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Abstract. The paper presents a new multiplier enabling achievemegm efbitrary accuracy. It follows the same
idea of number representation as the Mitchell’s algorithat,does not use logarithm approximation. The
proposed iterative algorithm is simple and efficient aneitsr percentage is as small as required. As its hardware
solution involves adders and shifters, it is not gate andgs@ensuming. Parallel circuits are used for error
correction. The error summary for operands ranging fronit 8t6-bit operands indicates a very low error
percentage with only two parallel correction circuits.
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Iterativni logaritemski mno zilnik

Povzetek. V &lanku predstavimo izvedbo logaritemskegal Introduction
mnozilnika, ki nam omogoc¢a nastavljivo natancénost. Ehmik

je zasnovan na Mitchellovem postopku mnozenja in uporaliqyltiplication has always been hardware, time and power

logaritemske predstavitve podatkov [1]. MnoZenje jecva® . . . . .
zahtevna operacija, poleg tega pa mnozilniki v primeravi CONSUming arithmetic operation, especially for large

drugimi aritmetiénimi vezji porabijo veliko moti. V karekaj value operands. This bottleneck is even more emphasized
aplikacijah pri digitalni obdelavi signalov, kjer je vedikpris- i digital signal processing applications that involve a

otnost Suma, pa ne potrebujemo natantnega rezultataenjao T .
Zato je v teh primerih primernejSe logaritemsko mnoz¢hj@]. huge number of multiplications. In many signal process-

Mitchell je v delu [1] predstavil osnovno idejo in izvedbo ing applications the results of arithmetic operations do no
logaritemskega mnozilnika. Ideja je v tem, da se binamn@ave to be exactly accurate. For example, in signal com-

Stevila predstavijo v t. i. logaritemskem zapisu (enatba . . R
ter se pprodukt ajproksimira pogenaébi 3. Mitc%elloxg pogl?gpepressmn techniques, quantization is usually performed af

mnozenja je zapisan v Algoritmu 1. Mitchell je v svojemter cosine or some other transform. Therefore, calculation
delu pokazal, da je najvecja relativna napaka okrog 11%, reof true transform coefficients values is not necessary and

ativna napaka pa 3,8%. V literaturi zasledimo veliko poskus C .
izboljéanjg natgnénost? takega mnozilnika, najvetl k%rek- rounded products after multiplication by signal transfor-

cijskimi tabelami, ki zahtevajo precej pomnilnika [2, 3, 4 mation are acceptable. Also, many digital signal process-
tem delu predlagamo modificiran postopek mnozenja, sikater ing systems can deal with an extra noise introduced. In

izboljSamo natancnost, ob tem pa ne potrebujemo dodatne : : g
pomnilnika za hranjenje korekcijskih termov. Osnovnaade; these signal processing applications, where speed of cal-

da ostanke, ki jih dobimo pri logaritemskem zapisu 3tesel, ~culation is more important than accuracy, logarithm num-
enkrat zmnozimo na enak nacin ter pristejemo h koncnerou  per system (LNS) for multiplication seems to be a suit-

duktu kot v enachi 5. Tako sproti tvorimo korekcijske terrie . - .
lahko potnemo iterativno ali vzporedno, dokler ne doseze @Ple method. The main advantage of this method is sub-

Zelene najvetje relativne napake (enacbi 14 in 15). |Rred stitution of multiplication with addition, after conveosi
gani postopek mnozenja je prikazan v algoritmu 2. Prediagagperands into logarithms. But this simple idea has a sig-

ostopek mnozenja smo implementirali v FPGA €ipu. Oshovn_... . ; ; :
Elok ngnoiilnika jeJ prikazan Fr)1a sliki 1. Posameznepkoreﬂkﬁij "hificant weakness: a necessity for approximation of log-

terme nato izracunavamo z dodajanjem osnovnih blokov, katrithm and antilogarithm. Therefore, logarithmic-based
je to prikazano na sliki 2. Poraba sredstev in moci v FPGAs|utions are trade-off between time consumption and ac-

Cipu brez, oz. z dodanimi korekcijskimi termi, je prikazan . , :
tabelah 1'in 2. Rezultati analize relativne napake (tabetig curacy- In the well known Mitchell's algorithm (MA) [1]

pokaZejo, da je Ze s samo tremi korekcijskimi termi, ngjge for multiplication in LNS, a higher error is caused due to

relativna napaka pod 0,5%. the piecewise straight line approximation of the logarithm
Klju €ne besede:Ratunalniska aritmetika, digitalna obdelavaand antilogarithm curve. Later, many methods for MA
signalov, mnoZilniki, logaritemski sistem error correction are introduced with more or less success

[2], [3], [4], [5], [6]- LNS multipliers can be divided into
two categories, one based on methods that use lookup ta-
Received 16. september, 2009 bles and interpolations and the other based on Mitchell's
Accepted 13. januar, 2010 algorithm, even there is a lookup-table approach in some
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of the MA-based methods. MA-based solutions supt. MA produces a significant error percentage. The rela-
pressed lookup tables due to hardware area savings. Thig error increases with the number of bits with the value
paper presents a new iterative solution for multiplicationof "1’ in the mantissas. The maximum possible relative
where error correction is realized with parallel correctio error for MA multiplication is some 11% and the average
circuits. It is is organized as follows: Section 2 presentsrror is some 3.8%. Mitchell analyzed this error and pro-
the basic Mitchell’s algorithm and its modifications withposed analytical expressions for error correction. To sum
their benefits and weaknesses, Section 3 describes iyg the most significant advantage of MA is simplicity, ef-
proposed iterative solution, in Section 4 hardware impldficiency, i.e. non power-consuming. The most significant
mentations of the proposed algorithm are discussed, Setisadvantage is a high error percentage.
tion 5 gives an experimental results overview, and Section
6 is a conclusion. Algorithm 1 Mitchell’s Algorithm for the case:; + x5 <

1

2 MA-Based Multipliers 1. N1, Ny: n-bits binary multiplicandsPy;4 = 0 :
2n-bits approximate product

A logarithmic number system is introduced to simplify
multiplication, especially in cases when accuracy require 2. Calculatek;: leading one position alV;
ments are not rigorous. One of the most significant
multiplication methods in LNS is the Mitchell’s algo-
rithm, which approximates the logarithm with a piecewise 4 Calculater; : shift N; to the left byn — k, bits
straight line function. MA multiplies two operands by
finding their logarithms, adding them and looking for the 5. Calculater,: shift N, to the left byn — ko bits
antilogarithm of the sum.

Approximation of the logarithm and antilogarithm is
essential. Itis derived from binary representation of num- 7 calculater;, = v, +
bers:

3. Calculatek,: leading one position oV,

6. Calculatéio = k1 + ko

o 8. Decodék;; and insert "1’ in that position oF, ;o
N =2F1+ Z 20k 7)) = 2F(1 4 2) (1) 9. Appendz;, immediately after this one if,,p,ox
i=j

10. N1 - No = Pya
wherek is the characteristic number or place of the most
significant bit with the value of '1'Z; is the bit value at

i-th position,z is a fraction or mantissa anddepends Numerous attempts have been made to improve the
on the number precision. By logarithm of the producMA accuracy. Hall [4] derived different equations for
computation, error correction in the logarithm and antilogarithm ap-

proximation in four separate regions, depending on the

logy (N1-N2) = ki+ka+logy(1+x1)+logs (1+22) (2)  mantissa value, reducing the average error to 2%, but in-
. . ) i creasing complexity of realization. Abed and Siferd [5],

log, (1 4+ x1) is approxmatgd withe; and the logarithm [6] derived correction equations with coefficients that are
of the two number product is exp_resse.d as a sum of thelt, ver of two, reducing the error and keeping the simplic-
characteristic numbers and mantissas: ity of solution. Among many methods that use look-up ta-
bles for error correction in the MA algorithm, McLaren’s
method [2], which uses a lookup table with 64 correc-

The antilogarithm uses the similar approximation. tion coefficients calculated in dependence on the mantis-

. N S sas values, can be selected as one with a satisfactory accu-
The final MA approximation for multiplication, de- :

racy and complexity. A recent approach to MA error cor-

pending on the carry bit from sum of mantissas is 9Ve€lction reducing the number of bits with the value of '1’

logy(Ny - No) = k1 + ko + 21 + 2 (3)

by: in mantissas by operand decomposition was presented by
Mahalingam and Rangantathan [3]. The proposed method
2kitka (1 1
(N1 No)ara = (L 21 4 22), 21422 < decreases the error percentage of the MA by 44.7% on the
2k1+k2+1(x1 + x2)7 T+ xg > 1 average.
(4)

The sum of the characteristic numbers determines proposed Solution
MSB of the product. The sum of mantissas is added to
complete the final result. The proposed MA-based multiAs already mentioned above, the basic disadvantage in
plication for the case; + z2 < 1is given in Algorithm the Mitchell’'s algorithm and similar solutions comes from
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logarithm approximation. Therefore, the proposed soluvhereC'V) is the approximate value @) andE() is
tion avoids logarithm approximation and introduces an itan absolute error when approximatifiy”). The combi-
erative algorithm with various possibilities for maximall nation of (9) and (12) gives

minimizing the errorand getting an exact result. As the

proposed solution is an iterative but not a recursive al- Pirue = Py +CW + EW (13)
gorithm, it can be realized with parallel circuits for error
reduction. We can now add the approximate value Bf°) to
From the binary representation of numbers in (1), w@PProximate produck,,., as an correction term with
can derive a correct expression for multiplication: which we decrease the error of approximation
Pipue = Ni-Np=2F1(1+a1) 25 (1 + ) P on = Po+CO (14)

2MHR2 (1 4 2y + @o) + 2817F2 (3120) (5) . L )
If we repeat this multiplication procedure withcor-

The similarity with MA is evident. The error in MA rection terms, we can approximate the product as
is caused by neglecting the second term in (5). To avoid )
the approximation error, we have to take into accountthe Pipproc = FPo+CH +C® + .. +C0 =
bellow relation: i
= P+ Z o (15)

j=1

z-2F =N —2F (6)
The combination of (5) and (6) gives: The procedure can be repeated in order to achieve the
Piye = (N1-N2) = g(kitka) 4 Zmallest possible_,”:)r utnhtil ?t Ileast ?tng ofgg;e mantissas
 okiyok  okayok ecomes a zero. Then the final result is ex&tl,ron =
M 2k1)2 ot (NQk 27)2% + Pyrye. The number of iterations required for exact result
+(N1 —27) - (N2 — 27) (7)  is equal to the number of bits with the value of '1’ in the
operand with a smaller number of bits with the value of
'1’. The proposed iterative MA-based multiplication is
Py = 2(kithka) (Ny — 2F1)2k2 4 (N, — 2F2)2k1 (8) given in Algorithm 2.
. o o One of the advantages of the proposed solution is the
be the first approximation of the product. Itis eV'dentthabossibility to achieve an arbitrary accuracy by selecting a
Poue = Py + (N1 — 2¥1) - (N5 — 272) ) gxglkljtzr of iterations, i.e. a number of parallel correction

Let

If we approximate the product with

PO _p (10) 4 Hardware Implementation

approx

then the proposed method is very similar to MA. Actu—:”:a?]rc(le;ftg]:V?Lueg:eghﬁ]udlsv:g Lxg'fgt'?gmzrﬁezegﬁg
ally, P, is equal to the first case in the MA approxima- prop plier, P

tion (4). Mitchell proposed an exact correction term as iﬁent multipliers on Xilinx xc3s500e-4fg320 FPGA [7].

. I o We implemented four 16-bits multipliers: a multiplier
(9), butthe logarithm approximation-based multiplying of ith no correction terms, and three multipliers with two,

the given residues was not sufficient to achieve significaner1 . .
error decreasing. Avoiding the logarithm approximatior% ree and four correction terms, respectively.
enables parallel error corrections and more accurate prod-

uct. For this reason, an iterative calculation of corrattio4.1 Basic Block

terms is proposed as follows.

An absolute error after the first approximation is The basic block is the proposed multiplier with no correc-

tion terms. The task of the basic block is to calculate one
g0 _ p_ Péﬁ%m =P-P= approximate product according to Equation 8. The 16-

C (N —28) - (N — 2k (11) bit basic block is presented in Figure 1. The 16-bit basic

block consists of two leading-one detector units (LOD),

Note thatZ(® > 0. The two multiplicands in (11) two encoders, two 32-bit barrel shifters, a decoder unit

are binary numbers that can be obtained simply by r@nd two 32-bit adders. Two input oper_ands are given to
moving the leading 1’ in numberd; and N, so we can LODs and the encoders. The LOD units are used to re-

repeat the proposed multiplication procedure with thes®©Ve the leading one from the operands, which are then
new multiplicands passed to the barrel shifters. The LOD units include zero
detectors, too. They are used to detect zero operands. The
EO® =cW 4 gW (12) LOD units and zero detectors are implemented as in [5].
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Algorithm 2 Iterative MA Based Algorithm with cor-
rection terms

1.

N1, No: n-bits binary multiplicandsPy = 0 : 2n-
bits first approximation(’(®) = 0 : 2n-bitsi correc-
tion terms, Py ppror = 0 : 2n-bits product

. Calculatek, : leading one position aivV,
. Calculaték,: leading one position oV,

. Calculatg Ny — 2F1)2"2: shift (N; — 2%1) to the left

by k- bits

Calculatg Ny — 2+2)2%1: shift (N, — 2¥2) to the left
by k1 bits

Calculatékis = k1 + ko
Calculate2(k1+k2) - decodéko

CalculateP,
(No — 2k2)2k

: add 20kth2) (N — 2k1)2k2 and

Repeai-times:

(a) Set:N; = N, — 21‘71, Ny = Ny — k2
(b) Calculatek;: leading one position aiv,
(c) Calculatek,: leading one position oV,

(d) Calculate{ Ny — 2F1)2*2: shift (N; — 2F1) to
the left byks bits

(e) Calculatg Ny — 2%2)2F1: shift (N, — 22) to
the left byk; bits

() Calculatekio = k1 + ko
(g) Calculate2*1+%2) : decodek;,

(h) CalculateC™® : add2(F1+k2) (N — 2F1)2k2
and(N, — 2F2)2k

10. P{ros = Py + 3, CD

f PRIORITY 5 @
ENCODER N2-2

BARREL
SHIFTER
LEFT

N1-2K

BARREL
SHIFTER
LEFT

(N1-2K1)2K2

: Tr7

DECODER

(N2-2+%)2*

Jkirk2 (N1-2)24%+ (N2-2K%)2"]

Papprox

Figure 1. Block diagram of a basic block of the proposed itera
tive multiplier.

The barrel shifters are used to shift residues according
to Equation 8. The decode unit decodgst &, i.e. puts
the leading one in the product. The leading one and two
shifted residues are then added to form the approximate
product. The basic block is used in further implemena-
tions to calculateé®, andC'(®.

4.2 Parallel Implementation

We implemented multipliers with parallel correction cir-
cuits. For this purpose, we used the cascade of the basic
blocks. The block diagram of the proposed logarithmic
multiplier with a parallel error-correction circuit is siva

in Figure 2. The multiplier is composed of two basic
blocks of which the first one calculates the first approx-
imation of the product®,) while the second one calcu-
lates the error correction ter@i(!).

4.3 Device Utilization

For design entry we used Xilinx ISE 10.1.02 - WebPACK
and design with VHDL. The design was synthetised with
Xilinx Xst Release 10.1.02 for Linux.

Device utilization (the number of slices, number of 4-
input LUTs and number of input-output blocks) for all the
four implemented multipliers is given in Table 1.

Table 1. Device utilization.

Multiplier || 4-LUTs | Slices| I0Bs |

Basic Block 353 182 96
Basic Block + 1CT 736 381 96
Basic Block + 2CT 1088 577 96
Basic Block + 3CT 1438 751 96
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N1 N2 can notice that our solution with three iterations outper-
forms others logarithm based-multipliers.

»{y1-2k2

6 Conclusions
— NZ-Zkl

Y A Y v In this paper, we investgate and propose a new approach
to improve the accuracy of the Mitchell algorithm-based
multiplication. The approach is based on the iterative cal-
culating of the correction terms. We show that the calcu-
lation of correction terms can be performed parallelly in
hardware.

The iterative approach improves the average error per-
centage and the error rate compared to the basic MA mul-
tiplication. By using only three correction terms, the erro

N1*N2 of any multiplication result is less than a 0.5%.
The parallel implementation of the iterative MA mul-
Figure 2. Block diagram of the proposed multiplier with onetiplier With. only one correction Ciﬂ_:ujt almost dOl.JbI.es the
parallel error-correction circuit. The multiplier is cooged of ~area required compared to the original MA multiplier, but
two basic blocks of which the first one calculates the approxithe power consumption increases only from 2% (one cor-
mate product while the second one calculates the erroecorr rection term) to 16% (three correction terms). This is still
tion term. . - .
significantly less than the area and power required for a
standard multiplier.

The maximum combinational path delays along with  The maximum combinational delay increases by 30-
the total power consumptions for the basic block and th&5% with each added correction circuit. This can be fur-
three parallel implementations are given in Table 2. ther significantly improved by pipelining the three main
stages in the basic block and the correction circuits.

BASIC BLOCK BASIC BLOCK

5 Error Analysis
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Table 2. Synthesis results.

Multiplier Max. combinational | Total power (W)

delay (ns)

Basic Block 24.818 0.13031
Basic Block + 1CT 32.214 0.13855
Basic Block + 2CT 37.261 0.14743
Basic Block + 3CT 41.555 0.15687

Table 3. Error percentage rate [%].
8 bits 12 bits 16 bits

1CT | 2¢T | 3cT || 1T | 2¢T | 3CT || 10T | 2CT | 3CT
<0,1%] 32.9] 79.9] 99.0([ 20.6] 71.6] 98,2 19.3| 70.6 ] 98.0
<05%] 54.8| 96.9] 100 || 48.1] 95.7| 100 || 47.4| 95.5| 100
<1% || 69.9] 99.6| 100 || 65.6] 99.4| 100 || 65.2| 99.4 | 100

Error

Table 4. Average relative errors [%] for O, 1, 2 and 3 corcterms.
‘ No. bits H Basic MA | 1C.term | 2C.terms | 3 C. terms

8 8.9131 0.8337 0.0708 0.0048
9 9.1336 0.8980 0.0845 0.0069
10 9.2595 0.9369 0.0936 0.0086
11 9.3301 0.9597 0.0994 0.0098
12 9.3692 0.9726 0.1029 0.0106
13 9.3906 0.9799 0.1049 0.0111
14 9.4023 0.9840 0.1060 0.0114
15 9.4086 0.9862 0.1067 0.0116
16 9.4124 0.9874 0.1070 0.0117
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