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Abstract. Spatial normalization is an image registration method to coregister images to a previously defined 

template. It simplifies the analysis of images taken on the same patient or different patients, at different time points 

or captured with different imaging modalities. The paper presents a spatial normalization method for the human 

hand, together with a corresponding template of 21 manually and 242 automatically selected anatomical landmarks.  

Using landmarks and extrapolation technique, the method coregisters images to the template defined as an average 

position of individual landmarks on all images.  The method is tested on 12 healthy human hands by evaluating the 

mismatch between the ground truth defined with ultrasound-determined landmarks and the ones defined visually 

using RGB images. The mean registration uncertainty over the hands was 1.4 ± 1.3 mm. The method utility is 

demonstrated by being successfully applied to 29 arthritic hands with a pathological finger and hand deformation. 

Spatial normalization of the hand images enables a pixel-wise analysis of multiple hand images of a same patient 

taken at different time points with the same modality, as well as images of the same patient taken with a different 

modality and inter-patient comparison. 
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Prostorska normalizacija optičnih slik človeške roke 

 

Prostorska normalizacija je metoda registracije slik za 

koregistracijo slik na predhodno definirano predlogo. 

Poenostavlja analizo slik, posnetih z istim bolnikom ali 

različnimi bolniki v različnih časovnih točkah ali z različnimi 

načini slikanja. Članek predstavlja metodo prostorske 

normalizacije za človeško roko skupaj z ustrezno predlogo 21 

ročno in 242 samodejno izbranih anatomskih oznak. Z uporabo 

oznak in tehnike ekstrapolacije metoda koregistrira slike na 

predlogo, definirano kot povprečni položaj posameznih oznak 

na vseh slikah. Metoda je preizkušena na 12 zdravih človeških 

rokah z vrednotenjem neujemanja med pravimi pozicijami 

oznak, določenimi z ultrazvokom, in tistimi, ki so vizualno 

definirane s slikami RGB. Povprečna registracijska negotovost 

na rokah je bila 1,4 ± 1,3 mm. Uporabnost metode je dokazana 

z uspešno uporabo na 29 artritičnih rokah s patološko 

deformacijo prsta in roke. Prostorska normalizacija slik rok 

omogoča analizo na nivoju slikovnih elementov za več slik rok 

istega bolnika, posnetih ob različnih časovnih točkah z isto 

modalnostjo, kot tudi slike istega pacienta, posnete z drugačno 

modalnostjo, in primerjavo med bolniki. 

 

1 INTRODUCTION 

Optical imaging of the human skin is of great importance 

in the detection of various pathological conditions. It is 

useful in a variety of medical fields with applications 

including the monitoring and diagnosis of diseases, such 

as diabetic ulcer formation, melanoma, and other 

malignancies, as well as wound healing control [1]. 

Spectral images of the skin contain data about spatial 

distributions and concentrations of tissue chromophores, 

such as oxy- and deoxyhemoglobin, melanin, bilirubin, 

and carotene [2,3]. The determined tissue properties are 

visualized as images, in which the enhanced features 

appear in an arbitrary color [4].  

 Many optical imaging techniques can be used for 

imaging human hands. Multispectral imaging of human 

hands focuses mostly on inflammatory and immunologic 

disorders that exhibit a subtle color appearance change 

like scleroderma and dermatomyositis [5]. Near-infrared 

(NIR) and infrared (IR) images were previously used for 

visualization of the veins network and its patterns [6]. 

The method was mainly used for biometric purposes, 

since the patterns are distinct for each person  [7,8].  

 Most of the recent studies involving human hands 

imaging are interested in the detection of rheumatoid 

arthritis (RA) and psoriatic arthritis (PSA). RA and PSA 

are inflammatory diseases of one or more joints. Arthritis 

has several phases and leads to deformation and 

destruction of the affected joints. It has a great impact on 

the patients’ quality of life, therefore an early detection is 

crucial [9]. Among the methods used for imaging human 
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hands to detect arthritis are hyperspectral [10]  and IR 

imaging [11]. 

 To ease the analysis of images of the same patient at 

different time points, possibly including different 

modalities, or to analyze images of different patients in 

order to improve automatic diagnostics, spatial 

normalization is used. It is a method of registering an 

image to a standard template which is very common in 

neuroimaging [12,13]. Ideally, it eliminates the 

intersubject anatomical variability within images and 

makes a direct comparison possible. A template refers to 

a representative image of studied anatomical features in 

a selected coordinate space, which then provides a target 

to which individual images are aligned. In neurology, it 

is used to create a universal atlas for the study of various 

diseases (e.g. PET imaging of brains of patients with 

dementia). The two most used atlases in neurology are 

the Talairach space and the Montreal Neurological 

Institute spaces [14]. 

 Following the lead of neurology, we propose a semi-

automatic registration method to enable an anatomically 

meaningful hand comparison between different subjects. 

It uses a manual and automatic selection of anatomical 

landmarks of each hand and an extrapolation technique 

to wrap the hand to a previously defined template. The 

method is the first standardized hand atlas coordinate 

system. It allows reporting hand-imaging results in a 

standard coordinate system to identify image differences 

between different groups of subjects on a pixel level, 

improve the statistical power of analyses and generalize 

the findings to the population level.  

 

2 METHODS 

2.1 Imaging system 

The imaging system used in the study involves an RGB 

camera (Flir, Blackfly BFLY-U3-23S6C) and a custom 

LED illumination system. The camera is combined with 

a 12 mm objective (F/1.4 2/3”) and a linear polarizer. The 

field of the view is 27 cm × 17 cm with a resolution of 

1920 × 1200 pixels. The images are captured at an 

integration time of 100 ms.  To improve the homogeneity 

of illumination, LED light strips with diffusers are fixed 

to the sides of the imaging cage (Figure 1) and directed 

to the object plane. In order to minimize the specular 

reflection from the object, linear polarizers are mounted 

in front of the camera and illuminated in the cross-

polarized configuration (90° angle between the camera 

and LED-strips polarizers). The software for capturing 

and aligning images is written in Matlab (2020a, 

MathWorks), with an addition of a Visual C++ and 

OpenCV library. The system is enclosed in a black cage 

to eliminate the stray light. 

 

 
 
Figure 1: Hand imaging system consisting of an RGB camera 

and LED illumination; the camera and illumination with 

polarizers are mounted in the cross-polarized configuration to 

capture the diffuse light.  

 

2.2 Ultrasonographic evaluation of the joints 

For the ultrasonographic (US) assessment of the joints, a 

Philips Epiq 7 with a 5–18 MHz multi-frequency linear 

probe is used. A certified European League Against 

Rheumatism (EULAR) ultrasonographer (JO) performs 

an US assessment of healthy volunteers and arthritic 

patients. Firstly, the gray scale and power doppler 

(frequency of 8.0 MHz and pulse repetition frequency of 

400 Hz) US assessment of the MCP and PIP joints in a 

longitudinal dorsal aspect and with uniform settings in all 

arthritic patients is performed according to The Outcome 

Measures in Rheumatoid Arthritis Clinical Trials 

(OMERACT) Guidelines and scoring system [15,16]. 

Secondly, spatial locations of the middle of the 

metacarpophalangeal joint (MCP), proximal 

interphalangeal joint (PIP) and distal interphalangeal 

joint (DIP) are determined in healthy volunteers. 

 

2.3 Imaging protocol 

Human hands imaging is focusing on three groups of 

joints – the metacarpophalangeal (MCP), proximal 

interphalangeal (PIP) and distal interphalangeal joint 

(DIP). Imaging involves 12 healthy volunteers aged 25 – 

40 with fair skin (Fitzpatrick types I-II), both female (8) 

and male (4) subjects.  

 First, an experienced rheumatologist examines both 

hands of each volunteer by US. He marks the location of 

the DIP, PIP center and MCP joint space (Figure 2) with 

an alcohol-based marker. The marking serves as a 

reference point for the analysis of the RGB images. After 

the US imaging, the hands are imaged with an RGB 

camera. Subjects put their hands into the imaging cage on 

the support plate. The operator adjusts the hands to be as 

flat as possible with the fingers apart from each other and 

the tip of the middle finger located on a previously 

defined position. This makes the hands roughly aligned 

and facilitats a spatial normalization. 
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Figure 2: a) An US image of the index finger PIP joint of a 33 

year old male volunteer. b) The corresponding RGB image of 

the volunteer hand with the marked MCP, PIP, and DIP joint 

spaces are based on the US imaging.  

 

Demonstration of the method applicability for patients 

with joint inflammation is made on 29 patients (23 RA 

and six PSA, five male and 24 female, age of 30-80). 

Their hands are imaged by on RGB camera and the 

recorded images are included in the study.  

 The procedure is performed according to the 

Declaration of Helsinki. The applied experimental 

protocol is approved by the Slovenian National Medical 

Ethics Committee. An informed consent was obtained 

from the healthy subjects included in this study. 

 

2.4 Coregistration method  

The RGB images are preprocessed by removing the 

background with a conversion of the RGB to the HSV 

(hue, saturation, brightness) color space. The hue 

thresholds and the saturation and brightness values are 

determined by extracting the binary mask of the hand 

used for the background removal. The mask is applied to 

the original RGB image and the pixels at the background 

locations are set to zero. 

 The operator manually selected 21 most obvious hand 

landmarks. They include the DIP, PIP and MCP joints of 

the four large fingers, interphalangeal (IP) joint of the 

thumb, fingertips (FT) wrinkle on the palmar side of the 

thumb and carpometacarpal joints [17] (Figure 3, Step 1, 

blue crosses).  

 

 
 
Figure 3: Landmarks manually selected by the operator (Step 

1). Landmarks automatically selected (Step 2-4). The red marks 

present landmarks already selected in the previous steps. 

 

The algorithm assumes a straight line between the joint 

centers of DIP/PIP, MCP/PIP, DIP/FT and adjacent 

MCPs (step 2, Figure 3). It calculates the middle points 

on the lines between two adjacent joints (X, step 2, Figure 

3) and marks them as new landmarks. The perpendicular 

lines crossing the longitudinal lines in these points are 

calculated. The edge points on the fingers are extracted 

(Y, Step 2, Figure 3). Additional 56 points are thus 

obtained. The points towards the wrist of the hand are 

also selected (Step 3, Figure 3). The algorithm utilizes the 

line connecting MCPs of the index and pinkie finger. It 

calculates the middle point (Z on step 3, Figure 3) and 

finds a parallel line crossing the IP landmark. It defines a 

new point on the edge of the hand (W, step 3, Figure 3). 

Between the adjacent edge points, additional equidistant 

boundary points are automatically selected (step 4, 

Figure 3). Overall, 21 manual and 242 automatic points 

are selected for each hand. 

 The landmarks determined on the healthy hands are 

used to create the hand template. The average position of 

individual landmarks on all images is calculated and used 

as a reference to which all images are registered. A hand 

template is a universal human hand outline determined 

from a healthy hands dataset. Our calculated template is 

used on both the healthy and arthritic hand (Figure 4). 

 
Figure 4: Outline of all hands (gray lines) and outline of an 

average hand (black lines). 

 

To coregister a hand to the calculated template, 

displacements of pixels in the X and Y direction between 

the template and the hand landmarks are calculated using 

the equations: 

, , ,

, , ,

x i x i x i

y i y i y i

V TL HL

V TL HL

 

 
 , (0) 

where Vx,i , TLx,i , HLx,i , Vy,i , TLy,i  and HLy,i are the i-th 

displacement vector, i-th template landmark and i-th 

hand landmark in the X and Y direction, respectively. 

Using the displacement vectors for all the landmarks, two 

displacement matrices in the size of the initial RGB 

image (1920 × 1200) are created, one for the X and the 

other for the Y direction. The matrices are created by a 

2D extrapolation method designed to extrapolate the 

missing values on the equidistant grid using the landmark 

position values. The missing values are found by solving 

a partial differential equation with a finite difference 

method, taking into account pixels with a valid value. 

Method is implemented in Matlab [18]. The used version 
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of the method (number 4) is based on a partial differential 

equation assuming that each pixel is elastically connected 

to its closest neighbors horizontally and vertically.  

 To obtain coregistered image S, extrapolated 

displacement matrices Vx and Vy are applied to all the 

pixels of the original hand image R using the equation: 

     , , , ,x yS i j R i V i j j V i j      . (2) 

where i and j are the matrix coordinate indices. 

2.5 Coregistration validation 

To estimate the registration uncertainty, images are 

registered to the same template twice. Firstly, the 

registration is performed by using only the landmarks 

selected manually on the RGB images (unmarked 

images) by a blind operator with no previous knowledge 

about the joint space location. Secondly, the registration 

is performed using the landmarks determined by a 

rheumatologist using US (marked images). 

 The displacement matrices for the marked and 

unmarked images are subtracted to estimate the 

registration error. The mean and standard deviation of the 

registration error indicate the registration uncertainty. 

The scheme of the coregistration method validation is 

presented in Figure 5. 

 

 
Figure 5: Scheme of the registration procedure of the unmarked 

and marked image databases to the hand template. Both 

databases are coregistered to the same template. The difference 

between them is calculated. It is presented as a deviation of the 

circles from the template landmark positions. 

 

To create the unmarked images, the original images are 

modified by exchanging the pixels marked by the 

rheumatologist with the values interpolated from the 

nearby clear pixels. This results in an unmarked image 

enabling an unbiased landmark selection by a blind 

operator. 

 

3 RESULTS 

3.1 Calculation of the hand template 

The marked hand images are used for the creation of the 

hand template, its outline is drawn with a solid line 

(Figure 6). Each landmark has 12 different locations 

representing 12 subjects. The black dots represent the 

selected landmarks and the ellipses indicate a standard 

deviation of 1σ over all hands. Both are presented in a 

standard template space. The standard deviation ellipses 

are larger for MCPs and for landmarks on the thumb area 

due to the greater positioning uncertainty of landmarks in 

those regions. The dispersion of the landmark differences 

on all fingers is quite similar for most landmark positions. 

The smallest deviation occurres on the middle finger 

whose positioning is used for a rough alignment during 

imaging, while the largest is on the left side of the wrist. 

The MCP dispersion increases with the distance from the 

middle finger.  

 

 
 
Figure 6: Template points are marked. The manually selected 

ones have points (+) and a standard deviation of 1σ (elipse). 

 

3.2 Coregistration of healthy hands 

The unmarked and marked images of healthy hands are 

coregistered to the hand template. Figure 7 shaow the 

differences between the displacement matrices averaged 

over all the subjects in the X and Y direction. The 

absolute displacement is calculated using the 

Pythagorean theorem on the displacement in the X and Y 

direction. The difference between the absolute 

displacements is the largest at the areas where the 

landmarks density is the lowest.   

 

 
Figure 7: (a,b) Difference between the displacement matrices 

between the marked and unmarked images in the x and y 

direction. (c) The absolute displacement differences are 

calculated by the Pythagorean theorem. 

 

The minimal differences are in the X direction. This 

means that the US-based and visually-selected landmarks 

are well aligned in the X direction, consequently 
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resulting in well aligned automatically-selected points. A 

blind operator markes the joints in the X direction 

similarly as the rheumatologist. In the Y direction, the 

displacement difference is around 1 mm around the 

fingers and 2-3 mm around the back of the hand. This 

indicates that the joint cavities on the unmarked images 

are selected a few milimeters too far in the proximal 

direction. The largest absolute displacement differences 

are between MCP4 and the wrist and in the middle of the 

back hand.  

 The averaged standard deviation (SD) of the 

differences and maximum difference (MD) over all 12 

subjects is presented in Figure 8. The standard deviation 

is low in the areas with a higher density of the landmark 

points (e.g. the right and the middle part of the hand) and 

high in the areas with a lower density of the landmarks. 

 

 
Figure 8: Standard deviation and the maximum difference 

between the displacements of the marked and unmarked 

images. 

 

The results show that the standard deviation on the finger 

area is below 0.7 mm in the X direction and below 1.5 

mm in the Y direction.  For a more detalied anaylsis, 

differences between the displacement matrices and SD 

averaged over all the subjects are calculated for each 

finger (Table 1). 

 
Table 1: The mean values and standard deviations for each 

finger of the displacement differences between the marked and 

unmarked images. 

 Thumb 
Index 

finger 

Middle 

finger 

Ring 

finger 

Little 

finger 

Mean X-

axis 
difference 

[mm] 

-0.04± 

0.23 

-0.13± 

0.27 

-0.07± 

0.21 

-0.13± 

0.28 

-0.14± 

0.35 

Mean Y-

axis 
difference 

[mm] 

0.71± 

1.1 

-0.10± 

0.83 

-0.08± 

0.70 

0.57± 

0.84 

0.70±  

0.87 

 

As for the fingers, the index, middle and ring finger have 

the lowest displacement differences (Table 1). The best 

results are observed with the middle finger while the 

worst with the thumb and small finger. Also, the largest 

deviations are observed on the thumb and little finger. 

Since the most important part of our images are finger 

joints, all parameters are calculated for individual joints, 

except for the thumb. The thumb is neglected due to its 

rotated position and the complexity of defining the area 

of the joints.  The results indicate the largest 

discrepancies on MCP4 where the mean Y value is up to 

2 mm. The blind operator usually marks the MCP joints 

a few millimeters in the direction towards the wrist, while 

the DIP joints are usually marked a few millimeters in the 

direction towards the fingertips. The lowest 

discrepancies are noticed on PIP and DIP of the middle 

finger.  

 The average hand of healthy volunteers is calculated 

before and after the coregistration (Figure 9). The 

deviation of the finger areas of different patients is much 

smaller after the registration. 

 

 
Figure 9: Average hand before a) and after b) the coregistration. 

 

3.3 Arthritic hands 

The spatial normalization method is evaluated on the 

images of 29 patients with RA and PSA. Besides the 

normal anatomical differences due to the age, size, and 

prior injuries, the joint swellings and deformations as a 

consequence of the disease are also present.  Stages of the 

patients' disease are very different, which resultes in a 

variety of hand deformations (Figure 10a). Also, every 

patient has a different combination of affected fingers. 

Figure 10a shows examples of ten unregistered hands. 

The arthritic hands have no joints marked, therefore the 

manual landmarks are chosen based on the RGB image 

by the operator. The remaining landmarks are 

automatically determined in the same way as for the 

healthy hands. Subsequently, the images are coregistered 

to the previously created template. The spatially 

normalized results are presented in Figure 10b. The 

registered hands have less pronounced deformations. The 

largest difference can be observed on the hands 1, 5, 9 

and 10.  
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Figure 10: (a) Examples of the unregistered hands affected by 

arthritis. Various arthritis symptoms can be noticed. Patients 1, 

5 and 10 have a severe deformation of the fingers (white 

arrows). On patient 3, 5 and 9, an inflamation of the fingers can 

be detected. (b) Samples of the registered hands showing a 

reduced deformation of hands. 

 

The average hand images of the registered and 

unregistered hand images are calculated (Figure 11). The 

registered average hand shows clear edges and joint 

centers, indicating that the anatomical landmarks of 

different hands are coregistered with an adequate 

accuracy. 

 

 
Figure 11: Comparison of an average hand of nonregistered (a) 

and registered (b) hand images of patients with arthritis. 

 

3.4 A healthy and arthritic hands comparison 

To verify that the spatial normalization technique is able 

to map diseased hands into a template created from 

healthy hands, “average hands” of healthy subjects and 

patients are compared. A close examination of both 

average hands (Figures 9b and 10b) shows that they are 

visually almost identical, despite the two completely 

different image databases. The intersection of the two 

average hands is presented in Figure 12. The healthy and 

arthritic hands are presented by the green and purple 

colors, respectively, and the white color represents the 

intersection of both hands. The arthritic hands average 

has a greater smearing due to unusual deformations of the 

hand. However, a great majority of the hands match well. 

Following the above, the template based on the healthy 

hands images can also be used for a spatial normalization 

of the arthritic hands images. 

 

 
Figure 12: Comparison of the healthy and arthritic average hand 

images. The healthy and arthritic hands are presented by the 

green and purple colors, respectively. The white color 

represents the intersection of both hands.. 

4 DISCUSSION 

A spatial normalization method for optical images of 

human hands is present. The method involves a 

combination of manually and automatically selected 

anatomical landmarks to coregister the hand images to a 

pre-defined hand template. The registration is performed 

after a visual selection of the landmarks on an RGB 

image. The result of a spatial normalisation based on a 

manual selection of the landmarks was compared to the 

ground truth registration, where the landmarks are 

determined by a rheumatologist using US. 

 The lack of the landmark points between MCP4, wrist, 

and middle of the back hand results in many different 

extrapolation possibilities, which causes the largest 

displacements in that region (Figure 7). Larger SD 

regions are present around the MCP landmark and the 

right edge of the hand (Figure 8). To remove the SD peak 

values near MCPs, the landmarks on these positions are 

eliminated from the template. The results are not 

encouraging since the calculated average hand is very 

smeared.  

 The best coregistered joints are the DIP and PIP joints 

with an absolute displacement (AD) between 0.12 mm to 

0.7 mm. AD of the worst MCP4 joint is 2.1 mm. The 

selection of the PIP and DIP joints is easier due to the 

more prominent wrinkels. On MCPs, the skin is smoother 

and there is also a visible flexor digitorum superficialis 

which makes the selection of the joint cavity position 

even more difficult. Analyzing the results for each finger, 

the thumb and little finger have the worst mean value and 

SD due to their rotated position while putting the hand 

flat on the table. 

The method is tested on an arthritic hands. Compared to 

a healthy hand, the average arthritic hand appears 

somewhat more blurred (Figure 9 vs. Figure 10). The 

blurring occurs on soft tissue regions where it takes many 

different shapes especially in severely deformed hands. 

However, blurring is not prominent. Therefore, the 

template calculated from the healthy hand images can be 
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used also on the arthritic hands images. In our study, only 

the right hands are imaged. The algorithm can be easily 

translated for the use on the left hand employing a 

vertical flipping method. 

 In our research, coregistration of the RGB hand 

images is presented. However, the algorithm can be used 

also on any human hand images where joint centers and 

hand edges can be extracted, such as hyperspectral 

imaging and IR imaging.  We believe out method can be 

efficiently used  in diagnosing or treatment methods 

where a comparison between different patients or images 

of the same patent at different times are needed, and in 

an early detection of arthritis. Firstly, the method 

simplifies monitoring the drug efficiency, which is now 

performed by an experienced radiologist using US. 

Secondly, calculation of the hand template allows for an 

easily implemented automatic detection. Any image can 

be coregistered to the template with a defined coordinate 

system as they did in [19], in which each coordinate on 

the final image takes a specific anatomical position.  

 Reducing the displacement SD between the unmarked 

and marked fingers (Table 1), requires an altered hand 

positioning to be obtained by implementing an adequate 

algorithm, showing the patients how to position their 

hand before imaging. Such algorithm, developed and 

tested, will be presented in our future work. 

 The method can be further improved by adding 

machine learning (ML) as a landmark selection tool 

[20,21]. Using ML, the algorithm can be completely 

automatic and therefore very fast since there would be no 

operator needed to manually select the anatomical 

landmarks on every imaged hand. 

 Another improvement to be made concerns the natural 

anatomical variability of the human hand. As with 

pathological changes this variability may further 

increase, and using an appearance model as a template 

would be a better option. 

 Pathological changes along with manual labeling of 

landmark points are likely to introduce outlier points, 

which can severely degrade the template coregistration in 

cases when the landmarks are considered equally 

relevant. Implementing a matching methodology to 

consider potential outliers would increase the procedure 

robustness. 

 

5 CONCLUSIONS 

Spatial normalization is an image registration method to 

analyze images on a pixel level and captured at different 

time stamps on the same object or between individual 

subjects. The paper presents a human hand template for 

a spatial normalization of human hands. Using a semi-

automatic selection of anatomical landmarks, hands can 

be coregistered to a template, presenting well aligned 

human hands. The results of comparing the registration 

methods using landmarks defined with US to those 

defined only by examining the RGB images shows small 

deviations. The presented method is certainly applicable 

to hyperspectral imaging and also to IR when 

accompained by an RGB image for the registration. 

 Despite the very promising results, there are still some 

challenges to be solved. Though an untrained operater 

can select the points with an acceptable accuracy, the 

final goal should be a fully automatic selection of 

anatomical landmarks from images. As the hands of the 

arthritic patients may be highly deformed, solving that 

task would take quite an effort. Irrespective of the above 

deficiencies, the method can be regarded as a valuable 

improvement on the analysis of hand image, captured 

with optical imaging modalities. 
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