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Abstract. Angular orientation refers to the position of a rigid body intrinsic coordinate system relative to a 
reference coordinate system with the same origin. It is determined with a sequence of rotations needed to move 
the rigid-body coordinate-system axes initially aligned with the reference coordinate-system axes to their new 
position. In this paper we present a novel way for representing angular orientation. We define the Simultaneous 
Orthogonal Rotations Angle (SORA) vector with components equal to the angles of three simultaneous rotations 
around the coordinate-system axes. The problem of non-commutativity is here avoided. We numerically verify 
that SORA is equal to the rotation vector – the three simultaneous rotations it comprises are equivalent to a single 
rotation. The axis of this rotation coincides with the SORA vector while the rotation angle is equal to its 
magnitude. We further verify that if the coordinate systems are initially aligned, simultaneous rotations around 
the reference and rigid-body intrinsic axes represent the same angular orientation. Considering the SORA vector, 
angular orientation of a rigid body can be calculated in a single step thus avoiding the iterative infinitesimal 
rotation approximation computation. SORA can thus be a very convenient way for angular-orientation 
representation. 
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1 INTRODUCTION  

Angular orientation refers to the position of a rigid-body 
intrinsic coordinate system relative to a reference 
coordinate system with the same origin. It is determined 
with a rotation needed to move the rigid-body 
coordinate system initially aligned with the reference 
coordinate system to its new position.  
 The reference and the rigid-body intrinsic coordinate 
system are considered Cartesian with axes , ,x y z and 

', ', ',x y z  respectively. Orientation of the system axes 

conforms to the right hand rule. Both coordinate 
systems are illustrated in Fig. 1. 
 According to the Euler’s rotation theorem [1 p.83] 
any two independent coordinate systems of the same 
origin can be related by a sequence of not more than 
three rotations around the coordinate axes, where no 
two successive rotations may be about the same axis. 
The successive rotation axis distinction restriction from 
the Euler’s theorem permits twelve different rotation 
axes sequences.  
 Angular orientation can be specified as a sequence of 
rotations around the reference or rigid-body intrinsic 
coordinate-system axes. This consideration doubles the 
number of possible rotation sequences. As rotation 
sequences are not commutative, each of these 24 
rotation sequences in general specifies different angular 
orientations. 

 

Figure 1: Reference and rigid-body intrinsic coordinate 
systems. 
 
In this paper we present angular orientation with three 
simultaneous rotations around the coordinate-system 
axes. We define the Simultaneous Orthogonal Rotations 
Angle (SORA) vector with components equal to the 
angles of these three simultaneous rotations, thus 
avoiding the problem of non-commutativity. SORA 
represents a unique position of a rigid-body intrinsic 
coordinate system relative to a reference coordinate 
system with the same origin.  
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 We numerically verify that SORA is equal to the 
rotation vector – the three simultaneous rotations of the 
SORA notation are equivalent to a single rotation. The 
axis of this rotation coincides with the SORA vector 
while the rotation angle is equal to its magnitude. To 
allow for verification, we compare matrix 
representations of angular orientation obtained by using 
SORA and by considering the total rotation being a 
consequence of a repeating sequence of approximately 
infinitesimal rotations around three coordinate axes. The 
order of applying infinitesimal rotations is not 
important, as these are shown to be commutative [2]. 
 

2 ANGULAR ORIENTATION REPRESENTATION  

Said above, angular orientation is determined with a 
rotation needed to move a rigid-body coordinate system 
initially aligned with the reference coordinate system to 
its new position. Many different notations are used to 
represent rotation. These include Euler angles, rotation 
matrix, axis and angle, rotation vector, and quaternions. 
There exist also some other notations like the Rodrigues 
and Cayley-Klein parameter, but are not widely used. 

2.1 Euler angles 

The three successive rotation angles described in the 
Euler’s rotation theorem are called Euler angles [1 p.83, 
3, 4]. If the rigid-body intrinsic and the reference 
coordinate systems are initially aligned, the Euler angles 
sequence may be identified by specifying the axes of 
rotation of each of the three rotations. These are 
expressed in terms of the reference coordinate system 
and the two intermediate coordinate systems [3]. The 
orientations of these two intermediate coordinate-
system axes are specified with the first and the second 
successive rotation. The first rotation may be about any 
of the three orthogonal axes of the reference coordinate 
system. Considering the successive rotation-axis 
distinction restriction, the second and third rotation may 
be about either of the two axes of the first and second 
intermediate coordinate system. This gives twelve 
Euler-angle sequence possibilities. Each of these twelve 
sequences is equivalent to one of the possible twelve 
rotation sequences around the reference coordinate-
system axes. This gives a total of 24 different notations. 

2.2 Axis and angle 

The Euler’s rotation theorem also states that any 
rotation about the three coordinate-system axes can be 
expressed as a single rotation about some new axis. The 
axis and angle [5, 6] is a pair comprising a unit vector 
representing a rotation axis and an angle of rotation 
around that axis: 
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2.3 Rotation vector 

 The rotation axis and angle can be comprised in a 
single non-normalized rotation vector which has the 
same direction as the rotation axis while its magnitude 
is equal to the rotational angle: 
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 It is important to note that successive rotations 
cannot be represented by rotation vector addition.  

2.4 Rotation matrix 

Angular orientation of the rigid-body coordinate system 
can be completely specified with a system of three base 
vector equations. Each base vector of the rigid-body 
intrinsic coordinate system is expressed as a linear 
combination of the reference base vectors: 
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Nine parameters from equations (3) form a 3x3 rotation 
matrix [7]: 
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 Matrix (4) represents a rotation needed to move the 
rigid-body intrinsic coordinate system initially aligned 
with the reference coordinate system to its new position. 
The rotation matrix (4) is real and orthonormal: 
 

 1T T⋅ = ⋅ =R R R R   (5) 
  
having a determinant equal to:  
 

 1=R   (6) 

  
 A product of two or more rotation matrices is again a 
rotation matrix, representing a rotation sequence, where 
the rotation order in a sequence is important. 
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2.5 Quaternion 

Quaternions [1 p.106-112] form a four-dimensional 
vector space with base elements denoted with 1, i, j, and 
k:  
 
 q a i b j c k d= + ⋅ + ⋅ + ⋅  (7) 

where: 

 2 2 2 1i j k i j k= = = ⋅ ⋅ = −  (8) 

 
In expression (7), a refers to quaternion q real part and 

, ,b c and d to its imaginary parts. A thorough insight 

into different quaternion operations can be found in [1 
p.106-112]. It has been shown that a normalized 
quaternion: 

 2 2 2 2 1a b c d+ + + =   (9) 
 
represents a rotation of angle ϕ  around an oriented 

vector [ ]0 0 0x y z . The rotation angle and axis are 

defined with the components of the normalized 
quaternion: 
 

 cos sin sin sin
2 2 2 2

q i j k
ϕ ϕ ϕ ϕ

= + ⋅ + ⋅ + ⋅  (10) 

 
Rotation of arbitrary vector v  is expressed as a 
quaternion product: 

 *

Rv q v q= ⋅ ⋅   (11) 

 
where the oriented rotation vector and angle are given 

with quaternion q components (10). *q denotes the 

complex conjugate ofq . Vectors vand Rv in equation 

(11) appear as quaternions with real parts equal to 0. 
 Angular orientation of the rigid-body intrinsic 
coordinate-system axes using quaternions is then 
represented according to the following: 
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where imaginary parts of quaternions

, , , ', ',x y z x yqu qu qu qu qu  and 'zqu   are equal to the 

respective coordinate-system base vectors while their 
real part is equal to zero.   
 A product of the quaternions representing rotations is 
also a quaternion representing the sequence of these 
rotations where, as is the case with the rotation matrices, 
the rotation order in a sequence is important. 
 

3 SIMULTANEOUS ORTHOGONAL ROTATIONS 

ANGLE  

3.1 Definition 

In the chapter above, our focus was on sequential 
rotations enabling us to represent angular orientation of 
a rigid-body coordinate system. Let us now represent 
angular orientation with constant simultaneous 

rotations. Let , ,x yω ω and zω
 

represent angular 

velocities of the rigid-body intrinsic coordinate axis 
rotating around the reference axes and let further 

, ,x yφ φ and zφ represent the respective angular 

displacements. We can then write: 

 ; ; .yx z
x y z

dd d

dt dt dt

φφ φω ω ω= = =  (13) 

 
 Let us further consider angular velocities as vectors:  
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 Angular velocity vectors (14) are aligned with 
rotation axes and their magnitudes are equal to angular 
velocities. Their sum is a 3D angular velocity vector: 
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 Considering (13)-(15) we define SORA, as a new 
notation used in representing angular orientation: 
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where t is the total time of rotation. The components of 
the SORA vector (16) are the angles of the three 
simultaneous rotations around the coordinate-system 
axes.  
 According to the Euler’s rotational theorem, as 
mentioned above, any rotation about the three 
coordinate-system axes can be expressed as a single 
rotation about some new axis. Let us now assume that 
the three simultaneous rotations comprised in the SORA 
vector can be considered as one single rotation, the axis 
and angle of which are equal to the SORA vector 
orientation and magnitude, respectively: 
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 2 2 2

x y zϕ φ φ φ= = + +Φ  (18) 

  
 For the time being we are unable to prove this 
assumption. However, we can verify it numerically. Our 
verification is presented in the next section. 

3.2 Numerical verification 

Finite rotation denoted with rotation matrix R can be 
represented as an infinite sequence of infinitesimal 
rotations denoted with rotation matrix .dR Let us 
consider this representation and approximate the three 
simultaneous rotations around the reference coordinate-
system axes described in the previous section withn   
consecutive sequences of rotations around the 

coordinate-system axes for small angles, ,x yφ φ∆ ∆  and

zφ∆   where 

 ; ;yx z
x y z

n n n

φφ φφ φ φ∆ = ∆ = ∆ =  (19) 

 
 Each of these rotation sequences can be represented 

with rotation matrix xyz∆R : 

 ( , ) ( , ) ( , )xyz z z y y x xφ φ φ= ∆ ⋅ ∆ ⋅ ∆∆R R u R u R u  (20) 

 

where rotation matrices ( , ), ( , ),
x x y y

φ φ∆ ∆R u R u and 

( , )z zφ∆R u represent individual rotations around the 

coordinate-system axes.  
 To rotate the rigid-body intrinsic coordinate system 

for angles , ,x yφ φ and zφ the above sequence of small 

rotations must be repeated n  times. The rotation matrix 
of the infinite sequence of infinitesimal rotations 

approximation
 

( )xyz nR is thus given as the thn  power 

of rotation matrix
xyz∆R : 

 

 ( ) n

xyz xyzn =R ∆R   (21) 

 
 We can obtain any other of the 12 possible sequences 
simply by changing the matrix multiplication order in 
the above procedure. As infinitesimal rotations are 
commutative [2], we expect, for largen , to obtain the 
same result with different rotation sequences.   
 The above rotation matrix represents rotation around 
the reference coordinate-system axes. If the rigid body 
rotates around its intrinsic coordinate-system axes, the 

corresponding approximation rotation matrix denoted 
with ( ) 'xyz nR can be obtained by performingn  steps of 

the following recursive equations: 
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where the initial value of rotation matrix ( ) 'xyz nR is: 

 
 

0( ) 'xyz n =R I   (23) 

 
and I is a 3 × 3 identity matrix.   
 Let us now say that our approximation is good 
enough provided the resulting rotation matrices for the 
two considered rotation sequences around the reference 
coordinate-system axes ( )xyz nR  and ( )yzx nR  match 

up to the 6th decimal place. We calculated the rotation 
matrices according to the above procedure using 
Mathematica [8] for numerous examples. For all, the 

demanded precision was achieved when 710n = .  

 We further calculated rotation matrix ( ) 'xyz nR  

representing rotations around the rigid-body intrinsic 

coordinate axes when 710n =  for the same example 

set. Comparing ( ) 'xyz nR
 
with respective ( )xyz nR and 

( )yzx nR  results, these also matched up to the 6 decimal 

place. This shows that rotations around the reference 
and rigid-body intrinsic coordinate-system axes give the 
same result.  

 Finally, we calculated rotation matrix SORAR  

representing a single rotation around an axis defined 
with the SORA vector orientation (16) and for an angle 
defined with the SORA vector magnitude (17) as 

specified in the previous section. The SORAR results 

matched all considered approximations of rotation 

matrices ( )xyz nR , ,( )yzx nR and ( ) 'xyz nR
 

up to the 

demanded precision for all considered examples. This 
verifies that the SORA vector is equal to the rotation 
vector.  
 As said above, a number of numerical examples were 
considered. Here we present only an illustrational 
example where angular orientation of a rigid-body 
coordinate system is represented with angular velocity 

angles 0.75xφ = , 0.90,yφ = and 0.60.zφ = Our results 

obtained by using Mathematica [8] for 710n = all 
matched up to the 6th decimal place:  
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4 CONCLUSION  

In this paper we defined the Simultaneous Orthogonal 
Rotations Angle (SORA) vector with components equal 
to the angles of three simultaneous orthogonal rotations 
around the rigid-body intrinsic coordinate axes.  
 We numerically verified that SORA is equal to the 
rotation vector – the three simultaneous rotations it 
comprises are equivalent to a single rotation around the 
SORA vector and for an angle equal to its magnitude.  
 We further showed that simultaneous rotations 
around the reference and rigid-body intrinsic 
coordinate-system axes represent the same angular 
orientation. 
 Considering the SORA vector, angular orientation of 
a rigid body can be calculated in a single step thus 
avoiding the iterative infinitesimal rotation 
approximation computation. 
 SORA can thus be a very convenient way for angular 
orientation representation.  
 In our further research, we will try to derive the 
presented results analytically. 
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