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Abstract. Two popular particle swarm optimization (PSO) formulations; fuzzy–PSO (FPSO) and chaos–PSO 
(CPSO) have previously been studied in the literature. The charisma factor in FPSO gives the ability to track the 
particles which are closest to the optimum. CPSO has been aimed to search the area by using the chaotic maps. 
These two different algorithms are shown to demonstrate sufficient performance independently. Unfortunately, 
comparisons of their performances are currently unavailable. In this study, both FPSO and CPSO algorithms are 
examined. The underlying mechanisms and motivations for these methods are discussed. The performances for 
FPSO and CPSO are compared. The results are presented using benchmark functions. 
 
Keywords: particle swarm optimization, logistic map, chaos, fuzzy logic. 
 
 

1 INTRODUCTION 

Inspired from the social and cognitive behaviors of ani-
mals living as swarms, particle swarm optimization 
(PSO) provides a simple but very powerful tool for 
researchers who are dealing with collective intelligence. 
This optimization algorithm is shown to demonstrate an 
outstanding performance for complex problems. The 
algorithm depends on modeling the very basic random 
behavior (exploration capability) of the individuals in 
addition to their tendency to revisit positions of good 
memories (cognitive behavior) and the tendency to keep 
an eye on and follow the majority of the swarm 
members (social behavior) as illustrated in Fig. 1.  
    The balance among these three major approaches is 
the key to success of the algorithm. But still, 
occasionally this algorithm is observed to have 
problems such as getting stuck at local optima and 
stagnation at the application of the PSO algorithms (ex. 
Controller parameter tuning mechanical and antenna 
design). Thus, in order to avoid these problems, various 
improvements have been proposed. The hybrid particle 
swarm optimization algorithms have recently gained 
attention due to this particular reasoning. 
  

2 CONVENTIONAL PARTICLE SWARM 

OPTIMIZATION (PSO)  

Swarm intelligence constitutes a very significant portion 
of the literature regarding nature inspired methods.  The 
term "swarm intelligence" has been a major 
multidisciplinary attraction center for researchers 
dealing especially with complicated inverse (e.g. design 
and synthesis) problems since its introduction by Beni 

and Wang [1] with the context of cellular robotic 
systems. Typically, a swarm intelligence system 
consists of a population with members having some 
characteristic behavior and local interaction with each 
other. In this system, the individual members have 
freedom to a certain extent to interact with each other. 
These interactions yield a global behavior even though 
there is no dictating centralized mechanism. This global 
behaviour is much more organized and directive than a 
stand-alone individual. 
    Today, two main algorithms dominate the "swarm 
intelligence" approach. These are the Ant Colony 
Optimization (ACO) which is proposed in 1992 by 
Dorigo [2], later formalized by Dorigo, Di-Caro and 
Gambardella [3], and the Particle Swarm Optimization 
(PSO) which was proposed by Kennedy and Eberhart 
[4]. Both algorithms were developed by observing the 
behaviour of animals living as swarms/colonies and 
getting inspired by them, and for more than a decade, 
they proved to be successful in solving various complex 
problems. Originally, ACO was designed for 
combinatorial optimization problems; whereas PSO was 
designed for continuous ones. Later, successful versions 
of continuous ACO [5] and discrete PSO [6] have also 
been developed. 
    Very similar to the genetic algorithm (GA), PSO 
algorithm is initialized with a population of random 
solutions. However, unlike GA each potential solution 
is also assigned a randomized velocity and the potential 
solutions. These solutions are called particles, and are 
“flown” through the problem space. When compared 
with the GA, PSO has a simpler concept, easier 
implementation and faster convergence. PSO has gained 
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much attention on wide applications in various fields, 
especially during the last decade. 
    Existing innovations on the PSO algorithm are ac-
complished by the variation of PSO mechanism itself, 
both in mathematics and topology and also by taking 
advantage of other optimization techniques, such as GA 
[7]. Moreover, the innovations on the PSO algorithm 
can be categorized into five groups; exploration be-
haviour adjustment, searching area adjustment, 
parameter adaptation, neighbourhood topologies and 
hybrid methods. The behavior of the swarm is based on 
local and global exploration of particles. The 
exploration of the swarm can be controlled via 
algorithm parameters. Thus, various topologies result 
from the improvement on the PSO algorithm. Hybrid 
methods utilize the combinations of different algorithms 
such as the PSO-GA structure. 

2.1 Fundamentals of Particle Swarm Optimization 

The PSO algorithm depends on motions of particles 
(swarm members) searching for the global best in N-
dimensional continuous space. The position of each 
particle is simply a solution candidate, and at each time 
step the fitness of this candidate is re-evaluated. In 
addition to its exploration capability (tendency for 
random search throughout the domain), each particle 
has a cognitive behavior (remembering its own good 
memories and having the tendency to return there); as 
well as a social behavior (observing the rest of the 
swarm and having the tendency to go where most other 
particles go). 
    The original PSO formulation of Kennedy and Eber-
hart [4] depends on the update of the position xi and the 
velocity vi of the i'th particle (swarm member) and is as 
follows. 
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where c1 and c2 are measures indicating the tendencies 
of approaching to pbest and gbest which are the best 
positions achieved personally by the i'th particle and the 
whole swarm, respectively.  In other words, c1 and c2 
are the measures of the cognitive and the social 
behaviors (called cognitive and social parameters 
respectively), respectively. In earlier PSO studies, the 
values of these parameters were set to 2.0 whereas for 
recent PSO studies 1.494 is observed to be the most 
preferred value for c1 and c2. rand() is a random number 
between 0.0 and 1.0, and the time step size ∆t is usually 
selected to be unity for simplicity. 
 
 

2.2 PSO Algorithm 

 
Initialize random velocity and position 
Do 
  For i = 1 to swarm size 
        Calculate fitness function (fit) which is the 
minimization function  
        If fit < best pattern                
             ith particle best position = ith particle position 
             best pattern = fit 
        end if 
  end for 
  find min best pattern and corresponding particle 
  For i = 1 to swarm size 
        Update velocity 
        Update position 
  end for 
  Check the limits of the maximum velocity 
while break if maximum iterations or minimum error  

 
The methodology of the PSO algorithm can be divided 
into two different categories based on the information 
sharing methods which are called "gbest" and "lbest" 
methods. 
 
"gbest" Method: 

Each particle is moved to the optimal value. Thus, the 
information related to positioning must be shared 
between the particles. In "gbest" (global best) method, 
the information related to each member of the swarm is 
shared with all swarm numbers. 
 
"lbest" Method: 

In "lbest" method (local best), each of the particle po-
sitions are shared only with the neighbourhood particles. 
Thus, a topology for neighbourhood should be defined. 
  

3 FUZZY – PARTICLE SWARM OPTIMIZATION  

In conventional PSO algorithm, the influence of the best 
particle of the swarm is applied as the third additive 
parameter in the formulation in (1). The best particle in 
the swarm is applied to change the trajectory of each 
particle as given in Fig. 1. In this manner, the particle 
moves to the direction of the best particle position and 
best swarm position. More than one best solution can be 
found if more than one particle is utilized. Abdelbar et 
al. [8] used a group of best particles (instead of a single 
best) in the PSO formulation. Each group member is 
assigned with the multiplier which is called the 
charisma factor. The influence of each best particle to 
others is calculated using this charisma value. The sum 
of these influences is applied to the original 
formulation. The FPSO formulation is given in (3). 
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Figure 1. Change of the particle position. 
 

 

Figure 2. Example of the Cauchy distribution. 
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where ( )hdpΨ  is defined as charisma function. This 

function is a membership function which promotes the 
name; Fuzzy PSO. Abdelbar et al. [8] used the Cauchy 
distribution as the charisma function since the growth of 
the corresponding values are further away from the 
centre which means the Cauchy has a “long tail”. In 
summary, the effects of the particles with longer 
distance from the global best position have smaller 
effects. In (4), the charisma function is defined, and in 
Fig. 2 the behaviour of this function is presented. 
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where f(.) is the fitness function. Abdelbar et al. [8] 
applied the parameter values as  c1 = 0.5, c2 = 0.6,  k = 3 
and  l = 1.6. In this study, the same values are used for 
the comparisons. Abdelbar et al. [8] also proposed the 
usage of other distribution functions instead of the 
Cauchy distribution. In this study however, due to its 
proven performance, the Cauchy distribution is 
preferred. 

3.1 Fuzzy–PSO Algorithm  

Initialize random velocity and position 
Do 
  For i = 1 to swarm size 

Calculate fitness function (fit) which is the 
function to be minimized 
If fit < best pattern                

ith particle best position = ith particle position 
best pattern = fit 

end if 
end for 
find the first k min best pattern and corresponding 
particle 
For i = 1 to swarm size 

   Find charisma values for k particle 
Update velocity 
Update position 

end for 
  Checking the limits of the maximum velocity 

 

4 CHAOS – PARTICLE SWARM 

OPTIMIZATION 

Hybrid particle swarm optimization algorithms have 
gained attention because of the aforementioned 
drawbacks of the conventional PSO algorithm. As a 
novel improvement, chaos based approaches are also 
being applied to the PSO recently via the chaotic maps. 
    The chaotic map can be helpful to escape from a local 
minimum [9], and it can also improve the global/local 
searching capabilities. Chaos is applied to PSO in 
various ways, and can be generally categorized into two 
methods. In the first method (FM), the chaos map is 
used against the random number generator. Chaos is 
used; to control the values of the parameters in velocity 
update formulation, to determine the inertia weight 
coefficient w, and to generate the c*rand() coefficients. 
In the second method (SM), chaos is used to interact 
with the PSO algorithm in search of the solution space. 
Results in the literature demonstrate that the second 
method is better [10]. 

4.1 Chaotic Maps 

The discrete-time dynamical system in the iteration 
form in (5) is called mapping or simply a map. 

( )PxFx ii ,1 =+     (5) 

where P is the control parameter, x is a vector and F is a 
nonlinear transformation [11]. The chaotic map is 
applied for each dimension of the problem space and for 
each particle when SM is preferred. Thus, a time 
requirement for SM depends on the dimension and the 
population of the PSO. One-dimensional maps include 
chaotic behaviour. These maps have been used in many 
applications due to their simplicities. The Logistic Map 
which  is  a  model  of population biology,  is frequently  

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5



A COMPARATATIVE STUDY OF FUZZY–PSO AND CHAOS–PSO 71  

 
Figure 3. Bifurcation diagram of the Logistic Map. 
 
used with PSO [12-14]. This map is a unimodal map of 
finite interval and single maximum as given below.  

( )iii xxx −=+ 1 1 µ    (6) 

where µ  is set to 4 for ergodicity. The bifurcation 
diagram of the Logistic Map is illustrated in Fig. 3. 

 4.2 Variable Mapping 

For chaotic search, the initial value of the chaotic map 
must be determined.  The easiest way is to determine 
the initial value as a random number in [0,1]. The most 
common way to find the initial value is to define the 
carrier method by defining a decision variable from 
PSO variables, and to map this variable into the chaotic 
domain by using the carrier equation as defined in (7) 
[10]. 
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where cxi  is decision variable which is the initial value 
of the chaotic map, x is the position of the particle and 
Xmin and Xmax are the boundaries of the position.  

4.3 Inverse Variable Mapping 

After determination of the chaotic variable from cha-
otic map with the initial value from variable mapping, 
the chaotic variable is converted into the particle 
velocity using (8). 

( )minmaxmin XXcxXx i −+=                (8) 

4.4 Search Space 

If the search space extends to a wide area the search 
operation cannot be completed in a reasonable amount 
of time [13]. Thus, in order to obtain high performance 
the chaotic search is run in a small range. This search 
area is changed in the current optimal solution 
neighbourhood [15] as given in (9) and (10). 

( )[ ]minmaxminmin    ,max XXrxXX g −−=               (9) 

( )[ ]minmaxmaxmax    ,min XXrxXX g ++=            (10) 

 
where xg is the global best  position and r is the variable  
defined in [0,1]. The search efficiency is expected to 
increase if the range of the chaotic search is decreased. 

4.5 Chaos–PSO Algorithm 

Initialize random velocity and position 
Do 
  For i = 1 to swarm size 

Calculate fitness function (fit) which is the function to 
be minimized 

     If fit < best pattern                
ith particle best position = ith particle position 
best pattern = fit 

 end if 
  end for 
  find min best pattern and corresponding particle 
  For i = 1 to swarm size 
     Update velocity 
     Update position 
  end for 
  Checking the limits of the maximum velocity 
  For k = 0 to any number 

Execute variable mapping that maps the positions  
into chaos variables  
Use Logistic map and find new chaos variable 

  Execute Inverse Variable Mapping that convert 
chaos variable into positions 

 If new position < old position 
    Position = New Position 
    Break 

  End if 
  end for 
  end for 
while break if maximum iterations or minimum error  
  end for 

5 SIMULATION AND RESULTS  

In this study, two different PSO formulations are com-
pared based on the benchmark functions given in Table 
1. Two different types of benchmark functions are used 
in this study; unimodal and multimodal. A unimodal 
function has only one optimum whereas a multimodal 
one has many local optima. As the dimension of the 
unknown function increases, the performance of the 
algorithm decreases. Hence, in this study, higher 
dimensional  benchmark  functions  are  used.  After the 
simulations are executed, the results presented in Table 
2 are obtained.  
    Results illustrate that for unimodal functions the 
FPSO outperforms the CPSO. However, for the 
multimodal function CPSO proves itself to be much 
better, especially for its success in avoiding local 
minima. 
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Table 1: The three benchmark functions used in our 
experimental studies where n is the dimension of the function, 
S is the feasible search space, and fmin 

is the minimum value of 
the function. 
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Table 2: Comparison of our proposal with the inertial weight 
PSO formulation (Swarm Size = 25, Number of Iterations = 
100, Number of Independent PSO Executions = 100). 

 Fuzzy PSO 

Function Min. Mean  Standard  

Deviation 
f1 0 8.6816e-007 8.6816e-006 
f2 0 3.8593e-023 3.8593e-022 
f3 1.0002 1.0002 4.4633e-016 

  

Chaos PSO 
f1 4.6697e-056 1.0951e-010 1.0886e-009 
f2 0 5.1018e-021 5.1006e-020 
f3 0 9.0965e-005 5.6348e-004 

6 CONCLUSION  

In this study, two interesting PSO formulations; FPSO 
and CPSO are compared via benchmark functions. In 
FPSO, the parameter called charisma is defined and 
used as the weighting coefficient of the best position 
group. Instead of one particular leader particle, several 
particles are allowed to influence the other particles. In 
CPSO, the search of the global optimum point is 
accomplished by using the chaotic search approach. 
This method is used to ensure that there is no other best 
solution in the vicinity of the search area. 
    It is observed that the CPSO has a better performance 
than the FPSO for multimodal benchmark functions. It 
is shown that the CPSO is a better candidate for real 
time applications. However, this method has 
computational complexity and has the disadvantage of 
working slower than FPSO. 
    The definition of the Chaotic Fuzzy PSO algorithm 
and the comparisons with the PSO formulations 
available in the literature are planned as future studies. 
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