
ELEKTROTEHNIŠKI VESTNIK 81(1-2): 27–32, 2014
ORIGINAL SCIENTIFIC PAPER

Attributed Context-Sensitive Graph Grammars

Luka Fürst
University of Ljubljana, Faculty of Computer and Information Science,
Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
E-mail: luka.fuerst@fri.uni-lj.si

Abstract. The paper introduces a concept of attributed context-sensitive graph grammars. The graph grammars
are a graphical generalization of the textual grammars and can thus be used to specify the syntax of graphical
programming or modeling languages. The attributed graph grammars extend the basic graph grammars with
definitions of attributes and the associated attribute evaluation rules. By analogy to the attributed textual
grammars, the purpose of the attributes and the rules is to define the semantic elements of a graphical language.
The introduced concept is illustrated by an example of a grammar-driven conversion of flowcharts to the
equivalent C code. The presented example might find its use in introductory programming courses.

Keywords: graph grammar, graphical language, visual language, semantics, attributed grammar

Kontekstno odvisne grafne gramatike s prilastki

Članek uvede koncept kontekstno odvisnih grafnih gramatik
s prilastki. Grafne gramatike so grafna posplošitev tekstovnih
gramatik, zato jih je mogoče uporabljati za podajanje sintakse
grafnih programskih ali modelirnih jezikov. Grafne gramatike
s prilastki razširjajo osnovne grafne gramatike z opredelitvijo
prilastkov in pravil za računanje njihovih vrednosti. Po
analogiji z besedilnimi gramatikami s prilastki je cilj prilastkov
in pravil opredelitev semantičnih prvin grafnega jezika. Pred-
stavljeni koncept ponazorimo s primerom grafnogramatične
pretvorbe diagramov poteka v enakovredno programsko kodo v
jeziku C. Prikazani primer je potencialno uporaben na uvodnih
tečajih programiranja.

1 INTRODUCTION

The set of all syntactically valid programs in a textual
programming language such as Pascal or C can be
specified by a textual grammar, i.e., a formal system
for generating textual strings based on a set of string
replacement rules (productions). However, a grammar
does not suffice for representing semantic elements such
as variable scope or loop behavior. Such elements can
be defined by attributed grammars [1], [2], a formalism
that extends the ordinary grammars by a set of attributes
assigned to individual grammar symbols and a set of
production-specific rules for evaluating the attributes.

In this paper, we present how the attributes and at-
tribute evaluation rules can be formulated within a graph

Received 6 January 2014
Accepted 11 February 2014

grammar framework. The graph grammars are formal
systems for generating graph sets and can thus be used
for specifying the syntax of graphical languages [3]. We
focus on the context-sensitive graph grammars, since
they can represent a broader set of graphical languages
than their context-free counterparts [4].

The attributed graph grammars remain an under-
researched area. Their applications have been scarce; let
us mention image parsing [5], music recognition [6] and
graph drawing [7]. However, none of these approaches
employs the concept of the attributed context-sensitive
graph grammars in an analogous way to the attributed
textual grammars. In our recent paper [8], we did use
such a concept, but without a formal treatment. In this
paper, we define the attributed context-sensitive graph
grammars formally and provide a clarification example
that might be applicable to introductory programming
courses.

The rest of this paper is structured as follows. In Sec-
tion 2, we define the context-sensitive graph grammars.
In Section 3, we present our running example. Section
4 introduces the attributed context-sensitive graph gram-
mars, and Section 5 concludes the paper.

2 CONTEXT-SENSITIVE GRAPH
GRAMMARS

For a graph G, let V[G], E [G], and X [G] = V[G]∪E [G]
denote the sets of its vertices, edges, and elements,
respectively. Let s(e) and t(e) denote the source vertex
and the target vertex, respectively, of an edge e ∈ E [G].
Let l(x) denote the label of an element x ∈ X [G]. A
graph G is a subgraph of a graph H (denoted G ⊑ H)
if V[G] ⊆ V[H] and E [G] ⊆ E [H]. A homomorphism
h : G → H is a vertex-to-vertex and edge-to-edge map-

28 FÜRST

ping that preserves labels and adjacencies: l(h(x)) =
l(x), s(h(e)) = h(s(e)), and t(h(e)) = h(t(e)) has to
hold for each x ∈ X [G] and e ∈ E [G]. A monomor-
phism is an injective homomorphism. An isomorphism
is a bijective homomorphism whose inverse is also a
homomorphism.

A context-sensitive graph production p is a rule of
the form L ::= R, where L and R are graphs with a
possible common subgraph C (C ⊑ L and C ⊑ R).
The graphs L and R are called the left-hand side (LHS)
and the right-hand side (RHS), respectively, of the
production p (denoted Lhs[p] and Rhs[p]). The graph
C is called the context of p (denoted Common[p]). Let
X [p] = X [Lhs[p]] ∪ X [Rhs[p]].

A context-sensitive graph grammar GG is a quadru-
ple (N , T , P , A), where N is a set of nonterminal
labels, T is a set of terminal labels, P is a set of context-
sensitive graph productions, and A is a set of graphs
called axioms. Each graph element in P and A has to
be labeled by a label from either N or T .

To apply a context-sensitive graph production p to a
graph G, perform the following steps:

1) Find a monomorphism h : Lhs[p] → G. Let
L′ = h(Lhs[p]) ⊑ G and C ′ = h(Common[p]) ⊑
L′ denote the subgraphs of G corresponding to
Lhs[p] and Common[p], respectively.

2) Remove all elements L′ \ C ′ from G.
3) Add copies of the elements Rhs[p] \Common[p]

to the resulting graph. The added elements have
to be attached to the elements of C ′ in the same
way as the elements of Rhs[p] \ Common[p] are
attached to the elements of Common[p].

The notation G
p−→ G′ signifies that the graph G′ is the

result of applying the production p to the graph G.
A derivation of a graph G in a context-sensitive graph

grammar GG is a sequence A
p1−→ G1

p2−→ G2 . . .
pk−→

Gk = G, where A ∈ A[GG] and p1, . . . , pk ∈ P[GG].
A graph G for which a derivation exists is derivable in
GG .

The language of a grammar GG (denoted L(GG)) is
a set of all terminally labeled graphs derivable in GG . (A
graph is terminally labeled if all its elements are labeled
by labels from T [GG].) A parser is an algorithm that,
for a graph G and a grammar GG , determines whether
G ∈ L(GG) and produces a derivation of G in GG if
this is the case. A parser for the context-sensitive graph
grammars was introduced by Rekers and Schürr [4] and
improved by Fuerst et al. [9].

3 RUNNING EXAMPLE

A grammar of flowcharts denoted GGFC will serve as
a running example for the rest of this paper. For the
grammar GGFC, N [GGFC] = {a} and T [GGFC] = {◦,
Cond, PrimStat, T, F, |}, where ◦ and | denote the

virtual ‘labels’ of the unlabeled vertices and edges,
respectively. The productions of GGFC are displayed
in the left column of Table 1; the right column will
be explained later. For an easier reference, many graph
elements are tagged by unique IDs (shown in square
brackets, e.g., [v1] or [e2]). The elements occurring
on both sides of the individual productions, i.e., the
elements of the Common sets, are grayed. These el-
ements should actually have the same ID on both sides.
However, since we will later have to distinguish between
the LHS and RHS occurrences of the same element, we
use primes (v′i) for the RHS occurrences. The grammar
GGFC contains a single axiom: this is the graph on the
LHS of production p1.

In the productions of the grammar GGFC, the a-
labeled edges represent graphical statements; in a deriva-
tion of a flowchart, every edge a develops into an ele-
mentary or composite graphical statement of a flowchart.
The vertices ◦ (i.e., the unlabeled ones) represent the
endpoints of individual statements. The PrimStat ver-
tices represent primitive statements (non-control-flow
ones), and the Cond vertices represent conditions. The
edges T and F represent the ‘true’ and ‘false’ outcomes,
respectively, of the associated conditions.

The axiom of the grammar GGFC thus represents
the fact that a flowchart comprises a single graphical
statement. A graphical statement can take the form of
a sequence of statements (production p1), a primitive
statement (p2), an if-then statement (p3), an if-then-else
statement (p4), a while statement (p5), a do-while state-
ment (p6), or a goto statement (p7). Since we are only
interested in the control-flow statements, we grouped all
the other types of the statements (assignments, reads,
writes, etc.) under the ‘primitive statements’ category.
Although the goto statement has been considered ‘harm-
ful’ ever since the famous paper by Dijkstra [10], there
are generally no objections against its use in flowcharts.
In addition, as will be shown later, goto makes it possible
to define a meaningful inherited attribute. A sample
derivation in the grammar GGFC is shown in Fig. 1.

4 ATTRIBUTED CONTEXT-SENSITIVE
GRAPH GRAMMARS

We shall now introduce the central concept of this paper.
An attributed context-sensitive graph grammar is a tuple
(GG , B, R), where GG is a context-sensitive graph
grammar, and the sets B and R are defined as follows:

• B is a set of triples (p, x, A), where p ∈ P[GG],
x ∈ X [p], and A is an attribute, a named variable
assigned to a given graph element in a given
production. An attribute A for a graph element x
in a given production is denoted x.A. Let B(x)
denote the set of all attributes associated with the
graph element x.

ATTRIBUTED CONTEXT-SENSITIVE GRAPH GRAMMARS 29

Table 1. Productions and attribute evaluation rules of the sample grammar for the flowcharts language.

Production Attribute evaluation rules

p1 e1.code = e2.code⊕ e3.code

p2 e1.code = if isEmpty(v1.label) then v3.code else v′1.label⊕‘:’⊕v3.code

p3

e1.code =

(if isEmpty(v1.label) then ϵ else v′1.label⊕ ‘:’)
⊕
‘if (’ ⊕ v3.code ⊕ ‘) {’ ⊕ e2.code ⊕ ‘}’

p4

e1.code =

(if isEmpty(v1.label) then ϵ else v′1.label⊕ ‘:’)
⊕
‘if (’ ⊕ v3.code ⊕ ‘) {’ ⊕ e2.code ⊕ ‘}’
⊕ ‘else {’ ⊕ e3.code ⊕ ‘}’

p5

e1.code =

(if isEmpty(v1.label) then ϵ else v1.
′label⊕ ‘:’)

⊕
‘while (’ ⊕ v3.code ⊕ ‘) {’ ⊕ e2.code ⊕ ‘}’

p6

e1.code =

(if isEmpty(v1.label) then ϵ else v′1.label⊕ ‘:’)
⊕
‘do {’ ⊕ e2.code ⊕ ‘} while (’ ⊕ v3.code ⊕ ‘);’

p7
v′3.label = if isEmpty(v3.label) then newLabel() else v3.label

e1.code = ‘goto ’ ⊕ v′3.label ⊕ ‘;’

30 FÜRST

Figure 1. Sample derivation in the GGFC grammar.

ATTRIBUTED CONTEXT-SENSITIVE GRAPH GRAMMARS 31

• R is a set of pairs (p, R), where p ∈ P[GG]
and R is an attribute evaluation rule. An attribute
evaluation rule for a production p is a rule of the
form x0.A0 = f(x1.A1, . . . , xk.Ak), where x0, x1,
. . . , xk ∈ X [p] and Ai ∈ B(xi) for all i ∈ {0, 1,
. . . , k}. The function f is called semantic function.

By analogy to the attributed textual grammars [2], the
set of attributes for each production graph element can
be partitioned into a set of synthesized attributes and a
set of inherited attributes. The synthesized attributes are
those associated with the graph elements on the produc-
tion LHSs, while the inherited ones are those associated
with the RHS elements. The set of the attribute evalu-
ation rules must not contain any circular dependencies.
If at least two attributes directly or indirectly depend on
each other, their values cannot be computed.

The purpose of the attributes is to carry semantic
information. In the usual case of compiling programs
defined by the context-free grammars, the inherited
attributes carry information about various symbols (vari-
ables, procedure declarations, etc.), while the synthe-
sized attributes hold (intermediary) translations of the
program or its parts. To obtain the ‘semantics’ of the
program, the attributes have to be evaluated. In the case
of the context-free grammars, the attributes are evaluated
during the traversal of a derivation tree of the given
program; the inherited attributes are evaluated on the
way from the root to the leaves, while the synthesized
ones are evaluated in the opposite direction. In the case
of the context-sensitive graph grammars, derivation trees
cannot be defined, however, since the production LHSs
may contain more than one graph element. For this
reason, the attributes can only be evaluated by traversing
a derivation sequence of the input graph. The inherited
attributes are evaluated during the left-to-right traversals
of the sequence (from an axiom to the input graph),
while the synthesized ones are evaluated during the
right-to-left traversals. In general, several traversals may
be required to evaluate all the attributes.

Let us formally describe a single attribute evaluation
step. Let p be a production, and let X [Lhs[p]] = {a1,
. . . , al} and X [Rhs[p]] = {b1, . . . , br}. Although
the context elements occur on both sides of the pro-
duction, we distinguish between their LHS and RHS
occurrences. In a derivation step G

p−→ H , let L ⊑ G
denote the subgraph corresponding to Lhs[p], and let
R ⊑ H denote the subgraph corresponding to Rhs[p].
Let X [L] = {x1, . . . , xl} and X [R] = {y1, . . . , yr} such
that xi (1 ≤ i ≤ l) corresponds to ai and yj (1 ≤ j ≤ r)
corresponds to bj . For each j ∈ {1, . . . , r}, the
following procedure is executed: if there is an inherited
attribute A ∈ B(bj) and a rule bj .A = f(as1 .At1 , . . . ,
asl .Atl), and if all of xs1 .At1 , . . . , xsl .Atl have already
been evaluated, then evaluate yj .A as f(xs1 .At1 , . . . ,
xsl .Atl). The synthesized attributes are evaluated in the

same fashion, only the LHS and RHS are reversed.
Let us proceed to our running example. The goal is to

translate an arbitrary flowchart belonging to the language
of the GGFC grammar to the equivalent C code. We
define the following two attributes:

• code: This synthesized attribute is assigned to each
a-labeled edge in the production set. It holds the C
translation of the graphical statement derived from
the associated edge a. The code attribute for the
edge in the axiom graph holds the C translation of
the entire flowchart.

• label: This inherited attribute is assigned to each
empty vertex in the production set. At the beginning
of the attribute evaluation procedure on a given
flowchart, the value of the label attribute is ini-
tialized to an empty string for each empty vertex
in the flowchart.

We do not translate the primitive statements and condi-
tions, since we are interested only in the control flow. We
merely assume that each PrimStat vertex and each Cond
vertex has an associated code attribute that contains
the C code for the primitive statement or condition
represented by that vertex.

The attribute evaluation rules for individual produc-
tions are shown in the right column of Table 1. The rules
employ the following special operators and functions:

• ⊕ denotes string concatenation (a ⊕ bc = abc);
• (if C then E1 else E2) equals E1 if the condition

C is satisfied, and E2 if this is not the case;
• isEmpty(s) returns true iff the string s is empty;
• newLabel() returns a unique label;
• ϵ represents an empty string.
Let us first consider the expressions involving the

code attribute without paying attention to the label
attributes. The C code for a sequence of statements
(production p1) is obtained by concatenating the transla-
tions of individual constituents. The code of a primitive
statement is just the code associated with the vertex
PrimStat. The code of a graphical if-then statement is
obtained by embedding the code associated with the
vertex Cond and with the edge a on the production RHS
into the if (. . .) {. . .} framework. The code for the
graphical if-then-else, while, and do-while statements is
obtained in a similar fashion. The code for the graphical
goto statement is goto b, where b is a unique label
assigned to the target vertex of the goto jump.

The code attributes are evaluated in the second (right-
to-left) pass over the derivation of a given flowchart.
During the first (left-to-right) pass, the inherited label
attributes are evaluated. Every empty vertex that is the
target of at least one goto statement receives a unique
label. (The if-then expression within the v3.label := . . .
statement ensures that a label is reused if it already
exists.) By the end of the first pass, all the goto targets
have received the unique labels. When computing the

32 FÜRST

Table 2. Attribute evaluation procedure for the derivation of Fig. 1.

Derivation step Evaluation

6 v5.label = a1
8 e8.code = v14
7 e3.code = a1: while (v12) { v14 }
6 e7.code = goto a1;
5 e6.code = if (v10) { goto a1; }
4 e5.code = v9
3 e4.code = v9 if (v10) { goto a1; }
2 e2.code = do { v9 if (v10) { goto a1; } } while (v7);
1 e1.code = if (v3) { a1: while (v12) { v14 } }

else { do { v9 if (v10) { goto a1; } } while (v7); }

code attribute for a statement, we check whether the
empty vertex marking the beginning of the statement
has a nonempty label; if it has, it must be the target of
at least one goto, and so we have to prepend the label
and a colon to the code for the statement.

Table 2 shows the attribute evaluation procedure for
the derivation of Fig. 1. To simplify the notation, we
write vi instead of vi.code. At the end, the code attribute
for the edge in the axiom graph (e1.code) contains the
translation of the entire flowchart.

5 CONCLUSION

We introduce a concept of the attributed context-
sensitive graph grammars as a natural extension of the
attributed textual grammars. If the syntax of a graph
language is specified by a graph grammar, its semantics
can be defined by the attributes attached to individual
grammar elements and by the rules for evaluating the
attributes during the traversal of a derivation of a given
graph. As an example, we define a graph grammar of
flowcharts and specify a set of the attributes and attribute
evaluation rules used in translating individual flowcharts
into the C code. The ‘semantics’ of a particular flowchart
is thus defined as the C code that represents the same
control flow as the flowchart. The presented example can
be incorporated into a visual tool. Such a tool can be
beneficial in introductory programming courses, where
control structures are often presented by flowcharts.
By translating the flowcharts to an equivalent textual
code, the instructor can show the connection between
a graphical and a textual representation of the control
flow.

Recently, we proposed a novel method to convert
metamodels (a declarative formalism for defining graph
sets) to the equivalent context-sensitive graph grammars
[8]. We showed that the semantics of models conforming
to a given metamodel can be defined by an attributed
graph grammar. However, the concept of the model
semantics is as-yet underexplored. Our future efforts

might thus be directed towards strengthening the con-
nection between the (meta)models, graph grammars and
formalisms for specifying semantics.

REFERENCES

[1] D. E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127–145, 1968.

[2] J. Paakki. Attribute grammar paradigms—a high-level method-
ology in language implementation. ACM Computing Surveys,
27(2):196–255, 1995.

[3] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, and U. Mon-
tanari, editors. Handbook of graph grammars and computing by
graph transformation (Vols. 1.–3.). World Scientific, 1997–1999.

[4] J. Rekers and A. Schürr. Defining and parsing visual languages
with Layered Graph Grammars. Journal of Visual Languages
and Computing, 8(1):27–55, 1997.

[5] F. Han and S. Chun Zhu. Bottom-up/top-down image parsing
with attribute grammar. IEEE Trans. Pattern Anal. Mach. Intell.,
31(1):59–73, 2009.

[6] S. Baumann. A simplified attributed graph grammar for high-
level music recognition. In Intl. Conf. on Document Analysis and
Recognition, Montreal, Canada, pages 1080–1083. IEEE, 1995.

[7] G. Zinßmeister and C. McCreary. Drawing graphs with attribute
graph grammars. In Graph Grammars and Their Applications
to Computer Science, Williamsburg, VA, USA, pages 443–453.
Springer, 1994.

[8] L. Fürst, M. Mernik, and V. Mahnič. Converting metamodels
to graph grammars: doing without advanced graph grammar
features. Software and Systems Modeling. (to be published;
DOI: 10.1007/s10270-013-0380-2).

[9] L. Fürst, M. Mernik, and V. Mahnič. Improving the graph
grammar parser of Rekers and Schürr. IET Software, 5(2):246–
261, 2011.

[10] E. W. Dijkstra. Letters to the editor: go to statement considered
harmful. Commun. ACM, 11(3):147–148, 1968.

Luka Fürst received his B.Sc., M.Sc., and Ph.D. degrees from the
Faculty of Computer and Information Science of the University of
Ljubljana in 2004, 2007 and 2013, respectively. Since 2004, he has
been employed with the same faculty, where he is currently working
as a teaching assistant. His research interests include graph grammars,
machine learning and graph algorithms in general.

