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Annotation. The object of investigation is an analytical model of a Call-center functioning with a traffic distribution 
(call redirection) mechanism. Call-center functioning is described by the Markov process. A solution for stationary 
distribution is found and expressions for the main performance characteristics for the Call-center functioning are 
given. 
 
Keywords: Call-center, call redirection, analytical model, performance evaluation 
 

Ocena performanc klicnega centra s preusmerjanjem klicev  

Povzetek. Objekt raziskave je analitični model klicnega 
centra z vgrajenim mehanizmom za preusmerjanje 
klicev. Delovanje klicnega centra sva opisala z  
Markovskim procesom. Za model sva podala rešitev za 
stacionarno porazdelitev, prikazala sva tudi rešitve za 
glavne performančne karakteristike. 
 
Ključne besede: klicni center, preusmerjanje klicev, 
analitični model, ocena performanc 
 

1 Model Description 
Development of Call-center functioning schemes has 
given rise to investigations in new call-management 
schemes, changes in the number of agents and call 
forwarding [1-4]. Let’s examine a Call-center that 
consists of two groups of agents: G1 with capacity 1С
and G2 with capacity 2С (see Fig.1). The incoming 
calls to G1(2) are presented by Poisson arrivals with the 

)( 21 λλ density. The times of call processing by any 
agent of G1(2) are independent random variables 
distributed according to the exponential law with the 

)( 21 µµ parameter. 
 An incoming call to G1(2) call is redirected to G2(1) 
for processing with a probability of )( ,2,1 ji gg , which 

depends on )( ji number of busy agents in G1(2). 
Otherwise the call is processed by its own group G1(2) 
with additional probability )( ,2,1 ji gg if there are 

available agents in the G1(2) group. If all agents in 
groups are occupied, the call is lost and it won’t be 
transferred again. 
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Figure 1. A generalized analytical model of a Call-center with 
call redirection. 

Let { })(),( 21 tt νν be a random variable describing 
the number of calls being processed in G1 and G2, 
respectively. We examine the Markov process 
{ }0),(),( 21 ≥ttt νν with the state space 21 XXX ×= ,

{ }11 ,...,1,0 CX = , { }22 ,...,1,0 CX = . As all states of the 
process communicate and their number is finite, 
stationary probability distribution )(lim),( , tpjip ji

t ∞→
= ,

{ }0,)(,)()( 21, ≥=== tjtitPtp ji νν exists [5] and it 
can be obtained via a system of equilibrium equations of 
X dimension and 1−X rank of the form 
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Matrix A is of the following form: 
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and 0 is a zero quadratic matrix of the 2C order. 

Let ., 2,21,1,2,21,1, λλθλλγ jnjnjnjn gggg +=+=

Forms of  elements of the nA , nB , nD matrices are: 
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The solution of the system in Eq. (1) is presented in 
the form of nn App TT ~

01
rr

=+ , where 
















−=+
+

−

=+−

=−

=

−−− .1,2),~~(
)1(

1

,1),~(
2
1

,0,1

~

1112
1

100
1

0
1

Cn
n

n

n

nnnn

n

AADA

AAD

A

A

µ

µ

µ

The vector 0p
r

is determined through the equation 
system 

TT 0AADAp
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and the normalizing condition in Eq. (2) obtaining the 
form 
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It is also possible to find the solution with other 
methods, for example with LU-decomposition. 
 The model provides an opportunity to examine and 
investigate different schemes of traffic redirection. This 
is done just by setting the corresponding  ,1 ig and jg ,2
probabilities distribution. If  0,1 =ig and 0,2 =jg , we 
get a standard model of the Call-center functioning 
without traffic redirection (model 1, 1m ). If 0,1 =ig ,

1,0 1 −= Ci , 1
1,1 =Cg and 0,2 =jg , 1,0 2 −= Cj ,

1
2,2 =Cg , we get a model with partial traffic 

redirection for the cases of G1 and G2 overload (model 
2, 2m ). 

 The above proposed generalized model (model 3, 

3m ) enables investigation of different combinations of 
redirection mechanisms. We will use notation 

kl mm _ , which means that model lm is implemented 

in G1, and model km is implemented in G2, 3,1, =kl .

Model ll mm _ corresponds to the case of a 
homogeneous model, and model kl ≠ corresponds to 
the case of a heterogeneous model. 

2 Performance Evaluation Characteristics 
Now that we know the probability distribution of a 
number of busy agents in G1 and G2 groups, we can 
calculate the necessary performance characteristics 
characterizing the effectiveness of the models under 
investigation. 
 Let π be the loss probability in the system. In 2_2, 
2_3, 3_2 and 3_3 models call loss occurs due to 
occupation of all 1C and 2C agents in G1 and G2, i.e. 

),( 21 CCp=π .
In the 1_1 model the loss probability, π , is 

calculated according to the following formula 
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stationary probability of  the call loss in G1 (G2). 
 In 1_2 and 1_3 models the call loss occurs in case of 
occupation of all G1 agents. Thus the loss probability, 
π , for the 1_2 and 1_3 models is calculated according 
to the formula 
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Similarly, the loss probability, π , for the 2_1 and 
3_1 models is   
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Let 0p be the probability of an idle Call-center, i.e. 
the probability of absence of any call (it is valid for all 
models). Thus, 0p is equal to the probability of 

{ }0),(),()( 212,1 ≥= tttt ννν process being in ( )0,0 state. 

 The average number of busy agents, 1Q ( 2Q ), in G1 
(G2) group, respectively, is determined in the following 
way: 
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3 Case studies 
Let’s conduct a numerical analysis of the loss 
probability for the investigated model and its alternate 
versions provided the following parameters apply: 
 a) symmetrical case: 1C =10, 2C =10; 1µ =1, 2µ =1; 

21 λλλ += is from 0 to 20 ( 1λ and 2λ are from 0 to 

10); for 1m )2(1,2,1 ,0,0)( Cigg ii =∀= , for 2m

,1,0,0)( )2(1,2,1 −=∀= Cigg ii 1)(
21 ,2,1 =CC gg for 

3m )2(1,2,1 ,0,5.0)( Cigg ii =∀=

b) nonsymmetrical case: 1C =5, 2C =15; other 
parameters are identical to the previous case. 
 The diagram of relationship between the loss 
probability and the incoming traffic density for the 
homogeneous and heterogeneous models of the 
symmetrical case is shown in Figures 2-4. 
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Figure 2. Relationship between π and λ for models 

ll mm _ , 3,1=l , case a). 
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Figure 3. Relationship between π and λ for heterogeneous 
models, case a). 
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Figure 4. Relationship between π and λ for homogeneous 
and heterogeneous models, case a). 
 

As expected, an increase in the incoming traffic 
density is followed by an increase of the loss 
probability. As shown in Figure 2, the greater loss 
probability corresponds to the 1_1 model regardless of  
incoming traffic density. It is caused by the loss in the 
system that becomes possible as soon as all the agents 
of any group are busy, regardless of idle devices 
availability in another group. 
 The smallest values of the loss probability 
correspond to the 2_2 model. Here call redirection is 
implemented only when all agents are busy in G1 or G2. 
In the 3_3 model calls can be redirected to another 
group even if one device is busy. This enables an 
additional load to be transmitted to a neighboring group. 
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Thus, in terms of the loss probability the most effective 
among the homogeneous models is the 2_2 model. 
 As for the heterogeneous models (see Figure 3), the 
greatest loss probability occurs in the 1_3 model. In the 
1_2 and 1_3 models the traffic is redirected to G1, 
where the redistribution mechanism is not implemented. 
This causes an increase in the loss probability. As traffic 
redirection can be implemented earlier and more 
intensively in 3m than it happens in 2m , then the loss 
probability, which corresponds to the 1_3 model, is 
higher than that of the 1_2 model. The least loss 
probability corresponds to the 2_3 model. It is caused 
by the redistribution mechanism implemented in both 
groups, and the loss becomes possible only after all the 
agents are busy in each of the groups. 
 Comparing the loss probabilities for the 2_2 and 2_3 
models (see Figure 4), we can see that in case of low 
and medium incoming traffic density ( 120 ≤≤ λ ) the 
loss probability in the 2_2 model is higher than that of 
the 2_3 model, but in case of high incoming traffic 
density ( λ≤14 ) the loss probability in the 2_2 model 
appears to be lower than that of the 2_3 model. In case 
of low load a relatively small call flow is redirected 
from G1 to G2 in the 2_3 model, but in case of a high 
load the number of redirected calls increases and causes 
an increase in the loss. 
 The diagrams of relationship between the loss 
probability and the incoming traffic density for 
homogeneous and heterogeneous models of the 
nonsymmetrical case are shown in Figures 5-9. In this 
case the ji _ and ij _ models are different and the 
diagrams for comparing the loss probability are given 
for both variants of models. 
 As shown in Figures 5-6, the loss probability for the 
1_3 and 1_2 models significantly exceeds the loss 
probability for the 3_1 and 3_2 models. This is caused 
by the fact that in the first case (1_3 and 1_2) the traffic 
comes from another group to a group where the 
redistribution mechanism is not implemented and the 
number of agents is smaller. 
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Figure 5. Relationship between π and λ for models 1_2, 
2_1, case b). 
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Fig. 6. Relationship between π and λ for models 1_3, 3_1, 
case b). 
 

In case of low and medium incoming traffic density 
the loss probability in the 2_3 model is lower than that 
of the 3_2 model (see Figure 7), but in case of high 
incoming traffic density the loss probability in the 2_3 
model exceeds the loss probability in the 2_3 model. 
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Figure 7. Relationship between π and λ for models 3_2, 
2_3, case b). 
 

Here the most effective among the homogeneous 
models is the 3_3 model (see Figure 8). Similarly to the 
symmetrical case, this can be explained through 
characteristics of the redistribution mechanism, 
implemented in 3m .

Comparing the loss probability for the 3_3, 3_2, 
3_1, 2_1, 2_3 models (see Figure 9), we can conclude 
that in case of a low and medium incoming traffic 
density the least values of the loss probability 
correspond to the 2_3 model, and in case of a high 
incoming traffic density they correspond to the 2_3 
model. It should be noted that in case of high values of 
λ the difference between the loss probability values for 
the 3_2 and 3_3 models is small (lower than  0.01). 
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Figure 8. Relationship between π and λ for homogeneous 
models, case b). 
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Figure 9. Relationship between π and λ for models 3_3, 
3_2, 3_1, 2_1, 2_3, case b). 
 

According to Figure 9 for the case of low and 
medium λ we can conclude that if 3m is implemented 
in a group with a smaller number of agents, then the loss 
probability is greater compared to similar models, where 

2m is implemented in a group with a smaller number 
of agents. However, in case of a high traffic density 
smaller values of π correspond to models where 3m is 
implemented in G1. It may be concluded that in case of 
implementing heterogeneous models in conditions of a 
high incoming traffic density it is advisable to 
implement 3m in bottlenecks. 

4 Conclusion 
The proposed analytical model of Call-center operation 
with redirection of calls between groups of agents 
enables an investigation in different call traffic 
management schemes for the cases of agents overload 
as well as for the cases of agents underload. 
 The numerical analysis proved effectiveness of the 
applied call redirection procedure. 
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