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Abstract. Design analysis and evaluation are an important step in the embedded system design process.
The accuracy of the evaluation results greatly affects the decisions in the design process. The paper presents
ASyMod, a tool to be used in evaluation of embedded systems in the early steps of the design process. The tool
enables graphical composition of the system models. The embedded system models are composed of hardware

and software components described on an abstract system level. The abstract models can be quickly assembled

and evaluated according to the hardware usage and task execution timing. We will present an example of
embedded system modelling and evaluation in the ASyMod tool. We will show that the abstract-model analysis

results match with measurements on a real embedded system.
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1 INTRODUCTION

Embedded systems are electronic systems that perform a
specific function like control, regulation or data process-
ing. Contemporary embedded systems are heterogeneous
systems, consisting of multiple processing units con-
nected with communication busses. A typical embedded
system performs a number of dedicated functions that
can be divided into tasks. Some tasks are handled
by dedicated hardware components, an example is a
communication interface circuit, but usually most of
the tasks are implemented as a program running on a
microprocessor [1]. An operating system is used for
scheduling the tasks on the processor, seemingly making
them run in parallel from the systems point of view.
Designing contemporary embedded systems poses a
challenge due to their increasing complexity. New design
methodologies are required in order to meet the demands
for high quality, low price and quick time-to-market. The
designers need modelling tools that enable an early eval-
uation of the embedded system which will effectively
guide the decisions in the design process. They need
data about task execution times and hardware resource
usages in the early stages of the design process [2].
Many embedded systems are reactive systems with strict
timing requirements that have to be taken into account.
For example, during design of an embedded control
system, data sampling and actuation timing periods are
set. Deviations from these periods lead to worsening of
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regulation performances.

System Level Design (SLD) methodologies rely on
modelling as one of the basic concepts [3], [4]. The
design process starts with development of the high-level
system model [5], which has no details about imple-
mentation. The high level or abstract model is evaluated
according to requirements stated in the specification.
If the specification requirements are not fulfilled, the
model has to be changed in the design space exploration
phase [6]. When the requirements are met, the model
is refined with further details and re-evaluated. The
model refinement and evaluation cycle is repeated until
it contains all the implementation information.

The paper presents a tool for modelling and evaluation
of embedded systems on a very high abstraction level.
First, we define the basic components of the system
model, then the design composition and evaluation is
explained. The design process is further revealed in a
case study. In the results section, we show a good match
between the model evaluation and measurements on a
real embedded system.

2 ABSTRACT SYSTEM MODEL

Our modelling methodology allows for hardware and
software co-design [7]. It is based on the most com-
monly used set of abstractions that defines the minimal
amount of data needed for modelling and evaluation
of embedded reactive systems with distributed data
processing. Reactive systems rely on a deterministic task
execution times, which depend on the speed and usage
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of hardware execution units, for example processors, and
communication delays.

The embedded system design process starts with the
specification and set of known algorithms that will be
implemented either in hardware, software or a mixture of
both. The specification influences the design decisions.
Using algorithms already implemented in a software
is only one of the possible implementations and not
necessarily optimal for the system being designed.

The system model can be divided according to the
Y graph concept [8] into functionality or algorithm
description, architecture or hardware description and
mapping.

In the functionality model, we define the system
behaviour as a network of abstract tasks connected by
their data dependencies. The abstract task is described as
a sequence of high-level data processing operations and
data transfer requests. The abstract architecture model
contains a set of execution units and communication
units. Execution units provide resources for data pro-
cessing. In the abstract model, only an estimation of the
execution delay for a specific operations is provided.
Communication units are used for modelling access to
the system buses. Several execution units can share one
communication unit, but only one execution unit at a
time is able to use the communication unit while the
others are in a waiting state.

The tasks are assigned to the execution units in the
mapping model. The purpose of mapping is to specify
which execution unit will serve the requests of a specific
task. The task model can be seen as a sequence of data
processing and transfer requests. The requests are served
according to the availability of a particular execution unit
and corresponding communication unit during the model
simulation phase.

The execution units are implemented as dedicated
hardware components or general-purpose processing
components, for example microprocessors. Dedicated
components usually process only a small number of
requests, typically only one operation. In such a case the
assigned task has an exclusive access to the component.
On the other hand, general processing components serve
several tasks handled by the operating system scheduler.
The abstract model of the general processing component
includes task scheduling. We define several states for the
task:

o Wait - the task is waiting for a trigger event or
communication unit,

« Ready - the task is ready for execution, and

o Run - the task is currenty being executed.

The scheduler periodically checks a list of tasks and
selects the one ready for execution. A selected task
changes its state from Ready to Run and starts execution
of operations. Selection depends on the task attributes
and the scheduling algorithm. When the task is finished,
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the scheduler removes it from the list. Our scheduler
model can implement several typical scheduling al-
gorithms used in embedded systems [9]: First-Come
First-Served (FCFS), Rate Monotonic (RM), Deadline
Monotonic (DM) and Earliest Deadline First (EDF). The
designer can also choose between non-preemptive and
preemptive scheduling, where the high priority tasks
interrupt execution of the lower priority tasks.

3 ABSTRACT-SYSTEM MODELING ToOOL -
ASYMOD

We designed a new tool for embedded system modelling
and evaluation on a high abstraction level. The tool
called ASyMod (Abstract System Modelling) is com-
posed of a graphical modeling environment with support
libraries, an interpreter and model evaluation scripts.

Specification
of the embedded

system
Tool ASyMod
Graphical
component Systelm <
library modeling
data base
interpreter Interpreting
graf-2-text” graphical
’ model
v

v

. Library of
Library of functional Compiling c
architectural templates model S
templates (ANS| C++) g
ES
Analysis )
support library ]
©
o
SystemC libraries a
Execute 5
simulation 2
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compiler model

Satisfied ? NO
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Final model

Figure 1. Embedded system modelling in the developed
ASyMod tool

Fig. 1 presents the ASyMod components and embed-
ded system modelling flow. The model is built using
the existing components in the graphical environment.
The graphical modelling environment is based on a
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Figure 2. Model evaluation in the ASyMod flow: a) graphical modelling, b) simulation traces, c) resouce-usage statistics and

d) task-state graphs

configurable toolkit GME (Generic Modeling Environ-
ment) [10]. We provide a metamodel with all syntactical,
semantic and presentation information for the abstract
system models. This metamodel is used to configure
GME for a specific embedded systems domain.

Graphical modelling takes place in three aspects:
architectue, functionality and mapping following the Y
graph methodology. In the first two aspects, the system
model components are defined. The designer can use
one of the existing library components or design a new
component and save it in the library for future use. The
components must conform to the modelling semantics.
The graphical environment guides the designer during
component and model creation and instantly checks the
design rules. In the mapping aspect, the designer con-
nects functional components with architectural execution
units.

After the graphical modelling phase, the system model
is converted using a system modelling language. An
interpreter takes the graphical model and component
properties and produces code in the system modelling
language SystemC. The code consists of the abstract
system model, the test bench and the simulation setup.
The setup defines the observed components, required
outputs, simulation length and time steps.

The next step is compilation of the code with a
standard ANSI C++ compiler producing an executable
file. By running the file, the simulation is performed,
and results are collected, as shown in Fig. 2. Simulation
results are presented as timing traces. Besides that, a
statistical report containing the usage of resources is
prepared. A script in MS-Excell can be used for a
graphical view of the observed tasks states.

The simulation traces are difficult to evaluate and
better system performance metrics can be obtained by
statistical interpretation of the traces. The ASyMod tool
generates a table report for each scheduled task. The
report provides relative portions of the total waiting,
ready, preempted and running time for the task. The
task running periods and their variations (jitter) are
important for performance evaluation of reactive systems
and are collected, interpreted and presented in graphs.
Our simulation results will be shown in the case study
section below.

The embedded system design is an iterative process. If
the initial model is not satisfactory, the designer should
change and re-evaluate the model. This process of the
design space exploration is repeated, until the evaluation
results satisfy the specification requirements.
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4 EMBEDDED SYSTEM MODELLING CASE
STUDY

System level modelling in the ASyMod tool will be pre-
sented on an example of a motor speed-control system.
Functionality of the system is based on the discrete PI
control algorithm. The algorithm periodically executes
three data-dependent tasks: reading speed sensor (Get),
computing response (PI) and setting the actuator (Set),
as presented in Fig. 3. The embedded system is often
responsible for other tasks which are modelled by two
periodic tasks: T2 and T3. These tasks are not directly
data-dependent on the control task, but they share the
same execution unit (processor) and communication bus.
Due to resource sharing, we expect some additional de-
lay which disturbs the control operation and the purpose
of modelling is to evaluate the delay before the actual
implementation.

Resource sharing is handled by the operating system
with a task scheduler. The scheduler periodically runs
three scheduled tasks: Opl, Op2 and Op3, with trig-
ger periods defined in components PEG1, PEG2 and
PEG3, as shown in Fig. 3. Among different possible
scheduling algorithms, we select the rate monotonic
preemptive scheduler.

Op1 ”
L
PEG
E E E
Get Pl Set

PEG1
Op2 Op3
L4 L4
PEG L PEG L
PEG2 T2 PEG3 T3

Figure 3. Functional aspect of the developed embedded control
system in ASyMod

The architecture model consists of one execution unit
Exec_ARM7 and two communication units: Mem and
Comm. The first two units present the processor with a
local memory. The unit Comm is a model of a serial
communication bus between the processing unit and
motor speed sensor. Fig. 4 presents the mapping aspect
of the ASyMod embedded system model.

A snippet of the SystemC code is given in Fig. 5. The
code describes tasks Get and PI and a corresponding
part of the execution unit ARM?7. Description of the task
Get consists of a request for a two-byte data transfer
from the communication unit Comm.

The model requires estimation of the data transfer
delay on the bus and the task execution delay on the
processor. Estimations can be obtained by a low-level
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Figure 4. Mapping aspect of the model in ASyMod

// Abstract task description in ASyMod
void Get::MainThread ()

{

m_pExecUnit->GetData (this, 2,
}

&Comm, -1);

void PI::MainThread()

{
m_pExecUnit->Calc(this,
}

563);

// ARM7 library services
void Exec_ARM7::Calc(int n)
{
for
{
Wait (this,
}

(int 1=0; i<563; i++)

sc_time (64, SC_NS));

Figure 5. High-level model in SystemC

simulator or measured on the implemented system. Once
the estimations for a certain technology are collected,
they can be saved in the library for future use. The
discrete control algorithm delay estimate is 36 ps or
563 machine instructions. Since the model assumes
preemptive execution, the task delay is modelled with a
loop that can be interrupted at any time by the scheduler.
The unit delay in a loop of 64 ns is an average delay of
the machine instructions.

5 RESULTS

In Fig. 6 we define some characteristic times of the
periodic task execution:
1) Ty: time between the k-th run and (k 4 1)-th run
of the task
2) trig2endy: time between trigger and end of task
execution,
3) trig2starty: delay from the request for execution
(trigger) to the actual run state,
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Figure 6. Characteristic times for periodic task execution.

4) start2end;: cumulative time of task execution
including all interruption.

Characteristic times are sampled during model sim-
ulation, statistically processed and presented in a his-
togram.

Fig. 7 shows normalized histograms of two character-
istic times for the task Op1. The sample population con-
tains 313 measurements divided into 22 columns. The
scheduled task Opl has the lowest priority. The delay
from the trigger to the actual running state trig2start
has the most spread distribution. The probability of an
immediate execution of this task after the trigger is
slightly over p; = 0.2, so it is very likely that it will
need to wait for the higher-priority scheduled tasks to
finish.
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Figure 7. Histograms of characteristic times for the task Op1

To allow a comparison, we measure the characteristic
times on the implemented system. The code is modi-
fied with test instructions for signalling the task state.
When a task starts running, a logic 1 is outputed on a

\
s | \

OSCtrig2start,

OSCstart2end,
OSCtrig2end,

OSCT,

Figure 8. Oscilloscope measurements of the characteristic
timings.

microcontroller port. The port changes to 0 when the
task is finished. The measurements are sampled with a
digital storage oscilloscope Lecroy WaveRunner and a
reference signal generator. Functions of the oscilloscope
provide continuous data sampling, processing and dis-
playing the results in histograms presented in Fig. 8.

The measured pulse widths OSCstart2end; are
equivalent to the characteristic time start2end. OSCTy,
is the measured time between the rising edges on the port
and is equivalent to the period 7. The reference signal
generator is used for measurement of characteristic times
trig2start and trig2end. The generator is set to the
frequency corresponding to the particular task period.
The rising edge is used for triggering the oscilloscope
that samples the logic value on the microcontroller
port. The measured delay O.SCtrig2start; between the
trigger and the rising edge of the port signal is correlated
to the time trig2start. Similarly OSCtrig2end, is the
delay between the trigger and the falling edge of the
port signal correlated to the time trig2end.

The measurement of OSCtrig2start and
OSCtrig2end has an unknown phase delay between
the actual task trigger condition and the generated
trigger signal. This provides an additional time
shift according to the actual timings trig2start and
trig2end that cannot be systematically corrected with
this measurement method. But the time shift does not
change the shape of the measured histogram (column
heights and relative column distances), the impact is
only in the horizontal shift. Each column is equally
shifted for the phase delay value. Fig. 9 presents the
measured histogram of timing OSCtrig2end and
OSCtrig2start. A quick comparison shows similarity
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with the simulated results from Fig. 7.
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Figure 9. Measured histograms characteristic times

OSCtrig2start and OSCtrig2end for the task OPI.

The histograms can be quantitatively compared by the
method of normalized histogram interception. The simi-
larity between the histograms is defined as the intersect
area of two normalized histograms. In the histograms
with B bins, minimum probability for each pair of bins
is summed up:

B
SIM = min(pi,pri) - o))

i=1
The result SIM lies between O and 1. If the value is
closer to 1, the histograms are more similar. Comparison
of simulated t¢rig2end and measured OSCtrig2end
gives SIM = 0.97, and comparison of trig2start and

OSCtrig2start gives SIM = 0.99.

6 CONCLUSION

The ASyMod tool offers a good base for further research
in the area of the system design. The results of our
abstract-model simulation will be useful in our future
exploring of the design space and of the options for
enabling system model refinement.

Currently, the developed tool supports modeling of
the delay and resource usage, irrespective of the actual
data dependency on the delay. In our next refinement
stage, the data dependency can also be included. The
operating system model can be improved by additional
information about the delay for the context switch as
well.

The communication units currently use a mutex con-
cept, where the unit is either available or busy and the
access delay is modeled as part of the functionality. The
communication refinement could use a model describing
the communication channel with a particular defined
bandwidth. The functional unit would request a service
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from the channel and computation of the delay would be
performed in the channel model. By doing so, separation
between embedded system functionality and resources
provided by the architectural components would be
improved.
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