
ELEKTROTEHNIŠKI VESTNIK 78(1-2): 18–23, 2011
ENGLISH EDITION

Transforming computer-vision applications into useful
web services

Bojan Kverh
University of Ljubljana, Faculty of Computer and Information Science, Tržaška 25, Ljubljana
E-mail: bojan.kverh@fri.uni-lj.si

Abstract. Web services are applications, offering their service to different clients on the web. In this paper
we will explain how to transform a standalone desktop computer vision application into a web service so that
minimal, if any, changes in the application will be required. In this way we completely avoid all the trouble,
arising from trying to distribute the application to different operating systems with different configurations. As
computer-vision applications tend to be computationally expensive, they are usually not written in managed
programming languages, like Java or C#. Our implementation runs on the Linux operating system with the
Apache web server and uses the PHP scripting language and the NuSoap library. The latter allows for an easy
implementation of web-service functions and a client, using web-service functionality.

Key words: web services, web applications, computer vision

1 INTRODUCTION

Web services [3] are internet applications, that offer their
services to different users. They are used in a variety
of different areas [7] and enable using their services in
different dynamic web pages and other internet appli-
cations. In this paper, we will address the possibility
of using web services for transformation of computer-
vision algorithms into internet applications. We will
focus on transforming the existing desktop applications
in a way requiring as few changes in the existing
source code as possible. Furthermore, the services of
the existing destop computer vision applications will be
made available for being used in different web pages.

Computer-vision applications are usually created as
standalone desktop applications, that can be run on the
operating system, they have been created for. The main
reason for this is that these applications are computation-
ally expensive and executing them in virtual machines
(like Java for example) would even further slow them
down. If we want to offer these applications to other
users, we may encounter the problem of distributing
them. The application can be offered in the form of an
executable program, but this is limited to the operat-
ing system and the environment (libraries) where the
application was compiled. It is possible to compile the
application for a variety of different systems and offer a
compiled version for each of them however, this requires
a lot of effort in both distribution and mantainance.
Distributing the application source code is much easier,
but it can also be much more frustrating to the user,

Received 12 October 2010
Accepted 15 November 2010

for being left by himself with the challenge to compile
the application on his particular system. The trouble
can be avoided by using the approach developed by
Skočaj [10]. He extends the application with the CGI
functionality over which the application communicates
with an HTTP server. To do this, it is necessary to
adapt the application for receiving the data, commands
and presentation of the obtained results. Also, this
kind of application is only available on servers, with
the application itself physically present. Since the time
Skočaj presented this approach, internet has evolved
drastically; new technologies have been made available
allowing transforming standalone desktop applications
into web applications with less effort. With the evolution
of computer hardware over the years, it is also more
feasible to use different scripting languages presenting
the basis for different internet applications, dynamic web
pages and web services.

The web service technologies developed in the last
few years present the opportunity to offer their services
to anyone interested in using them. These services
allow us to use the functionality implemented on one
particular server on any other web page in the way we
desire. The rest of this paper will describe a particular
transformation of a standalone application into the web-
service with all the details needed to take care of when
implementing the transformation.

2 WEB SERVICE AND ITS CLIENTS

From the dynamic web-page developer point of view, the
web service is just a set of functions performing certain
tasks or providing certain information. These functions

TRANSFORMING COMPUTER-VISION APPLICATIONS INTO USEFUL WEB SERVICES 19

can take parameters defining our requests in more detail
and returning some results. Clients and web services,
running on a server usually communicate via the SOAP
protocol [6], which is based on the XML language.

In our particular case, after receiving a request from
a client, our web service will execute a standalone
application on the server which will perform the required
operations and save the results. The results will be sent
back to the client after the standalone application is
terminated. In our opinion, the easiest way to achieve
this kind of behavior is to adapt the application to react
to a set of different parameters passed to it from the shell
command. By using these parameters the operations
to be executed by the application must be specified.
Some applications, specially those with a graphical user
interface, cannot be controlled by the command shell
parameters. However, adapting the application to this
kind of control, is usually fairly simple. Next, the
application needs to be able to save the obtained results
in a particular form, but most of the applications already
have this kind of functionality implemented.

The client using the web service can be any dynamic
web page or internet application. It has to make sure
that it calls the right web-service function with suitable
parameters and that it allows enough time for the service
to come up with the final results. If the latter requirement
is not fulfilled, we could face the “Server did not respond
in time” error.

3 IMPLEMENTATION

Our web-service was implemented using the PHP script-
ing language and the NuSOAP library [4] on the Linux
operating system, running the Apache web server. Linux
and Apache were chosen for their reliability at serving
web pages and their leading role in the world of servers.
PHP is a very popular scripting language for dynamic
web-page development, while the NuSOAP library sim-
plifies creating web services and their clients.

3.1 Web services
Web service implementation using the NuSOAP li-

brary must act on a particular request from clients. It
has to recognize the function that the client wants to be
executed and transform the request into a shell command
which will then execute a standalone application. The
application must read the command-line parameters,
execute proper operations, save the results to a hard
disk and terminate. After its termination, the web service
reads the saved results from the disk and passes them
as the result of a function call to the client. The entire
system is shown in Fig 1

The NuSOAP library allows easy creation of web-
services, as illustrated in the PHP code below:

require_once(‘‘lib/nusoap.php’’);

ClientWeb
service

Aplication

harddisk

request +
parametersshell command

R
es

ul
ts

Results
Results

Figure 1. Standalone application as web service.

$server = new nusoap_server;
$server->configureWSDL(‘‘segmentWS’’);
$server->register("segment",

array(‘‘x’’ => ‘‘xsd:int’’,
‘‘y’’ => ‘‘xsd:int’’),
array(‘‘result’’ => ‘‘xsd:string’’));

$server->service($HTTP_RAW_POST_DATA);

This piece of code first makes sure that proper library
files are included and made available for the rest of the
code to use their classes. Then it creates an instance
of class nusoap_server. The third line of the code
enables the clients to receive the description of all the
functions and their parameters on request in a special
WSDL language (Web Service Description Language).
The fourth line of the code contains registration of the
web-service function made available to the clients. The
function name, parameters and the form of the result
to be returned to the client have to be specified. In the
last line of the code, there is a call of the function that
receives and recognizes the client requests and executes
proper functions. Besides, we have to implement a
function (in our case it is the function “segment”), with
all the parameters specified at registerating it as one of
the web service functions:

function segment($x, $y)
{ ...

}

This function has to be implemented in the way
enabling it to execute a standalone application that will
perform the requested operations. The NuSOAP library
makes sure that the returned results are all transformed
into the SOAP form and sent back to the client.

There is a special issue when executing applications
with a graphical user interface or showing the results
in a graphical form. Namely, in a Linux environment,
the web applications and services are usually executed
under special system user apache which, however,
is not permitted to execute graphical user interface
applications for security reasons. We can resolve this
issue by using the VNC server [2]. This can be executed
by the apache user and attach it to one of the virtual
screens of the graphical desktop. In the web service
function, we have to change the line:

20 KVERH

exec($command);

which executes the standalone application, into

exec(‘‘export DISPLAY=’’.$dsp.‘‘; ’’
.$command);

Before doing this, $dsp variable is assigned the number
of virtual screen used by the VNC server. In this case,
the application is executed in a particular virtual screen
instead in a usual graphical desktop screen. Variable
$command has to consist of the path to the application,
application executable name and eventually also the
parameters, controling execution of operations. Thus,
the application must be able to read the command-line
parameters and execute accordingly. This is also the
only part where we may need to upgrade the original
standalone application when transforming it to the web
service.

4 CLIENT

Implementation of clients using the web services, is also
very simple by using the NuSOAP library. An example
is presented in the code below:

require_once(‘‘lib/nusoap.php’’);
set_time_limit(1200);
$client = new nusoap_client($url.’?wsdl’,

true, false, false, false, false,
1200, 1200);

$result = $client->call("segment",
array(‘‘x’’ => ‘‘9’’, ‘‘y" => ‘‘6’’));

echo ’
’;

After mandatory inclusion of the NuSOAP classes and
setting up the maximum allowed time of execution in
the first two lines of the code, there is a creation of
an instance of the nusoap_client class. We must
pass the URL address of the web server (specified in
variable $url) as the first parameter to the constructor
of this class. With the second parameter set to true, we
request the description of the service and its functions
in the WSDL language. This is followed by a few
more or less important parameters, whose roles can be
found in [4], while the 7th and 8th parameter specify
the maximum allowed connection time and maximum
allowed time for the web service to respond. In our
particular example they are both set to 1200 seconds.
This can be changed in order to accomodate the service
function to take more time to execute. In the next line
of the code there is a call to the web service function
by invoking the “call” method of the nusoap_client
class. This method takes two parameters. The first has
to name the web service function we want to execute.
The second should be an associative array containing
all the parameter names and their values needed for
the specified web service function. The “call” method
returns the result it received from the web service
function which can be used to create a dynamic web
page. In our particular example, we assume that the

service returns the URL address of the image containing
the final results, to show this image on the web page
using the HTML tag img. However, this is not the
only possible way of presenting the results. The web
service can generate any other kind of data as a result
of the processing. In this case, we can offer the user
a “Download” button in the web page to allow him to
download the generated data by clicking on it. Another
positive side of this kind of implementation is that we
can tailor the usage of web services to particular user
needs. If the web services offers a large amount of
parameters to configure, which is not unusual in the
computer vision field, the dynamic page programmers
can make a decision as to which parameters are better
to be configured already in the code and which can be
left to the users for experimentation. The user interface
of the client application can be much more user-friendly
with this approach.

5 FILE TRANSFER

Applications are not particularly useful if they do not
offer their users the possibility to process their own data,
images, files, etc. The same is true for web services.
Processing data being in an appropriate format by using
some application enables us to compare its results with
other applications of the same type and figure out which
one is the best in terms of quality or even the processing
time.

Transfering a file to a web server is usually done
with special forms on web pages, in which the user
specifies the file at his local disk and transfers the file
by clicking on the submittion button. We suggest the
same kind of approach even in the case of using web
services to process a particular user file. However, this
will only upload the file onto a server where the client
application, using the web service, is executed. So, when
using web services, we have to transfer the file also from
the client to the web service, which can be running on
a different server than the client application. One of the
possible ways to achieve this is that the web-service
function is implemented so that it receives the file in
one of its parameters, while the client application reads
the file content into a variable and passes it to the web-
service function as a parameter. The web service then
saves the file content to its local disk and executes the
application which processes the saved data. At both the
client and the web service we have to set up file write
permissions in a way enabling the files to be saved in
particular places. When passing the file content as a
parameter to a web service function, it is advised to use
the “xsd:string” type for text files and “xsd::hexBinary”
or “xsd::base64Binary” for binary files.

TRANSFORMING COMPUTER-VISION APPLICATIONS INTO USEFUL WEB SERVICES 21

5.1 Concurrent usage of web services

Before the application that has been turned into a web
service is offered for general usage, we have to resolve
two minor issues. If the user reloads the page, when it
is waiting for the web service to finish the processing,
the page will again request the same processing from the
web service. Two instances of the standalone application
will be running as a result of the reloading, with one
of them not being needed anymore. Thus we have to
provide a mechanism to remove the not needed instance
of the application as it still uses computer resources.
When the web service is in a general use, there can be
two instances of the application running, but each of
them started by a different user. In this case, however,
no instance should be removed. A possible solution
to this issue is that the web service requires unique
authentication of qither the IP address or the username
and keeps a list of who has executed particular instances
of application via web service. Before the web service
executes an instance of application on a request from
a particular user, it has to remove all the instances,
initiated by the same user in the past, if they are still
running. On the Linux systems, every executed instance
of the application is assigned a unique number, i.e. PID,
which stands for the process identifier. If we want to
find out the PID of the application, we have just started,
we need to execute the following code:

$com = ‘‘export DISPLAY=:’’.$dsp.‘‘;
nasUkaz > /dev/null 2>&1 & echo $!’’;
exec($com, $output);
$pid = (int)$output[0];

Instead of ourCommand, we have to input the actual
shell command which starts the standalone application
with appropriate parameters. The following part outputs
the PID of the initiated process which is then read into
variable $pid.However, the command exec returns the
control to the operating system immediately, and not
after the application finished with its processing. This
allows the web service function to terminate before the
standalone application provides the final results. Thus,
we have ti check periodically whether the application
has indeed finished by using the shell command ps. We
can do this as follows:

$running = 1;
while ($running > 0)
{ $cmd = ‘‘ps ’’.$pid;

exec($cmd, $output);
if (count($output) >= 2) sleep(1);

else $running = 0;
unset($output);
}

Application PID is passed as a parameter to shell com-
mand ps. If execution of this command outputs at least

two lines to the standard output written in the variable
$output, it means that the application is still running.
When the script detects that the application is not
running anymore, the while loop can be terminated.
User identifications together with PID of the application
instance that was initiated by the user are saved into a
specific database table. Before this, the web service has
to find any PID from the same table which is tied to the
current user identification and remove the application
instances with the following command:

exec(‘‘kill -9 ’’.$pid);

The second issue it the file preservation. The uploaded
files and files with the obtained results belonging to one
user must not overwrite those that belong to another user.
This could happen if two files from different users had
the same names. However, this issue can also be resolved
by requiring authentication from the user invoking the
web servies and by renaming the files so that their names
include the user identification.

In case of a concurrent usage of the web servie from
several users, it is necessary to monitor the system
resources usage so that the processor or processors
are not too busy executing the web-service application.
If this happens, accessing the services would become
very time consuming or even impossible. With specific
measurements, we can determine what is the maximum
reasonable number of application instances running on
the system. When the number of application instances,
which we can determine from the database table describe
before, the web service can refuse to do the required
processing. Instead, it should return a message informing
the user that the maximum capacity of the system has
been reached and that he should try to use the service
later.

6 SEGMENTOR

Segmentor [9] is an application segmenting 3D range
images into consistent regions using the Recover-and-
Select paradigm [13], [12]. The main feature of this al-
gorithm is that every region is described with a paramet-
ric model. Region growing depends on the distances of
points in the region neighbourhood from the parametric
model. The points close enough tothe model are included
into the region and new model parameters are calculated
from the points from the extended region. After the
predescribed number of the region growing steps, selec-
tions are performed, retaining only the regions necessary
to cover the entire 3D range image. Since the regions
can overlap with each other after growing, selections
tend to reject the unnecessary ones in order to speed
up the growing process. Selections are based on the
MDL principle [14] ensuring the description of the range
image in terms of the paramteric models and point
residuals to be as short as possible. In our case, the

22 KVERH

Segmentor uses superquadrics [9], [11] as parametric
models, but other models like planes, spheres, cylinders,
cones and tori are also available. For each used model
there has to be an algorithm to calculate the the optimal
model parameter values from a given set of 3D points.
Optimal in this case means that the sum of squared point
residuals is minimal.

We chose this application as an example of turning
it into the web service. We created a web page with
a form where the user can enter three parameters, two
of them being files representing the range image in the
form of triangulated data [8]. When we fill the form
with data as shown in 2, we click on the “OK” button
and start the segmentation process. The selected files

Figure 2. Web form to fill in parameters and filenames

are uploaded from the user’s hard drive onto the client’s
one and the client web application reads the files content
into variables and invokes the web service function using
these variables and the form parameter of the initial
seed size as parameters. The web service saves the
files content on its hard drive and starts the Segmentor
application with adequate parameters. The application
performs segmentation and saves the original 3D image
and final segmentation results on the hard drive and the
web service returns the client the URL address where
these two images can be accessed. The client shows the
images on the web page as shown in 3.

As a standalone application, the Segmentor allows the
user to set up a large number of parameters. To set
them up correctly, it is necessary to know the process
of segmentation. Administrators of web pages using the
Segmentor as the web service can make a decision
about which parameters will have a predefined value
and which ones could be adjusted by users. Using
this approach, the users are not faced with the vast
complexity of standalone application and testing it via
the web service can be much easier. On the negative
side, advanced users knowing the standalone applica-
tion details may be unable to experiment with lots of
parameters as they may be used to them by using the
standalone application.

7 CONCLUSION

In this paper we presented a simple way to turn stan-
dalone applications into web services in the way en-
abling their functionality to be used in different dynamic
web pages. The implementation, which is based on
Linux, Apache, PHP and NuSOAP library is easy and

Figure 3. Two examples of results obtained with the standalone
application turned into web service

elegant. The only requirement when turning a standalone
application into a web service is that the application
execution can be driven by shell parameters at the start
up. In such case, the application can be executed from a
PHP script in which the web service is implemented.
Ideas presented in this paper were use to offer the
functionality of the standalone application Segmentor as
a web service, with which we can perform segmentation
of the 3D range images in the form of triangulation.
Web page [1] uses this serviceand allows us to upload
our own range images, thus making it much more useful.
The web services offer an elegant way to use standalone
applications on systems for which they have never been
planned to be used.

REFERENCES

[1] http://amanda.fri.uni-lj.si/segmentorWS/segClient/client.php.
[2] http://en.wikipedia.org/wiki/Virtual Network Computing.
[3] http://en.wikipedia.org/wiki/Web service.
[4] http://sourceforge.net/projects/nusoap/.
[5] http://www.w3.org/TR/wsdl.
[6] http://www.w3schools.com/soap/default.asp.
[7] http://www.webservicelist.com/.
[8] A. Leonardis B. Kverh, A. Jaklič and F. Solina. Using recover-

and-select paradigm on triangulated data. In B. Zajc, editor,

TRANSFORMING COMPUTER-VISION APPLICATIONS INTO USEFUL WEB SERVICES 23

Zbornik šeste Elektrotehniške in računalniške konference ERK
’97, 1997.

[9] A. Jaklič. Segmentor: An object-oriented framework for image
segmentation. Technical report, Computer Vision Laboratory,
Fakulteta za računalništvo in informatiko, Univerza v Ljubljani,
1996.

[10] A. Leonardis D. Skočaj, A. Jaklič and F. Solina. Testing
computer vision algorithms over world wide web. In Proceedings
of the 21st Workshop of the Austrian Association for Pattern
Recognition (OAGM/AAPR), 1997.

[11] A. Jaklič, A. Leonardis, and F. Solina. Segmentation and Recov-
ery of Superquadrics, volume 20 of Computational imaging and
vision. Kluwer, Dordrecth, 2000. ISBN 0-7923-6601-8.

[12] B. Kverh. Izboljšava klasičnega postopka gradnje in izbire za
segmentacijo podatkov. Elektrotehniški vestnik, 2003.

[13] A. Leonardis. Image Analysis Using Parametric Models. PhD
thesis, Fakulteta za elektrotehniko in računalništvo, Univerza v
Ljubljani, 1993.

[14] J. Rissanen. Modelling by shortest data description. Automatica,
(14):468–471, 1978.

Bojan Kverh received his B.Sc., M.Sc. and Ph.D. degrees in computer
and information science from the University of Ljubljana in 1995,
1998 and 2001, respectively. Since 1995 he has been working at
the Computer-Vision Laboratory at the Faculty of Computer and
Information Science in Ljubljana. He has participated in several
scientific and industrial projects. His research interests include 3D
reconstruction of range images, different criteria for model selection,
web applications and client-server architecture.

