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Abstract 

In this paper we evaluate time and space complexity of 
combinatorial auction solver. The application of combinatorial 
auction optimization problem in the area of 
telecommunication is presented. Using random problem 
instance generator we experimentally measured execution 
times and the amount of memory used for wide range of 
optimization problem sizes given as number of goods and 
number of bids. Results are reported as running times in 
seconds and memory used in kilobytes on a personal 
computer. We conclude that real world combinatorial auction 
problems can be solved on a personal computer.  
 

1 INTRODUCTION 

A combinatorial auction is an economic-based resource 
allocation mechanism where a user (buyer) can place 
bids for each of the possible combinations of resources 
instead of bidding for each resource separately. That 
kind of auction increases the economic efficiency and 
maximizes the revenue comparing to the classic auction.  
 Among other applications, simple combinatorial 
auctions have been used in estate auctions, transport 
routes and in the allocation of radio spectrum for 
wireless communications. In the radio spectrum 
allocation scheme multiple users bid for the required 
number of time slots and the allocations are done with 
the primary objective of maximizing the number of 
satisfied users in the system. In the second round of the 
auction the unallocated resources are allocated to users 
in the way that the system throughput is maximized. 
This kind of allocation mechanism avoids exposure 
problem where algorithms fail to satisfy the minimum 
slot requirements of the users due to substitutability and 
complementary requirements of user slots [1]. 
Combinatorial auction can also be used for the real time 
sub-carrier allocation scheme for OFDM transmission 
[2].  
 A computational problem is how to efficiently 
determine the goods (items, resources) allocation. Given 
a set of bids in a combinatorial auction, the goal is to 

find an allocation of items to bidders that maximize the 
auctioneer’s revenue. This is called the winner 
determination problem and belongs to a group of NP 
complete problems. There are some special case 
auctions (with constraints on the set of bids) where a 
polynomial-time solution does exist [3].  
 The goal of this paper is to experimentally evaluate 
the time and space complexity of combinatorial auction 
solver algorithm applied to a selected group of 
optimization problems.  
 The rest of the paper is organized as follows: In 
Section 2 we describe the combinatorial auction 
problem in detail to the required extent. Combinatorial 
auction implementation in telecommunication is briefly 
presented in Section 3. Experimental results are given in 
Section 4, followed by conclusions in Section 5. 
 

2 OPTIMIZATION TASK AND COMBINATORIAL 

AUCTION PROBLEM 

In this section, we describe the combinatorial auction 
model and formulate it as an optimization problem. We 
also briefly describe the winner determination 
algorithm.  
 Optimization problem of the general combinatorial 
auction is to determine the winning bids (that is to solve 
the winner determination problem). The set of items 
(resources) is denoted by	� = {1,2, … ,	}. Each bid 
consists not of a single item but from a subset of items, 
denoted by	�� , 
 = 1…�. A price �� = �(��) is 
assigned to each bid by the auctioneer. Note that this 
price can be or cannot be the sum prices of items 
contained in the bid	�� . Typically this is not the case 
since different aspects of market regulation can be 
carried out through bid price assignments.   
 Input parameter for the winner determination 
algorithm is a set of bids with costs, where each element 
consists of a pair	(�� , ��). Optimization task is to 
maximize the revenue where each resource can be 
allocated to one bid only [5],    
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	��	∑ �� 	��

�
��� ,				�. �.			 max∑ ���|�∈!"

≤ 1, �� ∈ {0,1}. 

 
Note that binary variables �� 	 are selector variables and 
the expression		∑ �� 	��

�
���  is the price of all sold bids, 

which is maximized subject to (s.t) constrain that each 
item can be sold at most once (that is �� representing the 
same item can sum up to one). The solution algorithm 
output is a vector 	% = (��, … , �&) indicating the 
selected bids.   
 This general problem of winner determination is 
computationally complex (NP complete) and is not 
approximable [6].  
 Optimal algorithms for solving the winner 
determination problem use search trees. The goal of 
search trees is to make a set of decisions for all bids 
(e.g. for each bid, deciding whether to accept or reject 
it). Once the search has finished, the optimal set of 
decisions is found and proven optimal. However, in 
practice, the space is much too large to be searched 
exhaustively. Algorithms use special techniques (e.g. 
branch and bound) that selectively search the space to 
find a solution. For special case combinatorial auctions 
(e.g. bound on the number of resources in bids) 
polynomial time approximation algorithms are being 
used [5].  
 There are also so called “any-time solvers” available 
where a quick stochastic optimization solver is run a 
large amount of times using smart random walks what 
can lead to a very good solution. An advantage of this 
approach is that the execution can be terminated any 
time (this is the origin of their name) and we still get an 
approximation to a solution. The drawback is that there 
is no indication whether the solution is optimal, close to 
optimal or even far from optimal.  
 

3 COMBINATORIAL AUCTION IN 

TELECOMMUNICATION 

The most common use of combinatorial auction in 
telecommunications is the allocation of carrier 
resources. Among others, known applications of 
combinatorial auction in real world are allocation of 
radio spectrum for wireless communications [1] and 
OFDM sub-carrier allocation [2]. 
 The allocation of radio spectrum uses an algorithm 
based on reverse auction (NP complete problem) which 
searches through all of the possible combinations 
(search tree). OFDM sub-carrier allocation uses an 
algorithm that selectively searches the search tree. 
 Let us point out that that the main reason why 
combinatorial auction is chosen as a resource selling 
mechanism is the fact that it allows the implementation 
of required regulations to the telecommunication 
market. This is done through constrained resource 
selling accomplished by the bid formulation. It is well 
known that telecommunication market is highly 
complex since it involves several connected subsystems 

such as communication infrastructures, 
telecommunication services and users of essentially 
different interests and communities. Besides, the impact 
of telecommunication services to the economy and to 
the whole society is known to be important. Therefore, 
there is an interest to regulate the ownership of 
resources such as frequency spectrum and others.  
 

4 EXPERIMENTAL RESULTS 

Combinatorial auction solver algorithms are essentially 
independent of the nature of the problem represented by 
the underlying combinatorial auction. Therefore, a 
randomly generated test data can be used to evaluate 
time and space complexity of combinatorial auction 
solvers. We used random optimization problem instance 
generator CATS [6] since a high level of flexibility in 
evaluation experimental designs is enabled in this way. 
 Standard implementation of branch-and-bound 
combinatorial auction solver CASS [6] was used as a 
auction solver. It allows simple command line 
parameters based control suitable for script testing. Test 
suits CATS and CASS are widely used by the research 
community. 
 Since a huge number of runs are required by the 
testing designs, the only manageable option of 
performing experiments is to use test scripts. Such high 
number of runs is required due to the random generation 
of optimization problem instance and due to relatively 
large ranges of parameters of problem instances to be 
controlled during the experiment.     
 We tested time and space complexity of winner 
determination algorithm on a personal computer. We 
implemented test scripts in PowerShell environment 
which generate and solve combinatorial auction 
problems in loops according to the chosen experimental 
designs, and measured the elapsed time and the amount 
of memory used by the solver algorithm.  
 We made the following types of experiments 
reported later in this section: 

• Time complexity of winner determination;  
• Time complexity of winner determination for 

same size combinatorial auctions; 
• Time complexity of winner determination for 

the same combinatorial auction; 
• Space complexity of winner determination;  
• Space complexity of winner determination for 

same size combinatorial auctions; 
• Space complexity of winner determination for 

the same combinatorial auction. 
Selected details on problem instances and experimental 
results are given in subsequent subsections.  

4.1 Materials and methods 

Tests were conducted on the personal computer HP 
Compaq nx6310 with the operating system Windows 
XP. Standard benchmarking approach using test scripts 
were applied. Generated combinatorial auctions with 
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their optimal allocations and test reports were 
automatically traced in order to verify the regularity and 
the repeatability of experiments. Auctions were 
generated by CATS suite and solved by CASS suite [6]. 
CATS can generate different types of auctions; we used 
two of them in various tests as indicated below. 
 Combinatorial auctions were generated with different 
input parameters and were solved while measuring the 
elapsed time and memory usage. Input parameters were 
the number of bids and the number of goods (size of the 
problem). We incremented the size of input parameters 
until a certain computation time threshold (1000 
seconds) has been reached. In practice, usually there is 
no need to provide real time or near real time solutions. 
Therefore we have chosen 1000 seconds as a reasonable 
solving time for relatively small problems. 
 A relevant parameter of a given combinatorial 
auction instance is also the probability distribution of 
bids and goods. We refer it as an internal distribution 
here. It can be selected by command line parameters 
supplied to the packet CATS. We have performed our 
tests using any distribution and L6 distribution. It has 
exponential goods distribution and normal price 
distribution. For further details on probability 
distribution L6 see [6].      

4.2 Script testing 

We used script testing because it is programmable, very 
useful for repetitive tests and very flexible. Once we 
wrote a script we change the input parameters via 
property files. We wrote two scripts; one for time 
complexity which measured the elapsed time and one 
for space complexity which measured memory usage 
through peak working set property of a process in 
Windows operating system. 

4.3 Time and space complexity experiments 

We have done several tests to examine time and space 
complexity of the winner determination solver. Our 
objective was to examine the influence of input 
parameters (number of goods and bids) on computation 
time and memory usage. We also examined the 
deviation of the winner determination computation time 
and memory usage of same size auctions and the same 
auction as a result of different randomly generated 
instances and other parameters. This is necessary to 
assure proper measurement characteristics.   
 In the following subchapters results of six 
experiments are presented.  
 

4.3.1 Experiment 1: time complexity 

We have discovered that not only the size of the 
optimization problem but also the probability 
distribution of prices and goods affects the time and 
space complexity. As shown in Figure 1 only relatively 
small combinatorial auctions with arbitrary price 
distribution can be solved. 

 It is difficult to make any claim on probability 
distributions involved in real world combinatorial 
auction problems in the area of telecommunication. 
However, real problems can involve large number of 
goods (items, resources) but not a large number of bids 
since there are only a limited number of bids that meet 
technical, legislation and commercial (market) 
constraints and are acceptable for the investor. 
Therefore, results shown at Figure 1 are not limiting to 
the high extent for real world applications. Besides, 
number of bids included in the optimization process can 
be pre-selected in practice by applying simple exclusion 
rules according to technical and legislation limitations. 
On the other hand, numbers shown at Figure 1 would 
not improve dramatically if only a stronger hardware 
platform would be used and no other improvement to 
the algorithm such as parallelization would be made.   
          

 
Figure 1. Combinatorial auction size when computation time 
exceeds 1000 seconds, arbitrary internal distribution. 

Larger combinatorial auctions can be solved with the L6 
distribution as shown in Figure 2. The number of goods 
is steadily decreasing by the number of bids; small 
variations are mainly due to the variations in randomly 
generated problem instances.  
 

 
Figure 2. Combinatorial auction size when computation time 
exceeds 1000 seconds, L6 internal distribution. 

Figures 3 and 4 show that computation time is non-
linear with the increment of input parameters and 
exhibits exponential growth. That holds true for all 
distributions. In practice this means that using stronger 
hardware would not considerably improve figures.  
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Figure 3. Combinatorial auction computation time with the 
increase of goods, internal distribution L6. 
 

 
Figure 4.  Winner determination computation time with the 
increase of goods, arbitrary internal distribution. 
 

4.3.2 Experiment 2: Time complexity of same size 

auctions 

We analyzed the computation time of same size 
auctions. Figure 5 shows that there are significant 
differences among same size auctions. That holds true 
for both distributions.  
 

 
Figure 5. Winner determination computation time of same size 
auctions. 

Different instances of the same size auctions differ 
greatly in search trees which results in different 
computation times. 
 

4.3.3 Experiment 3: Time complexity of the same 

auction 

We analyzed the computation time of the same auction. 
We discovered there are some differences because of 
other processes that ran on the computer. That holds 
true for both distributions. However, we believe that the 

size of exhibited variations does not compromise 
experimental measurements presented in this paper.   
 

 
Figure 6. Winner determination computation time of the same 
auction 

4.3.4 Experiment 4: Space complexity  

We discovered that memory usage is linear with the 
increment of bids (Figure 7) and nonlinear with the 
increment of goods for both distributions (Figure 8).  
 

 
 
Figure 7. Memory usage of winner determination, internal 

distribution L6. 
 
We also discovered that the memory usage is 
independent of distribution for auctions with same 
number of bids. Memory usage does depend on 
distribution for auctions with same number of goods.   
 

 
 
Figure 8. Memory usage of winner determination, internal 

distribution L6. 
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The increment of memory usage with number of bids 
and with the number of goods is steady. To be honest, 
we do not have any good explanation of course of the 
memory usage after the number of goods value 4500.   
 

4.3.5 Experiment 5: Space complexity of same size 

auctions 

We analyzed the memory usage for computation of 
same size auctions. Similar to the computation time, 
memory usage depends on search trees. Results are 
shown in Figure 9. That holds true for both 
distributions. However, the variations observed are 
lower comparing to one of computation time. 
 

 
Figure 9. Memory usage of winner determination for same 
size auctions, internal distribution L6. 
 

4.3.6 Experiment 6: Space complexity of same size 

auction 

We analyzed the memory usage for the winner 
determination of the same auction. Results are shown on 
Figure 10. We did not discover any significant 
deviation. That holds true for both distributions.  
 

 
Figure 10. Memory usage of winner determination for the 
same auction, internal distribution L6. 

4.4 Discussion on results 

We discovered that the computation time and memory 
usage for winner determination of combinatorial 
auctions depends on the distribution of prices and bids 
in auctions. The computation time for winner 
determination significantly depends on the number of 
bids and goods, but the computation time for the 

distribution L6 depends more on the number of goods 
than bids. The number of goods in a combinatorial 
auction that can be solved on a personal computer is 
about the same for both distributions. The number of 
bids in a combinatorial auction that can be solved on 
personal computer also depends on the distribution. We 
also discovered high deviation in the winner 
determination problem solution of same size auctions.  
 The memory usage for winner determination of 
combinatorial auction depends on the number of goods 
and bids. It grows nonlinearly with the increase of 
goods and approximately linearly with the increase of 
bids. It grows with the increase of goods independently 
of distribution. There is also high deviation in the 
memory usage of winner determination of same size 
auction.  
 

5 CONCLUSION AND FURTHER WORK 

We analyzed the computation time and memory usage 
for winner determination of combinatorial auctions for 
two different distributions. We also analyzed the 
deviation in computation time and memory usage for 
same size auctions and the same auction. We had some 
problems while testing. We could not use some of the 
more interesting distributions, because CATS 
encountered problems with the generation of 
combinatorial auctions. This remains our goal for the 
future. We would also like to determine if computation 
time depends more on the distribution of prices or the 
distribution of goods.  
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