected from the current population (sorted by 

performance score) and then two new strings that 

belong to the new generation get generated. Of course, 

the selection of parents takes into account the 

performance scores and that is why we sort the 

population before the reproduction process starts. This 

is how we guarantee to strings (individuals) with high 

scores to be selected more often than those with low 

scores, which may not be selected at all. 

2.3.2 Crossover 

Crossover is a binary operator where two strings 

(parents) generate two strings (descendants). These 

descendants usually replace their parents, but in our 

implementation we do not compare parents with 

descendants. We put all strings from the population and 

newly generated generation in the same poll and then 

take out the best “n” strings, which represent the new 

population.  

Crossover is performed by selecting two strings 

(individuals) and then randomly choose a bit for 

crossing, which separates a person or a chromosome 

into two parts - the head and tail. Now exchange the 

tails between parents and in this way we get two new 

strings (descendants), which owns genes from both 

parents. This method of crossing is called simple or one-

digit and we can see an example in Figure 2. 

 

 
Figure 2: Example of crossover operation 

 

The crossover operation can also have a probability 

parameter to decide if make a crossover or just leave the 

descendants to be same as parents. In our case we 

decided to crossover all strings from our population, so 

the order of the crossover process is 1.00. 

2.3.3 Mutation 

Mutation is a unary operator because it receives one 

string as an input parameter, but as crossover, it 

operates over binary strings. Unlike the crossover 

operation, mutation is conducted on descendants. The 

execution of mutations is very small (usually order of 

0.01 for each gene (bit)). In our case, the order of the 

mutation process is 0.01. In Figure 3, we can see the 

fourth gene mutated. 

 

 
Figure 3: Mutation of the fourth gene (1 => 0) 

 

The mutation is responsible for the random exploration 

of the search space and to ensure that no item is 

excluded from it. 

3 Traffic simulator 

Traffic simulator is a mathematical modeling of the 

traffic networks. Traffic modeling is a vast area of 

research that employs many different ways of traffic 

simulation, which usually employs rules of behavior for 

agents in the traffic. Each agent behaves by the rules of 

the traffic simulator and interacts with other agents. 

Such solutions are CPU consuming and usually take a 

long time to simulate on real data.  

Our traffic simulator is used to evaluate the fitness value 

of a given network, which represents its effectiveness. It  

is also time synchronized, meaning that the main update 

loop executes at a given interval, representing 1 second 

in real timeline. The update interval can be set before 

starting the simulator and also all other time variables 

will inherit from it to guaranty the consistency of the 

simulation at any given speed. Measuring the time it 

takes to execute an update is essential in order to 

provide realistic data.  
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3.1 Traffic network 

The traffic network is represented by a graph. The roads 

are represented as edges and the intersections with 

vertexes. Since roads have directions, it is a directed 

graph. Each edge has a direction, a start vertex and an 

end vertex. The network is first built from an xml 

(Extensible Markup Language) file, which was built 

manually according to the data provided by Google 

Maps service [2]. The xml file contains all the 

information about the current traffic network including 

the length of each road and the type of intersections. 

3.2 Intersections 

Our simulator has three types of intersections. Each of 

them is programmed as a set of rules inherited from real 

data. To simulate an intersection we used FIFO (first in 

first out) queues as our data structure. We decided to 

use these queues, because they guaranty that the cars 

will be processed in the right order by the rules of 

traffic. The number of queues each intersection has 

depends on the number of roads leading to the 

intersection.  

Talking about the updates, intersections are updated 

each time the update is called. Intersection updates 

depend on the type of intersection, but all of them do 

share one chunk of code. All of them start by updating 

the time the agents spent waiting in the queue of a given 

intersection and immediately after an agent is pulled 

from the queue, it gets put through a series of conditions 

to determine if it is allowed to continue its path. 

3.2.1 Unsignalised intersections 

Unsignalised intersections are the most basic type of 

intersection. Although it may look basic because it does 

not have any light signals, but it makes up by having a 

lot of rules, which have to be carefully implemented to 

avoid conflicting rules. Conflicting rules could cause the 

wrong car to be left to leave the queue or in some cases 

even cause a dead lock. A dead lock would mean two or 

more agents are waiting for each other to leave the 

queue and therefore none of them leave. In a situation 

like this, a traffic jam would follow and no agent would 

ever be allowed to leave the intersection. 

3.2.2 Signalized intersections 

Signalized intersections are the simplest to implement. 

There are only a few rules that agents need to follow. 

The difference between the unsignalised intersections 

and signalized intersections is that the signalization 

renders many of the traffic rules useless by minimizing 

the problem down to two roads instead of 4 or more. 

The implementation however is not very different. 

When intersections are updated the signalized 

intersection checks if it is its time to make a signal 

switch and if necessary, performs it. The agents are then 

pulled of from the corresponding queues and let back in 

the traffic. 

3.2.3 Roundabout intersections 

Roundabout intersections are very different from the 

others. One of the main reasons why, is because the 

agent’s rules change. On not-roundabout intersections, 

if no higher rule is applicable, the agents always use the 

so called right-rule. The right-rule simply states that if 

two agents’ paths collide in a given time, then the agent 

on the right side takes priority over the other. In 

roundabout intersections, this simple rule reverses into a 

left-rule. The structure of a roundabout intersection is 

actually a simple graph. Queues are kept to determine, 

which agent takes priority in a given situation, but after 

priority is given the agent does not leave the 

intersection, but rather drives through the graph. The 

graph is again built of vertexes, which in this case are 

slots. These slots are connected with edges that 

represent roads inside the roundabout as seen in figure 

4.  

 

 
Figure 4: Example of roundabout slots 

 

A single slot can be occupied by a single agent at a 

given time. The number of slots a roundabout 

intersection has, is determined by its size. Size of a 

roundabout intersection is read from the xml file at the 

beginning of the first simulation.  

If an agent pulled from the queue is given priority the 

neighbor slot is checked. If the slot is occupied the 

agent waits, else it occupies it. Agents switch slots as if 

the slots were in a rounded list. They switch them until 

they reach the slot that is the neighbor to the road it 

needs to go to. When such a slot is reached, the agent 

leaves the roundabout and continues on its path. 

4 Agents 

Vehicles in the traffic network are represented as 

agents. Each agent is an object with many properties 

that can be found in four states in a given time of the 

simulation. In this paragraph we will describe our 

implementation of agents in more details.  

4.1.1 Initialization 

The initialization state occurs when the agent still does 

not exist in the traffic network. Before the agent is 

unleashed into the network it needs a path. There are 

many different ways of setting an agent's path, but in 

order for the simulation to be realistic an agent needs to 

have a realistic path. Thinking about defining paths for 

our agents we concluded that each car ends its path on a 

parking lot. Our agents inherit this idea and for that 

reason all major parking lots are also marked in the xml 

file. We also isolated the major roads that lead into the 

city and out of the city. Having defined the start and end 

point of an agent we check all the intersections on its 

path. This was done with Floyd–Warshall [6] algorithm 

that generates the shortest path between all vertexes in 
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the Graph. For constructing the shortest path, the road 

length was used as distance. 

4.1.2 Driving 

With the driving state we describe the agent that is on 

the road from one intersection to another. To decrease 

the CPU consumption we implemented the driving state 

as sort of a sleeping state. Because our genetic 

algorithm is optimizing only the flow of each 

intersection, the roads are not that important. Nothing 

that would affect the number of cars that need to pass an 

intersection can happen when the agent is in driving 

state. When an agent leaves the intersection, the 

algorithm calculates the time that the agent needs to get 

to the next intersection by taking in consideration the 

speed of the agent and the length of the road it will drive 

on. The time needed is then mapped into the simulation 

time and saved into the agents' object. After the time 

variable is passed, it means the agent has reached an 

intersection and an update is needed. When in state of 

driving, the agents do not consume much CPU. 

4.1.3 Inside the intersection 

This state describes the behavior of the agents when 

they are inside an intersection. Similar to the driving 

state, the agents in this state do not consume much CPU 

power, since they are inside a queue. When an 

intersection is updated, only agents that are first in the 

queue get processed at once. It is very important to 

update time variables of all the cars inside the queues, 

because the time spent waiting on intersections plays an 

important role in the fitness function. The data structure 

queue was never built for operations on all elements, 

instead it performs quick operations on the first element. 

The time update was structured to give each agent a 

timestamp when entering the intersection state and 

another timestamp when leaving it. The difference 

between those timestamps is the amount of simulation 

time the agent spent waiting in the intersection. 

4.1.4 Destination reached 

When an agent reaches its destination, it gets removed 

from the data structures of the simulator and left for the 

garbage collector to clean the object. Just before 

removing the agent, the data stored inside the object is 

retrieved and remembered till the end of the simulation. 

From this data the genetic algorithm can evaluate the 

fitness value of the traffic network that was tested. 

5 Results 

With limited resources and time we could not achieve 

the desired number of generations. Our population 

consisted of 200 strings (individuals). The frequency of 

generating agents was taken from real data of the city of 

Koper. The city of Koper is known troughout Slovenia 

to be the city with most roundabout intersections. 

Measuring the flow of traffic each type of intersection 

has, it can be proved that when there is high traffic, the 

roundabout proves to have the highest flow. The fact 

that Koper is mostly covered with roundabout 

intersection means that the optimization level is not 

expected to be high. Looking at the results we can see 

that even with a few generations there, we reached some 

level of optimization. The main roads were mostly left 

with roundabout intersections while the less populated 

roads were replaced with other types of intersections. In 

figure 5 we can see the function that represents the 

optimization. Since our fitness function is represented 

by the agents' waiting time on intersections, the genetic 

algorithm is programmed to minimize the fitness. The 

function starts with a significant drop, but soon comes 

to a steady low drop, which indicates that the genetic 

algorithm ether got stuck in a local minimum because of 

the generation size or we are getting close to an optimal 

solution. 

 

 
Figure 5: Results of testing 

 

6 Future work 

For future work we are working on new version of the 

traffic simulator that will run on a distributed computer 

system. This will enable us to test many individuals 

generated by the genetic algorithms at once. The system 

will work on master-slave concept where the master will 

be the genetic algorithm and slaves will be multiple 

instances of the traffic simulator. We hope this will 

speed up the optimization process immensely. We are 

also working on a component that will automatically 

generate the initial XML file that represents the actual 

layout of traffic intersections in a city. Another goal is 

to use different heuristic algorithms to search for the 

optimal graph. Genetic algorithms maybe produce good 

results but they do not use any additional knowledge in 

search of the optimal solutions. We intend to try other 

approaches and compare the results. 
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