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Abstract. Angular orientation refers to the position of gidi body intrinsic coordinate system relative to a
reference coordinate system with the same origiis. determined with a sequence of rotations ne¢dadove
the rigid-body coordinate-system axes initiallygakd with the reference coordinate-system axefdw hew
position. In this paper we present a novel wayrémresenting angular orientation. We define theuBameous
Orthogonal Rotations Angle (SORA) vector with computseequal to the angles of three simultaneousiootat
around the coordinate-system axes. The problenoofcommutativity is here avoided. We numericallyifye
that SORA is equal to the rotation vector — thedhsienultaneous rotations it comprises are equivatea single
rotation. The axis of this rotation coincides withe SORA vector while the rotation angle is equalit$o
magnitude. We further verify that if the coordinalestems are initially aligned, simultaneous rotadi around
the reference and rigid-body intrinsic axes repretiee same angular orientation. Considering thRS®ector,
angular orientation of a rigid body can be caladain a single step thus avoiding the iterativénitésimal
rotation approximation computation. SORA can thus aevery convenient way for angular-orientation
representation.
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1 INTRODUCTION y

Angular orientation refers to the position of aditpody )
intrinsic coordinate system relative to a referenci
coordinate system with the same origin. It is dateed
with a rotation needed to move the rigid-body
coordinate system initially aligned with the refece
coordinate system to its new position.

The reference and the rigid-body intrinsic cooatin
system are considered Cartesian with axey, Zand

X', y', Z', respectively. Orientation of the system axes

conforms to the right hand rule. Both coordinate
systems are illustrated in Fig. 1.

According to the Euler’'s rotation theorem [1 p.83]
any two independent coordinate systems of the san
origin can be related by a sequence of not mora th:
three rotations around the coordinate axes, where n
two successive rotations may be about the same adgure 1: Reference and rigid-body intrinsic cooatén
The successive rotation axis distinction restrictimm  Systems.

the Euler's theorem permits twelve different raiati ] ] ] ]
axes sequences. In this paper we present angular orientation witlee

Angular orientation can be specified as a Sequeﬁcesimultaneous. rotation; around the coordinate—sy;tem
rotations around the reference or rigid-body irsign axes. We define the S|mt_JItaneous Orthogonal Ratsitio
coordinate-system axes. This consideration doubles Angle (SORA) vector with components equal to the
number of possible rotation sequences. As rotatigdles of these three simultaneous rotations, thus
sequences are not commutative, each of these 240iding the problem of non-commutativity. SORA

rotation sequences in general specifies differegutar féPresents a unique position of a rigid-body irsiign
orientations. coordinate system relative to a reference coordinat

system with the same origin.
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We numerically verify that SORA is equal to the

rotation vector — the three simultaneous rotatiohnthe &
SORA notation are equivalent to a single rotatibhe (@.9)=||a |.¢ (1)
axis of this rotation coincides with the SORA vecto a

while the rotation angle is equal to its magnitude.
allow for_ verification, we compare  matrix 2 3 Rotation vector
representations of angular orientation obtainedisiyig

SORA and by considering the total rotation being a The rotation axis and angle can be comprised in a
consequence of a repeating sequence of approxymateingle non-normalized rotation vector which has the
infinitesimal rotations around three coordinatesaxéhe same direction as the rotation axis while its magla

order of applying infinitesimal rotations is notis equal to the rotational angle:
important, as these are shown to be commutative [2] a (¢
r=a =|a 2
2 ANGULAR ORIENTATION REPRESENTATION ' 9 4 v 2)
a, [y

Said above, angular orientation is determined veith
rotation needed to move a rigid-body coordinateesys
initially aligned with the reference coordinate teys to
its new position. Many different notations are used
represent rotation. These include Euler anglestioot
matrix, axis and angle, rotation vector, and quades.
There exist also some other notations like the Rads
and Cayley-Klein parameter, but are not widely used

2.1 Euler angles

It is important to note that successive rotations
cannot be represented by rotation vector addition.

2.4 Rotation matrix

Angular orientation of the rigid-body coordinatestgm
can be completely specified with a system of thragse
vector equations. Each base vector of the rigidybod
intrinsic coordinate system is expressed as a rlinea
combination of the reference base vectors:

The three successive rotation angles describedhan t

Euler’s rotation theorem are called Euler anglep.B3,
3, 4]. If the rigid-body intrinsic and the referenc
coordinate systems are initially aligned, the Ealegles
sequence may be identified by specifying the axXes

rotation of each of the three rotations. These are

expressed in terms of the reference coordinatesisyst

u =t +r o+

®3)

u =r i+ W+ W

(o] [
u, =, 4, W+, [,

z

and the two intermediate coordinate systems [3 THVINE parameters from equations (3) form a 3x3 iwtat
orientations of these two intermediate coordinatdMatrix [7]:

system axes are specified with the first and tloose
successive rotation. The first rotation may be alaoy
of the three orthogonal axes of the reference doatel
system. Considering the successive
distinction restriction, the second and third rotatmay
be about either of the two axes of the first ancbsd

rotation-axis

N T T
R = hy Ty Ty (4)
r.xz r.yz r.zz

intermediate coordinate system. This gives twelve Matrix (4) represents a rotation needed to moee th

Euler-angle sequence possibilities. Each of thestve

rigid-body intrinsic coordinate system initiallyigthed

sequences is equivalent to one of the possiblevewelWith the reference coordinate system to its nevitipos
rotation sequences around the reference coordinatel® rotation matrix (4) is real and orthonormal:

system axes. This gives a total of 24 differenations.

2.2 Axisand angle

RIR"=R'[R=1 (5)

The Euler's rotation theorem also states that arfyaving a determinant equal to:

rotation about the three coordinate-system axesbean
expressed as a single rotation about some newEhés.
axis and angle [5, 6] is a pair comprising a umitter
representing a rotation axis and an angle of wnati
around that axis:

IR|=1 (6)

A product of two or more rotation matrices is agai
rotation matrix, representing a rotation sequemndere
the rotation order in a sequence is important.
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2.5 Quaternion 3 SIMULTANEOUS ORTHOGONAL ROTATIONS
Quaternions [1 p.106-112] form a four-dimensional ANGLE

vector space with base elements denoted withj,lamd 3.1 Definition

k: '

In the chapter above, our focus was on sequential
g=a+ilb+ jle+k[d (7) rotations enabling us to represent angular oriemtadf
a rigid-body coordinate system. Let us now represen

where: . . ” X
angular orientation with constant simultaneous

i=j*=k*=ig&k=-1 (8) .
rotations. Let &), ),andw, represent angular

In expression (7)arefers to quaterniorg real part and velocities of the rigid-body intrinsic coordinateis

b, c,and d to its imaginary parts. A thorough insightrotating around the reference axes and let further
into different quaternion operations can be foundli %% andg,represent  the  respective  angular
p.106-1;2]. It has been shown that a normalizedisplacements. We can then write:
quaternion: _dg  _dg dg

2 12, A2 2 _ w T = y W, =—=, 13
a’+b’+c’+d?=1 9) T Y T g i (13)

represents a rotation of angig around an oriented . -
Let us further consider angular velocities as mext

vector [x0 Yo ZO]. The rotation angle and axis are

defined with the components of the normalized
guaternion:

4 4

W, 0 0
Q=0Q=lw|;Q =0 (14)
0 0
g =cos—+il[kin—+ j Dsir£+ szi|£ (10)
2 2 2 2

Angular velocity vectors (14) are aligned with
Rotation of arbitrary vectorv is expressed as a rotation axes and their magnitudes are equal talang

quaternion product: velocities. Their sum is a 3D angular velocity wect
Ve = Qe (11) o

where the oriented rotation vector and angle avergi Q=Q +Q +Q =, (15)

with guaternion gcomponents (10).q* denotes the w

z
complex conjugate @f. Vectors vand Vg in equation
(11) appear as quaternions with real parts equal to Considering (13)-(15) we define SORA, as a new
Angular orientation of the rigid-body intrinsic notation used in representing angular orientation:
coordinate-system axes using quaternions is then

represented according to the following: w, @,
L X O=Ql=\w =g (16)
qu, "= qlau, Edl* @ @
qu, = qCau, @ (12)
. « where t is the total time of rotation. The compdsesf
qu, "= qlau, [9 the SORA vector (16) are the angles of the three
simultaneous rotations around the coordinate-system
where imaginary parts of quaternionsgxes.

qu,, qu,, qu,, qu, ',quy ' and qu,' are equal to the Ac_cordlng to the Euler's r(_)tatlonal theorem, as
mentioned above, any rotation about the three
%oordinate-system axes can be expressed as a single
rotation about some new axis. Let us now assumie tha
the three simultaneous rotations comprised in OBRS
§ctor can be considered as one single rotati@naxis

and angle of which are equal to the SORA vector
orientation and magnitude, respectively:

respective coordinate-system base vectors while th
real part is equal to zero.

A product of the quaternions representing rotatisn
also a quaternion representing the sequence oé th
rotations where, as is the case with the rotatiatrioes,
the rotation order in a sequence is important.
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corresponding approximation rotation matrix denoted

() (0] 17) with nyz(n) 'can be obtained by performingsteps of

||<I)|| / + ¢2 + ¢ the following recursive equations:
. =R(Ag,R,,(N)7})
p=|o)=\g+g +¢ (18 =Rag.P Q) 22)

For the time being we are unable to prove this nyz(n) = R(Ag,Q; )
assumption. However, we can verify it numericalyr
verification is presented in the next section. where the initial value of rotation matri® ,(n)"is:

3.2 Numerical verification

Finite rotation denoted with rotation matri® can be nyz(n) o=l (23)

represented as an infinite sequence of infinitesima

rotations denoted with rotation matdR.Let us andlis a 3x 3 identity matrix.

consider this representation and approximate theeth Let us now say that our approximation is good
simultaneous rotations around the reference coatelin €nough provided the resulting rotation matricestfa
system axes described in the previous section rwithtwo considered rotation sequences around the refere

consecutive sequences of rotations around tleordinate-system axeR  (n) and R, (n) match

coordinate-system axes for small andhg, A(q,, and up to the & decimal place. We calculated the rotation
matrices according to the above procedure using

Ag, where Mathematica [8] for numerous examples. For all, the
1) @ o, demanded precision was achieved winer 10’ .
'Y 't n We further calculated rotation matfx ,(n)'

representing rotations around the rigid-body irsidn
Each of these rotation sequences can be reprdsentg, dqinate axes whem =10° for the same example
with rotation matrbAR,, : set. ComparingR,,(n)' with respectiveR ,(n) and

AR, =R(Ag,u,)[R(Ag,u,)R(Ag.u,) (20) R, (n) results, these also matched up to the 6 decimal

place. This shows that rotations around the refsren

where rotation matricesR(A(DX,Ux), R(Awy,uy),and and rigid-body intrinsic coordinate-system axesedive
same result.

R(A@,,u,) represent individual rotations around the Finally, we calculated rotation matrixR .,

coordinate-system axes. : ; . : .
- L . representing a single rotation around an axis ddfin
To rotate the rigid-body infrinsic coordinate syt with the SORA vector orientation (16) and for amlan
for angles ¢, ¢, and ¢, the above sequence of smalldefined with the SORA vector magnitude (17) as

rotations must be repeatetltimes. The rotation matrix specified in the previous section. THR ., results

of the infinite sequence of infinitesimal rotationSmatched all considered approximations of rotation
: : R R th . ,

approximationR ,(n) is thus given as th&™ power matricesR ,(n) R, (n),andR ,(n)' up to the

of rotation matrixAR |, : demanded precision for all considered exampless Thi
verifies that the SORA vector is equal to the iotat
R AR " vector. .
M(n) — Ay (21) As said above, a number of numerical examples were

considered. Here we present only an illustrational
We can obtain any other of the 12 possible seqgsencexample where angular orientation of a rigid-body
simply by changing the matrix multiplication ordigr ~coordinate system is represented with angular itgloc
the above procedure. As infinitesimal rotations arangles ¢, = 0.75, @, =0.90 ,andg, = 0.60.0ur results
commutative [2], we expect, for large to obtain the
same result with different rotation sequences. obtained by using Mathematica [8] fon=10"all
The above rotation matrix represents rotation mgou Matched up to the"edecimal place:
the reference coordinate-system axes. If the tigidy
rotates around its intrinsic coordinate-system axes
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In this paper we defined the Simultaneous Orthobon%ung-Researcher Scheme in the Laboratory of

Rotations Angle (SORA) vector with components equatommunication Devices at the same faculty. Her reea
to the angles of three simultaneous orthogonatioots.  focuses on systems and protocols for mobile comeation
around the rigid-body intrinsic coordinate axes. and wireless sensors.
We numerically verified that SORA is equal to the
rotation vector — the three simultaneous rotatiins
comprises are equivalent to a single rotation atdhe
SORA vector and for an angle equal to its magnitude
We further showed that simultaneous rotations
around the reference and rigid-body intrinsic
coordinate-system axes represent the same angular
orientation.
Considering the SORA vector, angular orientatibn o
a rigid body can be calculated in a single stepsthu
avoiding the iterative infinitesimal rotation
approximation computation.
SORA can thus be a very convenient way for angular
orientation representation.
In our further research, we will try to derive the
presented results analytically.
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