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Abstract. The paper presents algorithms that are based on a mathematical model of the induction motor and 

developed on the basis of the circuit theory and a projection method of solving the boundary value problem to 

obtain periodic dependencies of coordinates in a timeless domain and to calculate static characteristics. The 

steady-state periodic mode is described by a system of differential equations in the x and y coordinate axes. The 

magnetization characteristics are used to calculate the electromagnetic parameters of the motor corresponding 

sections of the magnetic circuit. The rotor winding is supplied in a form of a multi-layered structure formed by 

dividing the rotor bars by their height into several elements to take into account the current displacement. 
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Matematična simulacija stacionarnih načinov 

indukcijskega motorja pri ciklično spremenljivi 

obremenitvi 

V prispevku predstavljamo algoritme, ki temeljijo na 

matematičnem modelu indukcijskega motorja. Model smo 

razvili na podlagi teorije vezja in projekcijski metodi 

reševanja robnega problema, ki omogoča pridobivanje 

periodičnih odvisnosti koordinat v brezčasni domeni in 

izračun statičnih lastnosti. Stacionarni periodični način smo 

opisali s sistemom diferencialnih enačb v koordinatnih oseh x, 

y. Karakteristike magnetizacije se uporabljajo za izračun 

elektromagnetnih parametrov motorja, ki ustrezajo odsekom 

magnetnega vezja. Navitje rotorja je izvedeno v obliki 

večplastne strukture, ki je oblikovana z razdelitvijo palic 

rotorja po višini na več elementov, kar omogoča upoštevanje 

tokovnega premika. 

 

 

1 INTRODUCTION 

Induction electric drives occupy a leading place among 

a wide class of different electric drives. Their leading 

position is due to the simplicity of their design and 

reliability in the operation of induction motors (IM). In 

practice, technological processes are often characterized 

by periodic variations in the load torque value as a 

function of time or the rotor rotation angle. The industry 

does not produce only general purpose IMs to work in 

long-term operational modes but also special ones for 

operation in repeated short-term modes [1 – 3] where 

each cycle consists of a work time under a constant load 

and stop time. During operation, the motor's steady 

temperature is not reached, and the downtime is too 

short to cool down to the ambient temperature. Also, 

there are the so-called [4] intermittent modes with cycle 

times in which the duration of the operating time and 

pause is too short to achieve thermal equilibrium. 

 IM designed for operation in a long-term nominal 

mode can be used for electric drives with a periodically 

variable load while reducing the nominal power 

accordingly and checking the overload capacity 

according to the electromagnetic torque and thermal 

mode. For this purpose, need to have time dependencies 

for the currents and flux linkages during the period of a 

given loading cyclogram to determine the periodic 

dependencies of the electromagnetic torque, active and 

reactive powers, and other parameters. These 

dependencies can only be obtained on the basis of a 

mathematical model of the drive system with a high 

level of adequacy, which is adapted to the operating 

conditions. Mathematical modeling makes it possible to 

choose an adequate IM and also to develop a control 

system that ensures the reliable operation of the motor 

under the specified technological conditions and the 

highest possible operating efficiency of the electric 

drive as a whole. 

 

2 STATE OF THE PROBLEM 

By analyzing IM processes using classical equivalent 

schemes [1-4] it is possible to solve only certain 

problems, such as designing IM with a high probability 

to operate in a steady state at a constant load. At a 

periodically variable load, the stationary mode is 

dynamic. Therefore, to calculate the dynamic modes, 
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classical equivalent schemes are not suitable despite 

numerous proposal methods to improve the definition of 

the parameters of equivalent schemes in order to adapt 

them for each specific case. 

 In the case of a periodic law of the change of the load 

torque within a period, it can have an arbitrary 

character, including the pulse (repeated intermittently), 

which is characterized by a rapid change in the load 

parameters. The full change cycle (period MT ) consists 

of two parts: the duration of the load pulse and the 

pause. The law of the change of the load torque is 

determined by the technological process, and therefore 

its period is known. The task of the calculation is to 

determine the laws of the change of coordinates during 

the period. 

 Since under the condition of a periodic torque on the 

IM shaft, the processes are dynamic, the equations of 

the electromechanical balance of the IM contours 

cannot be reduced to the algebraic ones by transforming 

the coordinates. In any system of coordinate axes, these 

equations will be differential. Therefore, the task of 

analyzing the processes in an induction electric drive 

with periodic disturbances is to solve the DE system, 

which is nonlinear due to the saturation of the magnetic 

circuit and current displacement in the rotor bars. The 

coordinates of the stationary operational mode within 

the period will change according to the relevant laws. 

The task of obtaining these dependencies is the goal of 

the calculation. 

 The purpose of the work is to develop a 

mathematical model and algorithm for numerical 

analysis of the IM dynamic modes of the condition at a 

cyclically variable load. 

 

3 MATHEMATICAL MODEL 

An important issue of mathematical modeling dynamic 

IM modes is the choice of a suitable system of the 

coordinate axes to solve assure the model accuracy and 

adequate results at a minimal cost of the machine time. 

The IM mathematical model should take into account all 

the main factors affecting the calculation results, such as 

the magnetic circuit saturation and the current 

displacement in the rotor bars. To increase of the 

calculation accuracy requires a complex IM 

mathematical model and a fast program. As the number 

of calculations and the speed of the mathematical 

modeling program are not reciprocal, a compromise 

between them needs to be found. 

 In general, the IM processes can be analyzed with 

equations written in both physical and transformed 

coordinate axis.  Their most complete representation can 

be made in physical coordinates, which are widely used 

to calculate transient processes [5, 6]. At the same time, 

a transformation of coordinates in the majority of 

problems important for practice significantly simplifies 

DE which describes the dynamic IM mode, without 

reducing the result accuracy while increasing the 

calculation algorithm efficiency in terms of the number 

of calculations and the required computer memory. In 

particular, phase fluxes in orthogonal coordinates are 

functions of currents only and do not depend on the 

rotor of rotation angle [7]. 

 Calculation algorithms are based on an IM 

mathematical model in the x and y axes at a short-

circuited rotor winding developed on the bases of the 

theory of image vectors [7] and making it possible to 

consider processes based on the circuit theory. To 

analyze IM electromagnetic processes, using a 

mathematical model makes it possible to research 

processes taking into account the saturation and current 

displacement in the rotor winding bars with the smallest 

possible number of calculations. To take into account 

the saturation, the characteristics of magnetization at a 

main magnetic flux and scattering fluxes are used. To 

take into account current displacement, the rotor bars 

are divided by their height into k layers (2 5)k   this 

gives k windings on the rotor. They are covered by 

different magnetic scattering fluxes but have a common 

working magnetic flux. DE of the IM electrical 

equilibrium powered by a three-phase network with a 

symmetrical voltage system and operating in a variable 

load mode has the below form [5 – 7] 
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where sx and sy denote the belongingness of flow 

couplings (), currents (i), and active resistances (r) to 

the corresponding stator circuits; 1 , ,x xk , 1 , ,y yk  – 

rotor; mU  0 is the amplitude value and angular 

frequency of the phase voltage of the supply voltage of 

the stator winding; 0 (1 )s   is the angular speed of 

the rotor rotation expressed in electric radians per 

second; s is the slip. 

 The DE system (1) is supplemented to the full system 

by the equation for flux linkages of circuits. They are 

determined based on the use of magnetization curves by 

main magnetic flux µ and winding dissipation currents 

s stator and r rotor 
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  µ=µ(iµ),  s=s(is),  r=r(ir) 
 

where: 

     
22

sx rx sy ryi i i i i     ; 

        
2 2

s sx syi i i  ;               
2 2

r rx ryi i i  . 

 

 The currents of the rotor loops are defined as a sum 

of the currents of the k elements of the rotor bar. 

        1 ...rx r x rkxi i i   ;       1 ...ry r y rkyi i i   . 

 The dynamics of the rotor is described by the 

equation 

   м
e c

d
J M M t

dt


  , (2) 

where p0 is the number of the pole pairs; J is the total 

torque of the inertia of the moving parts of the electric 

drive reduced to the IM shaft;    c c MM t M t T  is 

the loading diagram of the mechanism displaying the 

dependence on time t of the loading torque within the 

period MT  cycle; eM is an electromagnetic torque of 

the motor 
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 Let's move on from the angular velocity in equation 

(2)  to slip s. As a result, we get 
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 In a steady state mode at a periodic load torque 

variation of the flux linkage, the currents, of the rotor 

rotation speed, IM electromagnetic torque, etc., vary 

according to the periodic law. By calculating the 

periodic mode, the periodic dependencies and 

consequently, the average and root-mean-square values 

are determined. 

 To shorten the presentation of the algorithm to 

calculate the steady dynamic mode, the DE system 

consisting of equations (1) and (3) is written the form of  

the below vector equation 
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xy , xyi  – vectors of flux linkages and circuit currents; 
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 The solution of the nonlinear system of equations (4) 

is a periodic dependency of vector components 

   Ttxtx 


. They can be determined by the 

evolutionary method (solving the Cauchy problem) by 

calculating the transient process under some initial 

conditions until the steady-state value which consists of 

repeating the process on adjacent periods. When the 

process is too slow, the curves at these periods differ 

little and the moment of the end of the transition process 

needs to be determined. The establishment method is 

practically unsuitable for calculating static 

characteristics. 

 The mathematical basis of the problem of calculating 

the coordinates of periodic dependencies during the 

period of the load torque variation is the theory of 

nonlinear oscillations [8]. It calculates periodic curves 

of the state variables as a pointwise boundary value 

problem with periodic boundary conditions. This result 

is thus obtained in a timeless domain, meaning that this 

is no need to calculate the transient process. In applied 

mathematics, the boundary value problems are 

considered for DE of the second and higher orders [9]. 

However, if the boundary conditions are given in a form 

of a ratio between the beginning and the end of the 

period, such a problem can be considered as a pointwise 

boundary value problem. 

 There are many methods available to solve boundary 

value problems. They differ in the way of algebraizing 

DE. One of them is the finite-difference method in 

which the derivatives are approximated by difference 

relations on the grid of nodes of the period according to 

one of the well-known formulas [9]. However, the 

system of algebraic equations that approximates DE on 

the period has a rather high order. The pointwise 

boundary value problem is solved by a projection 

method [10] which is based on the approximation of 

coordinates by splines of the third order [11]. The 

method is numerically stable and determines continuous 

dependencies of coordinates by calculating their discrete 

values at the n nodes of the grid per period. The 

transition from the DE system to its discrete analog 

follows formalized procedures. 

  ( ) ( , )H Y X Z Y X B  , (5) 
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where H is a block-diagonal matrix of size n(3+2k) of 

the transition from a continuous change of coordinates 

to their nodal values, the elements of which are 

determined by a grid of nodes in period MT  [10]; 

  1, , nY y y ,  1, , nZ z z ,  1, , nX x x  – 

vectors composed of vector values y


, x


, z


 in the n 

nodes of the period. 

 The algebraic nonlinear system of equations (5) is a 

discrete analog of the DE system (4). Its unknown 

vector X


 with equation (5) is used, to construct 

periodic dependencies of each coordinate, including the 

electromagnetic torque, power, etc. 

 As a result of the change in the instantaneous value 

of the torque during period MT , slip s oscillates 

relatively to the mean value. To take into account the 

deviation of the slip from the given constant at each 

node of the period, are refined the coordinates at the 

nodal points iteratively using the discrete equation for a 

steady press. In the paper, Newton's method is used [9] 

in which at the k-th step of the iteration the (k+1)-th 

approximation of the vector X  is determined by the 

formula 
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– the matrix of the Jacobian system (5) where the 

elements are the differential inductances of the IM 

circuits and flux linkages. As the matrix is written only 

for two rotor loops, marked with subscripts rx and ry 

and each divided into k elements the order of the matrix 

will in practice be greater. 

 Newton's iterative method has a quadratic 

convergence. It requires the formation of the initial 

values of the vector of the unknowns, which is located 

in the neighborhood of the method attraction. A reliable 

method to be used here is the method of continuation by 

parameter [12]. Since there are two perturbations in the 

system (5) of nonlinear algebraic equations i. e. the 

applied voltage vector and the load torque vector is 

 1, , nF f f , the problem is solved in two stages. 

First, we increase the applied voltage, and then, 

assuming it is unchanged, we increase the nodal values 

of the applied torque. This makes it possible to 

determine the time dependencies of the coordinates in a 

steady-state periodic mode of the IM operation with a 

given law of the change of the applied torque which is 

refined by the iterative method. 

 The presented algorithm to calculate the steady-state 

is the basis for determining static characteristics 

obtained as a sequence of steady-states calculated for a 

number of coordinate values  which is taken as an 

independent variable. In particular, it can be the torque 

of the inertia, the frequency or the relative pulse 

duration of the load torque period length, etc. Cyclic 

loading at a certain pulse frequency may give rise to 

mechanical resonance detectable by mathematical 

modeling. 

The problem of calculating static characteristics is 

solved using the differential method which differentiates 

the algebraic equation (5) with respect to an 

independent variable  as a parameter. As a result, we 

get a nonlinear DE system of this argument. The static 

multidimensional characteristic is a dependence of 

periodic curves on independent variable  obtained 

through the integration of the received DE system by . 

The initial conditions are obtained by performing the 

first step of the calculation at a particular supply 

voltage. At each integration step, the result can be 

refined using Newton's method. During the integration 

and iterative refinement, the circuit’s differential 

inductances should be determined as the current’s 

nonlinear functions. They are calculated with the IM 

mathematical model based on the above-mentioned 

magnetization curves according to [7]. 

 Research results. Using the developed mathematical 

model and the presented algorithm to calculate the 

electric drive of the squirrel-cage induction motor, the 

steady-state modes, and static characteristics can be 

determined with any law of periodic variation of the 

load torque. The input data is the nonlinear 

characteristic of the magnetic-core magnetization by the 

main magnetic flux, the motor leakage fluxes, the 

winding data, and the specified cyclorama as a function 

of the load-torque time dependence. 

 Calculation results of steady-state periodic modes 

and characteristics for the squirrel-cage induction motor 

4AP160S4Y3 are P=15 kW, U=220 V and I = 29.9 A, 

p0 = 2. 

 Besides the periodic time dependence of the 

coordinates at a given load, the mathematical modeling 

also detects with high reliability the possible resonant 

modes at certain inertia torques and cyclic load 

frequencies, thus order offering the possibility to avoid 

them. In practice, the mechanical resonance causes 

problems when IM operates at a frequency close to the 

one of the resonance, since the electromagnetic torque 

at the resonance frequency is zero (Fig. 2a). It is 
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obvious that at the resonance point, the average value 

slip s for the period is also zero (Fig. 2b). 

 In certain operating states, the resonance effect may 

occur at a cyclically variable load. As the 

electromagnetic torque at the resonance frequency is 

zero, it is impossible to operate at a frequency close to 

the resonance. The IM resonance frequency depends on 

many factors, including the inertia torque. The 

resonance frequency cannot be determined in advance 

because the change in the load of the electric drive 

system completely changes the inertia torque. The 

presented mathematical model determines the resonance 

frequencies for a specific electric drive by changing the 

load variation frequency and calculating for each 

frequency the periodic torque dependence according to 

the presented algorithm, thus enabling the calculation of 

its average value for the period. The dependence of the 

average value of the electromagnetic torque on the 

frequency of pulses is thus obtained showing at which 

point of the dependence the torque decreases to zero. 

Fig. 3 shows examples of such curves. There may be 

more than one resonance mode (Fig. 2). 

 

 
a) 

 

 
b) 

Fig. 1. PerSiodic dependencies of the load torque (
*
cM ), 

electromagnetic (
*
eM ), and current (

*I ) at the frequency 

 

 

 

 
a) 

 

 
b) 

 

Fig. 2. Dependencies of the average values of the 

electromagnetic torque (a) and slip (b) on the frequency 

impulse load 

 

 
 

a) 
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b) 

Fig. 3. Periodic dependences of the electromagnetic torque (a) 

and the effective value of the current (b) at a resonance 

occurrence 

 

4 CONCLUSIONS 

1. The operation of the squirrel-cage induction motor is 

analyzed by using mathematical modeling employing a 

mathematical model and corresponding algorithms and 

taking into account the saturation and currents 

displacement in the rotor bars at cyclically variable load 

states, and is investigated the frequency effect of 

variable load on the possibility of a mechanical 

resonance occurrence is investigated. 

2. Using the presented algorithm to calculate steady-

state periodic modes under cyclic loading solves the 

problem as a boundary value problem, which makes it 

possible to calculate a steady-state periodic mode in a 

timeless domain ensuring high performance and 

optimization calculations. 

3. The developed mathematical model can be used to 

design and analyze the operation of electric drives at 

periodic and particularly cyclically variable loads. They 

provide a basis for developing an electric drive control 

system. 
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