
ELEKTROTEHNIŠKI VESTNIK 79(1-2): 19–24, 2012
ENGLISH EDITION

Implementation of the r.cuda.los module in the open
source GRASS GIS by using parallel computation on
the NVIDIA CUDA graphic cards

Andrej Osterman
Telekom Slovenije d.d., Cigaletova 15, 1000 Ljubljana, Slovenija
E-mail: andrej.osterman@telekom.si

Abstract. Parallel computing is in expanding phase in GIS applications. A very attractive solution for parallel
computing are the NVIDIA graphic cards, with a parallel computing platform and the CUDA (Compute Unified
Device Architecture) programming model. The basis for this paper is the r.los module used to calculate optical
visibility (LOS - Line of Sight), which is already implemented in the GRASS GIS environment. A completely
new r.cuda.los module with the same functionality as the r.los module is presented. By using the r.cuda.los

module for radio planning purposes of limiting the computation along the vertical and horizontal angle is also
make possible. Visibility is calculated for each slice. The responsibility for the calculation of each slice is with
its own thread from the parallel processor. At the size of the map of 28161x 17921 points with the resolution
12, 5mx 12, 5m, the computation time is 18 s. In parallel computing the GIS data, the performance can be one,
two or even three size classes faster than in the sequential computing.

Keywords: CUDA, parallel programming, GRASS GIS, GPU, Line of Sight, LOS, cartography

1 INTRODUCTION

The use of geographical information systems (GIS) is
in ascent. As in other areas, here, too, are gaining
importance of open-source packages. The paper is based
on the GRASS GIS (Geographic Resources Analysis
Support System) open-source package [1]. GRASS GIS
is an open-source environment providing uniform way
of editing and analyzing the geographical data. It also
contains tools producing the desired services. Poor
characteristic of individual tools in GRASS is their
relative calculation slowness, because of the usually used
relatively large maps on which is preformed sequential
computing. The time needed for the calculation is in
the sequential method proportional to the product of the
calculation time of the function itself and the number of
points (size of the map).

A better option is parallel calculation. In parallel
computing, the computation time can be pretty much
reduced by converting parts of the program from the
sequential to the parallel way.

In parallel computing we need to solve some other
problems which are not occur at sequential computing,
such as synchronization of parallel tasks. One of the
most currently popular solutions to represent the parallel
programming are graphical units from CUDA (Compute
Unified Device Architecture) family. The new archi-
tecture enables parallel computing (also non-graphical

Received December 12, 2011
Accepted March 12, 2012

mathematical problems) on the graphic card itself ([2]).
In this paper we focus on the r.los module to calculate

optical visibility (LOS - Line of Sight), which has
already been implemented in the open-source GRASS
GIS environment. The r.los sequential module is used to
calculate visibility from the observer. The main input is a
digital map of the terrain height (DEM - digital elevation
model). The module must also be provided with the
point of interest POI (the coordinates x, y), height above
the ground of observation and the maximum distance
of observation (max dist). The r.los sequential module
is relatively slow for computing. Because of the long
computation time it is practically unusable over the
maximum distance of observation of more than 40 km in
the digital map with the resolution of 100 x 100 m, since
the computation time is more than 30 s. In this paper we
present a new module for computing visibility (LOS -
Line of Sight). The new module gets insertion cuda and
is called r.cuda.los. In the main computation, parallel
processing CUDA on NVIDIA graphics card is used. It
turns out that the r.cuda.los parallel module calculates
the visibility by a factor of 10 to 1000 faster than
the r.los sequential module. The main time consuming
factor in no longer computation but the read and write
digital map from the hard disk into the host memory
and then to the GPU global memory, and the way back.

Because of the possible use of the r.cuda.los module
for radio planning purposes, parameters are added for
the direction, scope azimuth (horizontal angle of the
radiation ’antenna’), slope (tilt) and the scope of tilt

20 OSTERMAN

(vertical angle of the radiation ’antenna’). The module
has been successfully used in the initial planning of the
radio sector in mobile technology.

The paper is organized as follows. In section 2,
preparation of the digital relief map is described. Section
3 talks about preparation of the global memory. Section
4 describes geometries of individual slices (thread) in
the line of sight calculation. The heart of the program,
the kernel, is described in section 5, where the truncated
source of the kernel is given. In section 6, the results
of the calculation and a comparison between the r.los
sequential module and r.cuda.los module are given. In
section 7, the pros and cons of the new implementation
are discussed. The possible improvements of the new
module are also proposed.

2 PREPARATION OF THE DIGITAL MAPS

The digital elevation map (DEM) is stored on the hard
disk in the raster shape. The digital map is read from the
hard disk into the host memory and then copyed to the
global memory on the GPU on which parallel computa-
tion over data is performed. After the calculation is com-
pleted, the required result is transfered from the GPU
device to the host memory and then written to the hard
disk. Reading and writing to the hard drive is done with
conventional C functions fread() and fwrite() .
Data transfer from the host to the GPU device and back
is made by the cudaMemcpyHostToDevice() and
cudaMemcpyDeviceToHost() functions.

It turns out that the most of computer time (more
than 90%) is consumed by the above-mentioned func-
tions. These sequential functions transfer data from one
medium to another. Parallel computation on the data is
performed on the GPU device.

The memory is allocated as a global memory on
the GPU. This means that any thread can access this
memory from any block equally. This is why it doesn’t
matter how the threads are organized into blocks.

3 PREPARATION OF THE MEMORY

The dimension of the input digital map is R ∗C, where
R is the number of rows and C the number of columns.
Each point of the map contains an integer value (two
or four bytes), which represents the altitude. The input
memory is shown in Fig. 1.

If the size of the digital map is greater than approx-
imately half of the available memory on the graphics
card, the input map must be divided into several bands.
Computation is made by the graphics card first to the
band where the point of interest is located, from which
we wish to calculate visibility. The computation order
is: input memory 2; input memory 1; input memory 0;
input memory 3.

(xobs,yobs,hobs+hpoi)
POINT OF INTEREST

Point in the input memory (integer or short)

input memory 0

input memory 1

input memory 2

input memory 3

Slice from the point of interest to the edge point

Point of Interest, observer location

Figure 1. Input memory

(xobs,yobs,hobs+hpoi)
POINT OF INTEREST

Point in the output memory (integer or short)

Temporary current slope in the edge vector (double)

output memory 0

output memory 1

output memory 2

output memory 3

Slice from point of interest to the edge point

Vn

Vw

Vs

Ve

Point of Interest, observer location

Figure 2. Output memory and tilt vectors

For the output digital map (where the result is stored)
the same size of R ∗ C should be provided. First , the
values of null must be filled in. This can be done quickly
by parallel computing. Also, reservations must be made
for four double vectors {Vn, Vs, Vw, Ve}. Vw, Ve have
R elements and Vn, Vs have C elements. In these four
vectors there are temporary vertical angles stored. The
units are in radians. Prior to computing, each element
of all the four vectors are filled with the value −π/2.
This value represents the view directly to the ground by
the observer. Looking straight toward the horizon has
the value 0, looking straight up has the value of π/2.

IMPLEMENTATION OF MODULE R.CUDA.LOS INTO GRASS GIS 21

4 VISIBILITY CALCULATION FOR
INDIVIDUAL SLICES

Visibility is calculated for each slice. It is always started
at the point of interest. According to the pre-calculated
step, we move to the edge point of the map (see Fig.
2, the red line from POI to the edge of the map). Their
own thread from parallel processor is responsible for
the computation of each slice. For each point of each
slice, distance d is computed from POI to the current
point (equation (1)). (xobs, yobs) is the coordinate of the
observer (POI). (xd, yd) is the coordinate of the current
point. d is the distance between these two points.

d =
√

(xobs − xd)2 + (yobs − yd)2 (1)

For each point in the slice, vertical angle α is com-
puted (see Eq. (2) and Fig. 3).

POINT

OF

INTEREST

h
p
o
i

tilt angle

visible area

α

distance d

(xd,yd,hd - hc)

Point of Interest

Figure 3. Slice

α is the angle (tilt) under which the observer sees
point (xd, yd). hd is the above sea level of point (xd, yd).
The altitude at which the observer is located is marked
by hobs. The height above the ground observer is hpoi.

α = arctan

(
(hd − hc)− (hobs + hpoi)

d

)
(2)

In equation (2) the height correction factor is hc. It
occurs due to the curvature of the Earth (Fig. 4) calcu-
lated by using equation (3) in which the average radius
of the Earth is 6370.997 km. The observer altitude is
not considered because of the resulting error just on the
fourth decimal place when the average distance from the
center of the Earth for a particular area is entered.

(hc + rearth)
2 = d2 + r2earth

hc =
√
d2 + r2earth − rearth

(3)

New value α is written to the element of vector V [tid]
when new computed value α is greater than the value
in the element of vector V [tid]. At the same time, the
current point is characterized as visible. This means α
is written to the output map.

However, if value α is smaller than the value in the
element of vector V [tid], nothing has been done (in the
output map there is already null written).

In this way, the visible points are written with the α
values at the output map. At invisible points there is
null written. If the output folder is written in the integer
format, π/2 must be added to the result and multiplied
by 105 before it is written to the output map.

r
e
a
rth

r
e
a
rth

d

h
c

Figure 4. Correction of the height due to the Earth curvature

5 REALIZATION OF THE PROGRAM,
KERNEL

A simplified source code of the kernel (a piece of
the code performed by the graphics card with CUDA
architecture [2]) for computing the visibility is listed
below.

Organization of threads by blocks is in this case not
important as they do not cooperate with each other.
Global memory is used for storing the digital map to
which all the threads have an equally shared access. The
weakness of the global memory access is relatively slow
latency of a few of the 10 clock periods [2]. However,
there is no other option because of the huge size of the
digital maps.

For any input data which during the kernel operation
does not change (maximum distance, azimuth limits, re-
strictions on the slope ...), the so-called constant memory
(__constant__) is used.

At the beginning, each thread gets its own index
(tid). Index threadIdx.y represents the so-called four sub-
threads. It is designed to set and enforce computation
lobes to the north, south, west and east side of the digital
map. At the end, the step displacement (xstep and ystep)
is calculated leading the computation from the POI to
the map boundary point. In the listing there is no sign
of calculation step given. However this depends on the
direction of the sky the computation is moving to (i.e.
the sign depends directly on threadIdx.y).

22 OSTERMAN

The main loop is actually running variables x and
y from the POI to the edge point. Inside the main
loop distance d, angle α and height adjustment h c are
computed for each point in the slice. In the original
code, the azimuth (angle from the north) is calculated.
Depending on azimuth and tilt, computation can be
limited (if so set in the input parameters).

Angle α is compared with the value in the element of
vector V [tid]. If angle α is greater than or equal to the
element of vector V [tid], the current computation point
is visible and angle α is written to the output map.

The number of threads in the kernel depends on the
size of the map. The number of threads is N = 2 ∗
C +2 ∗R, where C is the number of columns and R is
the number of rows. The way the threads are organized
into the blocks in this particular case is not important
because they all use the global memory of the GPU.
t i d = t h r e a d I d x . x + b l o c k I d x . x * blockDim . x ;
x s t e p = 1 . 0 ;
y s t e p = 1 . 0 ;

sw i t ch (t h r e a d I d x . y)
{
case 0 :

i f (t i d>c o l s) re turn ;
x end= t i d ;
y end =0;
V=V n ;
x s t e p = f a b s ((x end − x obs) / (y end − y obs)) ;
break ;

case 1 :
i f (t i d>c o l s) re turn ;
x end= t i d ;
y end=rows ;
V=V s ;
x s t e p = f a b s ((x end − x obs) / (y end − y obs)) ;
break ;

case 2 :
i f (t i d>rows) re turn ;
x end =0;
y end= t i d ;
V=V w;
y s t e p = f a b s ((y end − y obs) / (x end − x obs)) ;
break ;

case 3 :
i f (t i d>rows) re turn ;
x end= c o l s ;
y end= t i d ;
V=V e ;
y s t e p = f a b s ((y end − y obs) / (x end − x obs)) ;
break ;

}

t i l t =−PI / 2 . 0 ;

/ / l oop from POI t o edge p o i n t
f o r (x=x obs , y=y obs ; (x<=c o l s) and (y<=rows) ;

x+= x s t ep , y+= y s t e p)
{

d= s q r t ((x−x obs) * (x−x obs)
+(y−y obs) * (y−y obs)) ;

h c= s q r t (d* r e s o l *d* r e s o l +6370997 .0*6370997 .0)
−6370997.0;

h= r e a d i n p u t m a p (x , y) ;
h=h−h c ;
a l p h a = a t a n ((h−h obs) / d) ;
i f (a l p h a > (V[t i d]−0.00005))
{

w r i t e o u t p u t m a p (x , y , a l p h a) ;
i f (a l p h a > V[t i d]) V[t i d]= a l p h a ;

}
/ / POI red c o l o r
i f (d<2.5)
{

w r i t e o u t p u t m a p (x , y , PI / 2) ;
}

}
s y n c t h r e a d s () ;

6 COMPARISON OF R.LOS AND
R.CUDA.LOS

The r.cuda.los module is run from the terminal com-
mand prompt as r.los module. Both modules are tested
in a PC computer running Linux. The graphics card is
NVIDIA GeForce GTX 560Ti, CPU is Intel Core(TM)
Duo CPU E8200 @ 2.66GHZ and memory size is 2.0
GiB.

NVIDIA GeForce GTX 560Ti Graphics Card has the
following important properties:

- global memory: 1024 MB
- CUDA cores: 336
- maximum threads per block: 1024
- version: 2.1

More detailed information about the above graphic
card are available on the website [8].

Fig. 5 shows an example of computing the r.los
module on a map with the resolution of 25mx 25m.
The maximum distance of computing is 10 km, and
the height above the ground of the observer is 20 m.
The same computation is made with the new r.cuda.los
module (Fig. 6). There is no difference in the pictures.
They are intentionally shown in different colors, which
is made with a r.color module.

The warm colors (yellow, orange, red) in Fig. 6
represent the observer view above the virtual horizon
line (negative tilt), while the cold ones (light blue,
dark blue) represent the observer view below the virtual
horizon line (positive tilt).

Table 1 shows a comparison between the computation
times for the two modules. A combination of three
different input maps with three different resolutions is
shown (100mx 100m, 25mx 25m in 12, 5mx 12, 5m).
For each resolution, the combinations of four distances
were 5 km, 10 km, 20 km and 50 km. The computation
time for each combination is given in seconds.

When calculating with many points (or longer dis-
tances with a dense resolution map), the r.los module
is no longer appropriate, since computation time is
practically useless (on the table it is marked with a dash).

For the map size of 28161x 17921 and resolution
12, 5mx 12, 5m (the entire territory of Slovenia), LOS
can be computed with the r.cuda.los module, the com-
putation time in this case is 18 s.

IMPLEMENTATION OF MODULE R.CUDA.LOS INTO GRASS GIS 23

Table 1. Comparison of the computation times for the r.los
module and the r.cuda.los module

Map [m x m] max dist r.los r.cuda.los

100m x 100m

5 km 0.1 s 0.05 s
10 km 0.2 s 0.06 s
20 km 2.2 s 0.09 s
50 km 44 s 0.15 s

25m x 25m

5 km 2.4 s 0.3 s
10 km 30 s 0.3 s
20 km 511 s 0.6 s
50 km - 1.3 s

12.5m x 12.5m

5 km 32 s 0.7 s
10 km 516 s 1.2 s
20 km - 3.1 s
50 km - 6.8 s

Figure 5. LOS computation with the r.los module

7 DISCUSSION AND CONCLUSIONS

Anyone dealing with the GIS environment knows that
producing geographic data is an accurate, diligent and,
above all, time-consuming work. Deliberate preparation
of the GIS data contributes to faster and easier process-
ing. However computing the data is also very important.
A key role is an appropriate hardware supported by an
optimal software.

Processing geographical data just cries out for parallel
computation. If we compare the sequential and parallel
computation of the GIS data, in parallel computation the
execution can be for one, two or even three size classes
faster!

Paper [2] writes in general about the CUDA archi-
tecture. Besides the technical value of this paper, its
importance for the Slovenian terminology in this new
technical branch is considerable, too.

Figure 6. LOS computation with the r.cuda.los module

In the GRASS-GIS environment there have been sev-
eral researches on parallel computing made. One of them
is [3] in which parallel computing deals with clusters of
servers with each server doing a task.

In paper [4] a general procedure of programming GIS
in CUDA is described and an example is given on an
averaging filter (meanfilter).

The paper [5] describes implementation of digital map
projection transformations they using CUDA.

Paper [6] does not describe parallel computing but the
group already working on implementation of modules in
a parallel computing mode.

Our paper does not address the general problem of mi-
gration from the sequential to parallel computing mode.
Its focus is on improving the existing r.los module.

A general shift to using the parallel computing method
will probably happen after the number of specific mod-
ules in the parallel computing mode has reached the
critical point.

For the r.los module, the on-line source code is
freely available. Nevertheless, the r.cuda.los module is
completely new.

Both modules produce the same result and use the
GRASS data file recording method. Running the pro-
gram for both modules are quite similar. Most of the
arguments are same. For additional functionality of
r.cuda.los module some further arguments are required.

The new r.cuda.los module is written for the CPU
and GPU. The compiler is nvcc (instead of gcc for
GRASS).

GRASS has made an extremely effective framework
for building modules. This framework also includes a
GUI to run the module itself and an attached frame to
support the application module. As the new r.cuda.los
module has not yet joined the GUI frame, it can only

24 OSTERMAN

run through the command line.
The new module is limited to two modes of the record

input and output map. Namely, the r.cuda.los module
can read the uncompressed mode of the record in the int
or short type. The results (the output map) are obtained
in the same format as the input data (the input map).
Disadvantages of the current implementation are shown
here, because we are writing down only the integer
values to the output file. If are small values written (as
in our case where the written angles α are between the
values of −π/2 and π/2), multiplied values must be
written down, e.g.multiplied by 105. Record in the form
of double is waiting for implementation.

If the input map is recorded in compressed mode, it
must be expanded with a r.compress module.

Table 1 shows advantages of parallel computing. It
shows the execution time of the modules r.los and
r.cuda.los according to the input data. The r.los module
becomes very slow for large values of max dist. We
can see that computation of r.los becomes very slow for
values of max dist greater than 50 km for digital maps
with the resolution of 100mx 100m, and for the values
of max dist greater than 5 km for digital maps with
the resolution of 12.5mx 12.5m.

The r.cuda.los module still has some room for
improvement. It is important to improve the time-
consuming reading of the digital file from the hard disk
and writing back to it. One of the options is to record
the digital map in a compressed format. For the GPU
unit a kernel should be written for fast finding the values
of the points (quick indexing) in a compressed format.

Certainly, parallel computing is very promising for
GIS systems, for its speeding up the execution times for
some size classes.

REFERENCES

[1] GRASS GIS, http://grass.fbk.eu
[2] Tomaž Dobravec, Patricio Bulić, Strojni in programski vidiki

arhitekture CUDA, Elektrotehniški vestnik 77(5): 267−272, 2010
[3] Fang Huang, Dingsheng Liu, Peng Liu, Shaogang Wang, Yi Zeng,

Guoqing Li, Wenyang Yu, Jian Wang, Lingjun Zhao, and Lv Pang,
Chinese Academy of Sciences, Beijing, China,
Northeastern University, Shenyang, China
Research On Cluster-Based Parallel GIS with the Example of
Parallelization on GRASS GIS , Grid and Cooperative Computing,
2007. GCC 2007. Sixth International Conference on

[4] Yong Zhao, Zhou Huang, Bin Chen, Yu Fang, Menglong Yan,
Zhenzhen Yang, Institute of Remote Sensing and Geographic
Information System, Peking University
Local Acceleration in Distributed Geographic Information Pro-
cessing with CUDA, Geoinformatics, 2010 18th International
Conference on.

[5] Yanwei Zhao, Zhenlin Cheng, Hui Dong, Jinyun Fang, Liang
Li, Institute of Computing Technology, Chinese Academy of
Sciences, Graduate University of Chinese Academy of Sciences
FAST MAP PROJECTION ON CUDA, Geoscience and Remote
Sensing Symposium (IGARSS), 2011 IEEE International.

[6] Andrej Hrovat, Igor Ozimek, Andrej Vilhar, Tine Celcer, Iztok
Saje, Tomaž Javornik, An Open-Source Radio Coverage Predic-
tion Tool, Department of Communication Systems, Jozef Stefan

Institute, Mobitel, d.d. ISSN: 1792-4243, ISBN: 978-960-474-
200-4

[7] Jasons Sanders, Edward Kandrot, CUDA by Example, Addison-
Wesley, 2011

[8] NVIDIA GeForce GTX 560 Ti,
http://uk.geforce.com/hardware/desktop-gpus/geforce-gtx-560ti

Andrej Osterman graduated in 1991 from the Faculty of Electrical
Engineering, University of Ljubljana with his thesis entitled Graphical
presentation of the antenna direction diagrams in the programming
language C++. He works at the Telekom Slovenia, Radio network
department. His current work includes mobile network statistics, GIS
tools and programming in open-source systems.

